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ABSTRACT 
Embedded software systems are used in nearly all of today’s 
industrial products. Statecharts are used for the specification of 
the reactive behavior of those embedded systems. Since embedded 
systems have typically no rich user interface to display the current 
status of the system or even to display debug messages, another 
way to monitor the execution of the embedded system has to be 
used. In this paper we describe an extension of the Fujaba Tool 
Suite to support on-/off-line monitoring of the execution of 
Statecharts. 
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1. INTRODUCTION 
Embedded software systems are a huge factor in today’s 
electronics or industrial products. Since a nearly failure-free 
operation of these embedded software systems is of utmost 
importance, high-level languages for the design and 
implementation of the embedded software system are employed. 
UML Statecharts are one of those high-level languages. They are 
used to specify the discrete behavior of software systems. Real-
Time Statecharts [3] are a variant of UML Statecharts especially 
geared to the specification of hard real-time systems. 
Schedulability analysis and Java RT code synthesis are offered to 
omit error-prone manual implementation of the specification. 

In case of a failure the developer of an embedded system wants to 
know what exactly has gone wrong in the system. Since 
embedded systems typically have no rich user interface to display 
its current state or to display debug messages, other means to view 
the behavioral activities, which lead to the failure, are required. 

We propose a monitoring and visualization framework for UML 
and Real-Time Statecharts in the Fujaba Tool Suite [1]. This 
framework allows the developer to monitor the execution of the 
Statecharts.  The monitoring data of the executed Statecharts are 
visualized using UML Sequence Diagrams and Real-Time 
Statecharts, with special markups. The visualization can either be 
used in on-line mode visualizing the current behavior of the 
system or in off-line mode visualizing older monitoring data. In 
this paper we focus on real-time embedded systems and Real-
Time Statecharts. Nevertheless the approach is applicable to non 
real-time systems as well. 

In the next section we give an overview of our approach. In 
Sections 3-5 we explain in more detail the different steps of our 

approach. We conclude in Section 6, describe the current state of 
work, and present some future research directions. 

2. OVERVIEW 

 

Figure 1. Framework architecture 

Our proposed monitoring and visualization framework shown in 
Figure 1 consists of mainly 3 parts. We have to support the 
generation of execution traces to gather the data which contain the 
behavior of the executed Statechart. For each monitored 
Statechart an execution trace will be created during execution. In 
Section 3 we show in detail the contents of an execution trace and 
the different alternatives, which can be used to generate the 
execution trace. 

Since typically more than one Statechart will be visualized, the 
execution traces of the different Statecharts must be merged prior 
to visualization. In Section 4 we give a brief overview of how we 
plan to merge those execution traces. 

Finally, the merged execution traces are visualized by means of 
UML Sequence Diagrams and Real-Time Statecharts. UML 
Sequence Diagrams show the developer the message flow 
between the Statecharts as well as time annotations. Additionally, 
we added a graphical notion to show the current state of an 
executed Statechart. In the Statechart oriented view of the 
execution, the developer can see all Statecharts and their current 
state at a given time. Here, the developer may see the cause for a 
wrongly fired transition. In Section 5 we give more details and 
some examples diagrams. 

The above mentioned visualization of the Statecharts’s execution 
can be done on-line respective off-line. That means, the 
visualization can display either past executions by reading the 
execution traces from a file (off-line) or display the behavior of 
currently executed Statecharts (on-line). If a monitored Statechart 
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is changing its state very fast and very often, the visualization may 
lag in on-line mode. 

Figure 2. Example 

In the example above (Figure 2) two Real-Time Statecharts are 
depicted which communicate via a wireless lan. In this small 
example it may be obvious (but not for larger ones), that both 
Statecharts may reach a deadlock. Initially Real-Time Statechart A 
is in state A1 and is waiting for the message a to change into state 
A2. Being in A1, A can also fire the transition “after(5)”  and then 
go into state A2. Real-Time Statechart B changes from state B1 to 
B2 and sends the message a to A. Sending this message by 
wireless lan can take longer than 5 ms, so A may go into state A2 
without having received the message from B. The consequence of 
this is, that Real-Time Statechart A is in A2 and is waiting for the 
message b, while Real-Time Statechart B is in B2 waiting for the 
message x to send the message b.  

3. GENERATION OF EXECUTION 
TRACES 
A trace of the execution of a Statechart consists of several 
execution activities. Each execution activity describes an activity 
of the Statechart, for example firing a transition. 

Generation of such execution traces during runtime is time-
critical, since it influences the temporal behavior of the Statechart. 
For hard real-time systems the goal is to minimize the temporal 
change.  

For the generation of the execution traces several alternatives are 
available. At first the Java Debug Interface (JDI) [7] can be used 
to monitor the executed system. This would be a fairly easy 
solution, since no change of the monitored software system is 
required. Unfortunately, the runtime costs of JDI are way too 
high. The measurements in [6] indicate an increase of runtime by 
factors 100-300,000. Thus, JDI is completely out of the question. 

A second solution is to instrument the compiled software. The 
Byte Code Engineering Library (BCEL) [8] can be used to change 
Java software after compilation. The negative effects of JDI can 
be avoided by using instrumentation. Though, it is difficult to find 
the correct code position where to add the data generation code. 
Since we are generating the source code for the Statecharts 
anyway, we may add the data generation code for the execution 
activities as well. Additionally, then the code for generation of the 

execution activities can be taken explicitly into account during 
scheduling analysis. 

