
Design and Simulation of Self-Optimizing
Mechatronic Systems with Fujaba and CAMeL ∗

Sven Burmester†, Holger Giese, and Florian Klein†

Software Engineering Group, Warburger Str. 100, D-33098 Paderborn, Germany

[burmi|hg|fklein] @upb.de

ABSTRACT
Self-Optimizing mechatronic systems which are able to re-
act autonomously and flexibly to changing environments are
one promising approach for the next generation of mechan-
ical engineering systems. To render designing such systems
possible, an approach is required which goes far beyond
what is offered by today’s standard tools for mechatronic
systems. In this paper, we outline how a smooth integra-
tion between mechanical and software engineering methods
and tools supports the design of verifiable, complex, recon-
figurable mechatronic systems. The focus of the paper is
on enabling the design and simulation of safe reconfigurable
mechatronic systems, as reconfiguration is a critical prereq-
uisite for self-optimization.

1. INTRODUCTION
Mechatronic systems combine technologies from mechanical
and electrical engineering as well as from computer science.
In the future they will rather be composed of interacting
systems than isolated solutions for individual devices. Net-
working and ever increasing local computational power en-
able sophisticated mechatronic systems, which, besides more
advanced digital control, will include rather complex soft-
ware coordination and information management capabili-
ties. To handle the resulting complexity, each single unit of
such composite systems must be able to react autonomously
and flexibly to changing environmental settings.

To achieve the required flexibility, we propose to build
self-optimizing technical systems which modify their goals
endogenously based on changing environmental settings.1 A
critical prerequisite to realize a goal-compliant autonomous
adaptation of the system behavior is the ability of the system
to reconfigure its structure or parameters accordingly. This
requires coordination between the mechanical engineering
and software engineering elements of the system. Therefore
a smooth integration between methods and tools from both
domains is inevitable. The presented solution integrates the
CASE tool Fujaba Real-Time Tool Suite2 and the CAE tool

†Supported by the International Graduate School of Dy-
namic Intelligent Systems. University of Paderborn
∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.
1www.sfb614.de/eng/
2www.fujaba.de

CAMeL3 to support the design of verifiable, complex, re-
configurable mechatronic systems.

The paper is organized as follows: In Section 2, the se-
mantic integration between block diagrams for mechatronic
control systems and UML component models is summarized.
Section 3 presents the necessary extensions to CAMeL (3.1)
and Fujaba (3.2) and the binding tool and runtime environ-
ment required for ultimately integrating and executing the
model (3.3).We then review relevant related work in Section
4 and present our final conclusions and give a short outlook
on planed future work.

2. SEMANTIC INTEGRATION
As a running example, we will use the active vehicle sus-
pension system for the shuttles from the RailCab4 research
project. In this project, a modular rail system will be de-
veloped; it is to combine modern chassis technology with
the advantages of the linear drive technology (as applied in
the Transrapid5) and the use of existing rail tracks. In our
example, shuttle software is developed that realizes the safe
switching between three different feedback controller struc-
tures, which control the body of the shuttle.

2.1 Control Engineering
Feedback controllers are usually specified through block dia-
grams or differential equations [11] and describe the relation
between continuous in- and output signals. In our example,
three different feedback controllers are applied, providing
different levels of comfort to the passengers:

The controller reference uses the absolute acceleration of
the coach body z̈abs and a reference trajectory that describes
the motion of the coach body zref as input signals. In case
the trajectory is not available, the absolute controller, requir-
ing only z̈abs, has to be used. If neither the trajectory nor
the measurement of z̈abs are available, the robust controller
is applied, requiring just common inputs (see Figure 1).

For switching between two controllers, one must distin-
guish two cases: When switching between the normal and
the failure block in Figure 1, the change can take place be-
tween two computation steps (atomic switching). Switching
between reference and absolute requires cross-fading in order
to guarantee stability. The cross fading itself is specified
by a fading function fswitch(t) and an additional parameter
which determines the duration of the cross fading.

