
Visualization of the execution of Real-Time Statecharts
Matthias Tichy and Margarete Kudak

Software Engineering Group
University Of Paderborn

Warburgerstr. 100
33095 Paderborn

[mtt|kudak]@uni-paderborn.de

ABSTRACT
Embedded software systems are used in nearly all of today’s
industrial products. Statecharts are used for the specification of
the reactive behavior of those embedded systems. Since embedded
systems have typically no rich user interface to display the current
status of the system or even to display debug messages, another
way to monitor the execution of the embedded system has to be
used. In this paper we describe an extension of the Fujaba Tool
Suite to support on-/off-line monitoring of the execution of
Statecharts.

Keywords
Statecharts, embedded systems, real-time systems, UML, Fujaba,
monitoring, execution traces.

1. INTRODUCTION
Embedded software systems are a huge factor in today’s
electronics or industrial products. Since a nearly failure-free
operation of these embedded software systems is of utmost
importance, high-level languages for the design and
implementation of the embedded software system are employed.
UML Statecharts are one of those high-level languages. They are
used to specify the discrete behavior of software systems. Real-
Time Statecharts [3] are a variant of UML Statecharts especially
geared to the specification of hard real-time systems.
Schedulability analysis and Java RT code synthesis are offered to
omit error-prone manual implementation of the specification.

In case of a failure the developer of an embedded system wants to
know what exactly has gone wrong in the system. Since
embedded systems typically have no rich user interface to display
its current state or to display debug messages, other means to view
the behavioral activities, which lead to the failure, are required.

We propose a monitoring and visualization framework for UML
and Real-Time Statecharts in the Fujaba Tool Suite [1]. This
framework allows the developer to monitor the execution of the
Statecharts. The monitoring data of the executed Statecharts are
visualized using UML Sequence Diagrams and Real-Time
Statecharts, with special markups. The visualization can either be
used in on-line mode visualizing the current behavior of the
system or in off-line mode visualizing older monitoring data. In
this paper we focus on real-time embedded systems and Real-
Time Statecharts. Nevertheless the approach is applicable to non
real-time systems as well.

In the next section we give an overview of our approach. In
Sections 3-5 we explain in more detail the different steps of our

approach. We conclude in Section 6, describe the current state of
work, and present some future research directions.

2. OVERVIEW

Figure 1. Framework architecture

Our proposed monitoring and visualization framework shown in
Figure 1 consists of mainly 3 parts. We have to support the
generation of execution traces to gather the data which contain the
behavior of the executed Statechart. For each monitored
Statechart an execution trace will be created during execution. In
Section 3 we show in detail the contents of an execution trace and
the different alternatives, which can be used to generate the
execution trace.

Since typically more than one Statechart will be visualized, the
execution traces of the different Statecharts must be merged prior
to visualization. In Section 4 we give a brief overview of how we
plan to merge those execution traces.

Finally, the merged execution traces are visualized by means of
UML Sequence Diagrams and Real-Time Statecharts. UML
Sequence Diagrams show the developer the message flow
between the Statecharts as well as time annotations. Additionally,
we added a graphical notion to show the current state of an
executed Statechart. In the Statechart oriented view of the
execution, the developer can see all Statecharts and their current
state at a given time. Here, the developer may see the cause for a
wrongly fired transition. In Section 5 we give more details and
some examples diagrams.

The above mentioned visualization of the Statecharts’s execution
can be done on-line respective off-line. That means, the
visualization can display either past executions by reading the
execution traces from a file (off-line) or display the behavior of
currently executed Statecharts (on-line). If a monitored Statechart

Real-Time
Statechart

Generation

Real-Time Sequence
Diagram / Statechart

Online/offline
visualisation

File

Java RT- Code
including

execution trace
generation

Execution Trace

is changing its state very fast and very often, the visualization may
lag in on-line mode.