Additionally, we need to decouple the generation of the execution 
trace from everything else (file write, network write, etc.). We use 
a queuing approach. Each execution activity will only be written 
into a queue in the time-critical part of the system. During idle 
time, the queue entries will be read and further processed for 
writing to disk or network. If the queue becomes to large for the 
monitored system, the developer must take appropriate actions. 

For an individual execution activity it is important to know what 
states, transitions and properties a Real-Time Statechart has. In 
the execution trace four activities are mainly listed: the change of 
a state, when a transition fires and the incoming and outgoing 
messages between Real-Time Statecharts, as can be seen in Figure 
2. Additionally, an execution activity may include information 
about the different clocks used in the Real-Time Statechart and 
may include data about local variables which are used in 
transition guards. 

4. MERGING OF DIFFERENT 
EXECUTION TRACES 
A typical embedded system is comprised of more than one active 
system. These active systems are communicating with each other. 
For our approach we do not only need to generate and visualize 
the execution of just one Statechart. We have to display all 
concurrent Statecharts of the embedded system and their 
communication. Thus, the developer has the ability to see the 
interaction of the Statecharts. This interaction is a typical cause of 
complex errors in software. 

To achieve this goal, we need to merge the execution traces of all 
involved Statecharts for a coherent view of the system. Embedded 
systems are often deployed on a distributed system and therefore 
are executed on different computers with different local clocks. 
Thus, clock differences and clock drift must be taken into account 
for the merging of the execution traces. 

The differences between local clocks can be tolerated by the use 
of relative time stamps based on the known clock differences. 
Dealing with clock drifts is more difficult. If the clock drift is 
small and the absolute drift over the monitoring period is not too 
large (fraction of seconds), it may be possible to ignore it. 
Otherwise the approach of [4] has to be used. This approach uses 
causal relationships, e.g. between incoming and outgoing 
messages, to merge the execution activities in a correct order. In 
contrast to [4] we know the originating Statecharts and thus 
establishing a causal relationship is a lot easier. 

5. VISUALIZATION 
After merging the execution traces according to the last section, 
we can visualize them in two different ways.  

5.1 Sequence Diagrams 
UML Sequence Diagrams are used to display the communication 
between the participating Statecharts. Each Statechart is 
represented by an active object in the Sequence Diagram. The 
messages between the Statecharts are displayed as arrows between 
the lifelines. As an addition, the current state of the Statechart is 
shown as a special graphical object on the lifeline after a state 
change (see Figure 3). Time information has been added to the 
Sequence Diagrams to show the timing behavior. In real-time 
systems the timing behavior can often be the cause of problems, 
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which are difficult to find. For the sake of a clearer presentation 
only some time annotations have been added to the figure. 
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Figure 3. Sequence Diagram 

The Sequence Diagram of Figure 3 shows the visualization of the 
Real-Time Statechart (Figure 2). Using this form of visualization 
the user can easily see, that Real-Time Statechart A fires the 
transition “after 5”  and only receives message a from B 
afterwards. At this point of time the deadlock is reached, because 
A is waiting for message b while B is waiting for message x to 
send message b to A. 

5.2 Statechart snapshots 
For each point on the timeline of the above described Sequence 
Diagram a snapshot of all Statecharts can be displayed. Such a 
snapshot of a Statechart, displays the Statechart and an additional 
markup of its current state. The Statechart view may be easier for 
the developer to realize what the cause of a problem is. For 
example in this view the developer can see why a certain 
transition did not fire as expected and what the difference from 
expected behavior is. In Figure 4 the developer can see that the 
after 5 transition fired, since the message a has not been received. 

 

Figure 4. Real-Time Statechart with special markups 

5.3 Navigation 
The user has different possibilities to navigate in the visualization. 
Using a timeline, he can slow up and speed up the visualization. If 
for example states are changing very quickly (fraction of seconds), 
it is not possible to see exactly what happened. Due to this, it 
makes sense to reduce the speed of the visualization. Another 
navigation possibility is to pause and resume the execution. 
Additionally, the user is able to specify a particular point of time 
and to start the visualization from this timestamp. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a framework for the visualization of 
the behavior of embedded systems. This framework provides 
visualization in form of UML Sequence Diagrams and Real-Time 
Statecharts. The systems can be monitored off-line, i.e. a former  
execution is displayed. Additionally the systems can be monitored 
during runtime (on-line). Currently, we are at the implementation 
stage of the proposed framework. 

We focus on real-time systems specified by Real-Time 
Statecharts. Nevertheless, the approach can be used to monitor 
non real-time Statecharts as well. The Fujaba Tool Suite includes 
support for StoryCharts [5]. StoryCharts are an extension of UML 
Statecharts which may include StoryPattern as do-activity. Our 
proposed approach may be extended to show the application of 
the StoryPattern as well (in [2] a related approach for the 
debugging of StoryDiagrams is described). Statistical evaluation 
of a number of execution traces may be used to discover potential 
faults of the system, which otherwise may be unnoticed. 
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