3www.ixtronics.de
4http://www-nbp.upb.de/en
5http://www.transrapid.de/en

z
..
z

Zref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

t0 tend

1

0

f (t)Switch

1-f (t)Switch

blending curves

Figure 1: Different control modes and fading

2.2 Software Engineering
Inspired by ROOM [13], UML 2.0 supports the specifica-

tion of the structure of complex systems using components
with ports and deployment diagrams. The only support for
real-time behavior is provided by the Profile for Schedu-
lability, Performance, and Time [12]. In order to specify
real-time behavior, we apply the real-time extension, the
so called Real-Time Statecharts in Fujaba [2] as well as a
restricted notion for Real-Time Patterns [5].

2.3 Integration
As proposed by the UML 2.0 approach, we use compo-

nent diagrams to specify the overall structure of the system.
We introduce hybrid components [4, 3], which integrate dis-
crete and continuous behavior. To model communication of
sporadic events and communication of continuously chang-
ing signals, we distinguish between discrete and continuous
ports. The latter are visualized by a triangle inside the port-
square, indicating the direction of the data flow.

:Registry

:Monitor

storage : Storage

:BC

:Sensor Registration
Shuttle−

Pattern

Figure 2: Monitor and its environment

In Figure 2, the structure of the shuttle’s Monitor compo-
nent is shown. It consists of the Sensor, delivering z̈abs, the
Body Control (BC) component, switching between the feed-
back controllers, and the Storage component used for storing
the reference trajectory the Monitor obtains from a track sec-
tion’s Registry. A more detailed description can be found in
[4, 3].

The Shuttle-Registration communication pattern in Figure
2 specifies the communication protocol between two compo-
nents. Real-time model checking is used to verify the proto-
col. Compositional model checking and refinement relations
enable even the verification of large, complex systems [5].

The behavior of hybrid components is specified using our
notion of Hybrid Statecharts [4, 3], which extend the Real-
Time Statecharts. In Hybrid Statecharts, each discrete state

zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zAbsOK

zRefFailure

<Abs>

<Ref>

<Rob>

d4

d2

ffade2

ffade1

z̈abs

z̈abs

zref
d1

d3

ffade3

ffade4

Figure 3: Behavior of the body control component

is associated with a configuration of embedded components.
Figure 3 shows the behavior of the BC component as a sim-
ple example where each configuration consists of just one
continuous feedback controller from Section 2.1.

State changes in Hybrid Statecharts are either modeled
through atomic or fading transitions. The latter (visual-
ized by thick arrows) can be associated with a fading func-
tion (ffade) and the required fading duration interval d =
[dlow, dup] specifying the minimum and maximum duration
of the fading.

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 4: Interface Statechart of the BC component

As reconfiguration leads to changing interfaces (e.g. BC’s
continuous input signals are state-dependent), we provide
the notion of hybrid Interface Statecharts (see Figure 4).
They only consist of the externally relevant real-time infor-
mation (discrete states, their continuous in- and outputs,
possible state changes, their durations, signals to initiate
transitions, and signal flow information [9]). They abstract
from the embedded components and from the fading func-
tions. Ports that are required in each of the three interfaces
are filled in black.

Well-known approaches like hybrid automata [1] or Hy-
Charts [6] embed only one continuous component, just as
the Hybrid Statechart from Figure 3. This is insufficient,
however, if reconfiguration is supposed to be possible at mul-
tiple levels, which requires hybrid components and their re-

configuration rather than merely the reconfiguration of the
controllers.

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

when(nextSegment)
data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)
data(Vector zRef)? /

db

dd da

dc

Figure 5: Monitor behavior with modular reconfig-
uration of the subcomponent BC

In our example, the Hybrid Statechart from Figure 5 spec-
ifies the behavior and the reconfiguration of the monitor com-
ponent. It consists of four discrete states indicating which
of the two signals z̈abs and zref are available. Every dis-
crete state has been associated with a configuration of the
subcomponents BC, Sensor, and Storage.6

In the design of these configurations, only the interface
description of the embedded components (e.g. Figure 4) is
relevant as the inner structure can be neglected. Therefore,
we specify the required structure and communication links
for each discrete state and assign the BC component in the
appropriate state to it. E.g., the BC component instance
in state Reference has been assigned to the state AllAvailable

where all signals are available. Therefore, a state switch in
the Monitor statechart implies a state change in the BC stat-
echart. Simple consistency checks ensure that the verified
real-time behavior still holds in spite of embedding hybrid
components [4].

