
PARTITIONING AND MODULAR CODE SYNTHESIS FOR RECONFIGURABLE
MECHATRONIC SOFTWARE COMPONENTS∗

Sven Burmester† and Holger Giese
Software Engineering Group

University of Paderborn
Warburger Str. 100, D-33098 Paderborn, Germany

e-mail: [burmi|hg]@uni-paderborn.de

Alfonso Gambuzza and Oliver Oberschelp
Mechatronics Laboratory Paderborn

University of Paderborn
Pohlweg 98, D-33098 Paderborn, Germany

e-mail: [Alfonso.Gambuzza|Oliver.Oberschelp]@mlap.de

KEYWORDS
Hybrid Systems, Reconfiguration, Implementation.

ABSTRACT

Online reconfiguration offers great potential for improv-
ing the performance of technical systems at run-time.
To enable reconfiguration, which can also be employed
in complex hierarchical designs for mechatronic systems,
support for the modeling and realization of modular re-
configuration is required. In this paper, we present the
modular code synthesis for our modeling approach with
Hybrid Components and a related Hybrid Statechart
extension for the Unified Modelling Language (UML)
which offers a representation of reconfigurable systems
including conventional, non-reconfigurable block dia-
grams. To avoid the logic to be executed down to ev-
ery possible ramification, the control behavior is at first
partitioned into hierarchically organized continuous and
discrete blocks. An implementation is then presented
which schedules the evaluation of the continuous and
discrete blocks in such a manner that the reconfiguration
steps are safely and efficiently realized and the resulting
code is suited to hard real-time systems.

INTRODUCTION

In mechatronic systems it is often necessary to adapt
controllers to altered environmental conditions at run-
time. Beside parameter adaptation it is in some cases
necessary to alter the inner structure of the controller,
for instance because of sensor failures. These structural
changes have to be taken into account during modeling.
If the structural variance is limited to predefined topolo-
gies in the first instance, the system is referred to as a
reconfigurable one.
The inherent technical structure of the system can be
used to define the reconfiguration. According to this

∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Structures
in Mechanical Engineering - University of Paderborn, and was
published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

†Supported by the International Graduate School of Dynamic
Intelligent Systems. University of Paderborn

approach a block-oriented model of a system consists of
components describing a behavior (basic block) and of
others describing a topology (hierarchy block). A hier-
archy block describes relations and couplings between
subordinated components while a basic block represents
a directed input-output behavior in the shape of mathe-
matical expressions which are specified by Ordinary Dif-
ferential Equations (ODEs). The existing solvers for
ODEs allow an application in hard real-time systems.
A reconfiguration is assumed to be an alteration of a hi-
erarchy block. If possible configurations of a hierarchy
are predefined, this is referred to as a statical reconfig-
uration. If possible configurations are assumed to be
states of a hierarchy they can be represented as a stat-
echart. The combination of statechart and configurable
hierarchy is called a Hybrid Component.
As the reconfiguration is derived from the structure of
the technical system, the principle of aggregation can be
applied also to the information processing. In this case,
each block makes up a module and the code can be gen-
erated separately. A hierarchy coordinates the exchange
of data between modules and superior hierarchies.
A block diagram typically represents a forest of directed
evaluation graphs by means of equations and couplings.
If code is generated on the basis of this representation,
the evaluation order of the equations of the system has
to be calculated first. In the case of reconfigurable sys-
tems the evaluation order is usually not static, so a def-
inite evaluation order is valid only for matching con-
figurations. In combination with the module concept,
code must be generated whose evaluation order can be
controlled by the superior hierarchy.
The overall system makes up a so-called hybrid system.
In the following, we will present the modular code syn-
thesis for hybrid systems. In addition we will apply
the modeling approach with Hybrid Components and
a related Hybrid Statechart extension for the Unified
Modelling Language (UML) which offers a representa-
tion of reconfigurable systems that includes classical,
non-reconfigurable block diagrams [Giese et al., 2004,
Burmester et al., 2004].
The paper is structured as follows: In the first section we
introduce the testbed of a magnetic-levitation train and
present the modeling of the controller switching. The

following section will present our partitioning approach
which is essential for modular code synthesis. We will
then detail the implementation techniques and give an
overview of the related work. A conclusion and an out-
look to future work will round off the paper.

EXAMPLE AND MODELING

As an example we take the control system of a testbed
of a magnetic-levitation train (Figure 1). The testbed
allows only a control of the body mass in vertical di-
rection. It consists essentially of a supporting frame,
two vertical guides for the body and carriage mass, sen-
sors to obtain the position of the body and the carriage
mass, two voice-coil actuators for the simulation of dis-
turbances as well as the levitation-motor and the body
and carriage mass connected by a mechanical spring.
On the basis of this testbed we will show the modeling
and code synthesis of a switchable control.

upper
voice-coil actuator

lower
voice-coil actuator

body
position sensor

body spring

body mass

carriage mass

carriage
position sensor

Figure 1: Testbed

Continuous Models

Multiple feedback controllers can be applied to the
testbed. Figure 2 displays the three controllers that are
applied. In Figure 2a the Comfort controller, providing
the passengers the most comfort, is shown. It consists of
two PIDT1 controllers – one for controlling the under-
carriage, the other for controlling the coach body. For
inputs, PIDT1,body obtains the desired and the actual
positions of the coach body. The first one is provided
by a user input, the latter by a sensor. The output
yields the position of the undercarriage and serves as an
input for PIDT1,carriage. The other input, the current
position of the undercarriage, is provided by a sensor as
well.
If, however, a user input does not exist, this value is set
to a constant value as displayed in Figure 2b. In case
the xbody

current sensor should fail, this controller structure
could lead to an instability. Then the system needs to be
reconfigured as shown in Figure 2c. The required posi-
tion of the undercarriage is set to a constant value. This