Figure 2. Example

In the example above (Figure 2) two Real-Time Statecharts are
depicted which communicate via a wireless lan. In this small
example it may be obvious (but not for larger ones), that both
Statecharts may reach a deadlock. Initially Real-Time Statechart A
is in state A1 and is waiting for the message a to change into state
A2. Being in A1, A can also fire the transition “after(5)” and then
go into state A2. Real-Time Statechart B changes from state B1 to
B2 and sends the message a to A. Sending this message by
wireless lan can take longer than 5 ms, so A may go into state A2
without having received the message from B. The consequence of
this is, that Real-Time Statechart A is in A2 and is waiting for the
message b, while Real-Time Statechart B is in B2 waiting for the
message x to send the message b.

3. GENERATION OF EXECUTION
TRACES
A trace of the execution of a Statechart consists of several
execution activities. Each execution activity describes an activity
of the Statechart, for example firing a transition.

Generation of such execution traces during runtime is time-
critical, since it influences the temporal behavior of the Statechart.
For hard real-time systems the goal is to minimize the temporal
change.

For the generation of the execution traces several alternatives are
available. At first the Java Debug Interface (JDI) [7] can be used
to monitor the executed system. This would be a fairly easy
solution, since no change of the monitored software system is
required. Unfortunately, the runtime costs of JDI are way too
high. The measurements in [6] indicate an increase of runtime by
factors 100-300,000. Thus, JDI is completely out of the question.

A second solution is to instrument the compiled software. The
Byte Code Engineering Library (BCEL) [8] can be used to change
Java software after compilation. The negative effects of JDI can
be avoided by using instrumentation. Though, it is difficult to find
the correct code position where to add the data generation code.
Since we are generating the source code for the Statecharts
anyway, we may add the data generation code for the execution
activities as well. Additionally, then the code for generation of the

execution activities can be taken explicitly into account during
scheduling analysis.

Additionally, we need to decouple the generation of the execution
trace from everything else (file write, network write, etc.). We use
a queuing approach. Each execution activity will only be written
into a queue in the time-critical part of the system. During idle
time, the queue entries will be read and further processed for
writing to disk or network. If the queue becomes to large for the
monitored system, the developer must take appropriate actions.

For an individual execution activity it is important to know what
states, transitions and properties a Real-Time Statechart has. In
the execution trace four activities are mainly listed: the change of
a state, when a transition fires and the incoming and outgoing
messages between Real-Time Statecharts, as can be seen in Figure
2. Additionally, an execution activity may include information
about the different clocks used in the Real-Time Statechart and
may include data about local variables which are used in
transition guards.

4. MERGING OF DIFFERENT
EXECUTION TRACES
A typical embedded system is comprised of more than one active
system. These active systems are communicating with each other.
For our approach we do not only need to generate and visualize
the execution of just one Statechart. We have to display all
concurrent Statecharts of the embedded system and their
communication. Thus, the developer has the ability to see the
interaction of the Statecharts. This interaction is a typical cause of
complex errors in software.

To achieve this goal, we need to merge the execution traces of all
involved Statecharts for a coherent view of the system. Embedded
systems are often deployed on a distributed system and therefore
are executed on different computers with different local clocks.
Thus, clock differences and clock drift must be taken into account
for the merging of the execution traces.

The differences between local clocks can be tolerated by the use
of relative time stamps based on the known clock differences.
Dealing with clock drifts is more difficult. If the clock drift is
small and the absolute drift over the monitoring period is not too
large (fraction of seconds), it may be possible to ignore it.
Otherwise the approach of [4] has to be used. This approach uses
causal relationships, e.g. between incoming and outgoing
messages, to merge the execution activities in a correct order. In
contrast to [4] we know the originating Statecharts and thus
establishing a causal relationship is a lot easier.

5. VISUALIZATION
After merging the execution traces according to the last section,
we can visualize them in two different ways.

5.1 Sequence Diagrams
UML Sequence Diagrams are used to display the communication
between the participating Statecharts. Each Statechart is
represented by an active object in the Sequence Diagram. The
messages between the Statecharts are displayed as arrows between
the lifelines. As an addition, the current state of the Statechart is
shown as a special graphical object on the lifeline after a state
change (see Figure 3). Time information has been added to the
Sequence Diagrams to show the timing behavior. In real-time
systems the timing behavior can often be the cause of problems,

A1 A2
b /

a / x

after 5 A

B1 B2
x / b

/ a

B

wireless
lan

which are difficult to find. For the sake of a clearer presentation
only some time annotations have been added to the figure.