3. TOOL INTEGRATION
Figure 6 illustrates the way these semantic concepts are used
to achieve the desired tool integration between CAMeL and
Fujaba: Both tools export hybrid components, which are
then integrated into a common hierarchical model.

The tools’ output is stored using an exchange format for
the description of hybrid components. It contains a high-
level interface description, consisting of the hybrid interface
statechart (incl. signal flow information), a behavioral de-
scription at the source code level and a tool-specific section
that allows subsequent modifications using the respective
originating tool. As it is the de facto standard for mecha-
tronic systems, C/C++ is used for the low level descriptions.
The integration itself is carried out using only the interface
descriptions, considering the individual components as black
boxes.

3.1 CAMeL
The CAE Tool CAMeL is used for modeling the dynamics

of physical systems and for specifying feedback controllers.

6Note that the interaction with the Registry is not shown.

Fujaba

:Clock

:Flywheel

:Pendulum

Hybrid Components

:Clock[Flywheel]

:Clock[Pendulum]

[unwound]

[woundUp]

Hybrid Statecharts�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Hybrid Components

:Clock

�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Integrated Hybrid Model

IPANEMA

Executable System

int main()
{

initialize();
}

Dynamics Model

�
�

cos
2

2

�
dt

d
r

�
�

sin
2

2

g
dt

d
���

Deployment

Deployment

CAMeL

Binding
Tool

XMLXMLXML

CodeCodeCode

XML

Figure 6: Tool Integration Overview

C++ code is generated from the designed block diagrams.
It is executed or simulated within the run-time framework
IPANEMA (see Section 3.3). In order to achieve the pro-
jected integration, controller block hierarchies may be ex-
ported as hybrid components, consisting of the required in-
terface description and generated C++ code implementing
the system’s differential equations.7 The required exten-
sions are currently being implemented within the scope of a
bachelor’s thesis.

3.2 Fujaba
Fujaba currently offers a wide range of UML-based dia-

grams for the complete specification of (real-time) software.
Of particular interest in the current context are compo-
nent diagrams, deployment diagrams, and Real-Time Stat-
echarts. Discrete components already play a prominent role
in the composition and verification of systems, and for reuse
based on design patterns. From the specification, code for
the Java Real-Time platform may then be generated.

Within the scope of a student research project, the tool
suite is now being adapted to incorporate the proposed hy-
brid concepts by introducing support for hybrid compo-
nents, ports, and statecharts. Building closely on the ex-
isting conceptual framework, the code generation is under-
going a massive rewrite in order to allow the generation of
the required C++ code.

3.3 Binding Tool & Run-Time Framework
Though the exchange format provides an integrated model
of the complete component hierarchy, an additional step is
required to carry this conceptual integration to the execu-
tion level. The binding tool determines the correct evalu-
ation order from the signal flow information and then cor-
rectly interconnects the individual components.

As we do not consider the outlined integration approach
as limited to Fujaba and CAMeL only, the binding tool (see
Figure 6) under development operates at the interface spec-
ification level and merely binds the code generated by other
tools without taking their internal model into account.

7Note that the interface statechart of a continuous compo-
nent consists of just one discrete state.

This means that any tool can provide hybrid components
for the binding tool, if it uses the exchange format and pro-
vides the C++ code itself. In order to ensure a correct
integration, the generated code fragments need to adhere to
the requirements set by a common run-time platform.

This platform is IPANEMA 2, a new run-time framework
that will introduce reconfiguration and support for C++
into the existing C-based IPANEMA framework [7]. It aims
to provide a common environment for the simulation of re-
configurable mechatronic systems, both in pure software and
with hardware-in-the-loop (HIL) execution. Using the de-
ployment information it receives from Fujaba, the binding
tool is capable of setting up such a simulation and assigns
the individual components to their respective nodes.