:A :B

A1 B1

a()

A2

B2

B1

A1

A2

x()

b()

after 5ms()

a()

t = 2,5

t = 4

t = 0

t = 9

t = 10,5

B2

Figure 3. Sequence Diagram

The Sequence Diagram of Figure 3 shows the visualization of the
Real-Time Statechart (Figure 2). Using this form of visualization
the user can easily see, that Real-Time Statechart A fires the
transition “after 5” and only receives message a from B
afterwards. At this point of time the deadlock is reached, because
A is waiting for message b while B is waiting for message x to
send message b to A.

5.2 Statechart snapshots
For each point on the timeline of the above described Sequence
Diagram a snapshot of all Statecharts can be displayed. Such a
snapshot of a Statechart, displays the Statechart and an additional
markup of its current state. The Statechart view may be easier for
the developer to realize what the cause of a problem is. For
example in this view the developer can see why a certain
transition did not fire as expected and what the difference from
expected behavior is. In Figure 4 the developer can see that the
after 5 transition fired, since the message a has not been received.

Figure 4. Real-Time Statechart with special markups

5.3 Navigation
The user has different possibilities to navigate in the visualization.
Using a timeline, he can slow up and speed up the visualization. If
for example states are changing very quickly (fraction of seconds),
it is not possible to see exactly what happened. Due to this, it
makes sense to reduce the speed of the visualization. Another
navigation possibility is to pause and resume the execution.
Additionally, the user is able to specify a particular point of time
and to start the visualization from this timestamp.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework for the visualization of
the behavior of embedded systems. This framework provides
visualization in form of UML Sequence Diagrams and Real-Time
Statecharts. The systems can be monitored off-line, i.e. a former
execution is displayed. Additionally the systems can be monitored
during runtime (on-line). Currently, we are at the implementation
stage of the proposed framework.

We focus on real-time systems specified by Real-Time
Statecharts. Nevertheless, the approach can be used to monitor
non real-time Statecharts as well. The Fujaba Tool Suite includes
support for StoryCharts [5]. StoryCharts are an extension of UML
Statecharts which may include StoryPattern as do-activity. Our
proposed approach may be extended to show the application of
the StoryPattern as well (in [2] a related approach for the
debugging of StoryDiagrams is described). Statistical evaluation
of a number of execution traces may be used to discover potential
faults of the system, which otherwise may be unnoticed.

7. REFERENCES
[1] The Fujaba Tool Suite. http://www.fujaba.de, September

2003.

[2] Leif Geiger, Albert Zündorf. Graph Based Debugging with
Fujaba. In Proc. of the Workshop on Graph Based Tools,
International Conference on Graph Transformations,
Barcelona, Spain, October 6 - 12 2002.

[3] Holger Giese and Sven Burmester. Real-Time Statechart
Semantics. Technical Report tr-ri-03-239, Computer Science
Department, University of Paderborn, June 2003.

[4] C.E. Hrischuk and C.M. Woodside. Logical Clock
Requirements for Reverse Engineering Scenarios from a
Distributed System. IEEE Transactions on Software
Engineering, 28(4):321-339, April 2002.

[5] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating
UML Diagrams for Production Control Systems. In Proc. of
the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, pp. 241-251, ACM Press, 2000.

[6] Katharina Mehner. Zur Performanz der Überwachung von
Methodenaufrufen mit der Java Platform Debugger
Architecture (JPDA). Java Spektrum, Ausgabe Nov./Dez.
2003 (in German).

[7] Sun Microsystems. Java Platform Debugger and Java Debug
Interface. http://java.sun.com/products/jpda, September
2003.

[8] The Jakarta Project. Byte Code Engineering Library.
http://jakarta.apache.org/bcel/, September 2003.

A1 A2
b /

a / x

after 5 A

B1 B2
x / b

/ a

B