4. RELATED WORK
Support for the integration of continuous behavior is cur-
rently not provided within standard UML. The need for such
support is underlined by the OMG request for a proposal of
UML for Systems Engineering [10].

In the hybrid extensions HyROOM [14] and HyCharts [6],
two hybrid extensions of ROOM [13], complex architectures
are specified in a way similar to ROOM, but the behavior
is specified through statecharts whose states are associated
with continuous models. Their approach, however, is re-
stricted to a non-modular style of reconfiguration and does
therefore, unlike the outlined approach, not support recon-
figuration for complex, hierarchical systems.

A couple of modeling languages have been proposed to
support the design of hybrid systems (e.g. [1, 15]). Most
of these approaches provide models, like linear hybrid au-
tomata [1], that enable the use of efficient formal analysis
methods but lack methods for structured, modular design
and reconfiguration.

The de facto industry standard for modeling hybrid sys-
tems is MATLAB/Simulink and Stateflow.8 Modeling re-
configuration is achieved by adding discrete blocks, whose
behavior is specified by statecharts, to the block diagrams.
Thus, continuous and discrete behavior are separated and
not integrated as required for modeling the reconfiguration
of complex systems.

5. CONCLUSION AND FUTURE WORK
The presented approach is only a first step towards a com-
plete integration between mechatronics and software engi-
neering. It enables the seamless integration of CAE arti-
facts into UML in a modular fashion. Thus, the specific
complexity and propblems of the different disciplines such
as the stability of the control behavior or the correct real-
time coordination of the components can to some extent be
addressed separately.

In the future, we plan to further strengthen and extend
this integration. While currently the real-time processing
and the quasi-continuous digital control are combined in a
rather static manner, we plan to extend our approach to
also cover more dynamic reconfiguration scenarios as well
as compositional adaptation [8].

REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs,

T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,

8www.mathworks.com

J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(3-34), 1995.

[2] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[3] S. Burmester, H. Giese, and O. Oberschelp. Hybrid
UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Proc. of 1st
International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2004), Setubal,
Portugal. IEEE, August 2004.

[4] H. Giese, S. Burmester, W. Schäfer, and
O. Oberschelp. Modular Design and Verification of
Component-Based Mechatronic Systems with
Online-Reconfiguration. In Proc. of 12th ACM
SIGSOFT Foundations of Software Engineering 2004
(FSE 2004), Newport Beach, USA. ACM, November
2004. (accepted).

[5] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the compositional verification of
real-time uml designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM press, September 2003.

[6] R. Grosu, T. Stauner, and M. Broy. A modular visual
model for hybrid systems. In Proc. of Formal
Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’98), LNCS 1486. Springer-Verlag, 1998.

[7] U. Honekamp. IPANEMA - Verteilte
Echtzeit-Informationsverarbeitung in mechatronischen
Systemen. PhD thesis, University of Paderborn, 1998.

[8] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. Cheng. Composing Adaptive Software. IEEE
Computer, 37(7), July 2004.

[9] O. Oberschelp, A. Gambuzza, S. Burmester, and
H. Giese. Modular Generation and Simulation of
Mechatronic Systems. In Proc. of the 8th World
Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), Orlando, USA, July 2004.

[10] Object Management Group. UML for System
Engineering Request for Proposal, ad/03-03-41, March
2003.

[11] K. Ogata. Modern Control Engineering. Prentice Hall,
2002.

[12] OMG. UML Profile for Schedulability, Performance,
and Time Specification. OMG Document
ptc/02-03-02, September 2002.

[13] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[14] T. Stauner, A. Pretschner, and I. Péter. Approaching
a Discrete-Continuous UML: Tool Support and
Formalization. In Proc. UML’2001 workshop on
Practical UML-Based Rigorous Development Methods
– Countering or Integrating the eXtremists, pages
242–257, Toronto, Canada, October 2001.

[15] R. Wieting. Hybrid high-level nets. In Proceedings of
the 1996 Winter Simulation Conference, pages
848–855, Coronado, CA, USA, 1996.