−

a)

b)

c)

+

Explanation:

x
carriage
required

x
carriage
current

P
u

1

PIDT
1,carriage

x
carriage
required

PIDT
1,body

PIDT
1,carriage

u

x
carriage
current

x
body
current

x
body
required

x
carriage
required

x
carriage
current

PIDT
1,body

PIDT
1,carriage

u

x
body
required

P
1

x
body
current

PIDT1

PIDT1

v

u1

u2

Figure 2: a) Comfort Controller, b) Semi-Comfort Con-
troller, and c) Robust Controller

controller provides less comfort, but guarantees stability.
To ensure stability, fault tolerance patterns are applied
in such a way that the signal xcarriage

current is never lost.

Hybrid Models

In order to model the exchange of single controller
structures (reconfiguration) we use Hybrid Components
and Hybrid Statecharts as described and formalized in
[Giese et al., 2004, Burmester et al., 2004].

s1:Sensor

:UserInput

s2:Sensor

:Actuator:BC

Monitor

Figure 3: Structure of the controlling system

Figure 3 displays the structure of the controlling system.
It consists of one Monitor component which embeds sen-
sors, an actuator and a Body Control (BC) component;
the latter contains the feedback controllers and switches
between them.
The behavior of this hybrid BC component is spec-
ified by a simple Hybrid Statechart (see Figure 4)
which is an extension of a Real-Time Statechart
[Burmester and Giese, 2003]. It consists of 3 different
control modes (discrete states) associated with the three
configurations from Figure 2. The configurations consist
of PIDT1,carriage, PIDT1,body, and the P blocks. Bold

zAbsOK

zRefOK

zAbsOK

zRefFailure

SemiComfort

zAbsFailure

zAbsFailure
Robust

Comfort

u

u

x
carriage
current

P
1

x
carriage
required

PIDT
1,carriage

u

d4

d2

ffade2

ffade1

ffade3

ffade4
P

1

PIDT
1,carriage

x
carriage
required

PIDT
1,body

x
body
current

x
carriage
current

d3

d1
PIDT

1,carriage

x
carriage
required

PIDT
1,body

x
body
required

x
body
current

x
carriage
current

Figure 4: Behavior of the Body Control component

arrows indicate that output cross-fading has to be ap-
plied when there is a switch between two states. The
deadline intervals di specify the minimum and maxi-
mum fading time allowed. Thin arrows indicate that a
switch is performed without time-consuming fading.

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 5: Interface Statechart of the Body Control com-
ponent

When using this component in advanced contexts
(e.g., embedding the component in another configura-
tion), usually an abstract view of the component with-
out the implementation details is sufficient. This view is
given by the hybrid Interface Statechart of the compo-
nent (see Figure 5). It consists of the externally relevant
real-time information (discrete states, their continuous
in- and outputs, possible state changes, their durations,
signals to initiate transitions, and signal flow informa-
tion [Oberschelp et al., 2004]). They abstract from the
embedded components and from the fading-functions.
Ports that are required in each of the three interfaces
are filled in black, the ones that are only used in a sub-
set of the states are filled in white.
In this example each discrete state of the component
has a different continuous interface, a fact that leads
to an Interface Statechart which consists of as many
discrete states as does the detailed Hybrid Statechart.
Usually not every internal reconfiguration will result in a
different external state, which leads to further reduction
of complexity in the Interface Statechart. The external
view of the monitor component (see Figure 6) does not

change at run-time although it consists of four discrete
states. Therefore its Interface Statechart consists of just
one state.
As displayed in Figure 3, the BC component is struc-
turally embedded into the Monitor component. Fig-
ure 6 shows the behavior of the monitor embedding
and coordinating the behavior of BC and the other em-
bedded components as described in [Giese et al., 2004,
Burmester et al., 2004]. For this embedding the nota-
tion from Interface Statechart (see Figure 5) is used.
The Hybrid Statechart in Figure 6 consists of four states
representing that (i) a user input exists as well as the
sensor providing xbody

current (state AllAvailable), (ii) both of
these signals are not available (state NoneAvailable) and
(iii + iv) exactly one of these signals is available (states
BodyAvailable and UIAvailable). Note again that the sen-
sor providing xcarriage

current is laid out as fault-tolerant.
Every state is associated with a configuration. Thus
a switch from e.g. NoneAvailable to BodyAvailable results
in a reconfiguration and a switch of the embedded BC

component from state Robust to SemiComfort. The states
UIAvailable and NoneAvailable are required to keep track
of the available signals, yet a switch between them will
not lead to a reconfiguration or further state switches.
Transitions, visualized by bold arrows, are associated
with deadlines because they are time-consuming. They
are triggered by events, raised from the xBody Sensor or
UserInput component.

PARTITIONING

When the Monitor component is evaluated, it will trig-
ger the evaluation of its embedded components. As not
every embedded component belongs to every configu-
ration, it depends on the current discrete state of the
Monitor which of the embedded components are evalu-
ated. Then the triggered components will themselves
trigger their embedded components (in dependency of
their discrete states) and so forth.
Thus there is one evaluation order per discrete global
state. Enhancing the top-level monitor component with
this information is usually not feasible as the number
of global states grows exponentially with the number of
components. Therefore we compose the whole system as
a tree structure consisting of single Hybrid Components.
Each Hybrid Component is partitioned into mul-
tiple discrete and continuous evaluation nodes
[Oberschelp et al., 2004]. The continuous evalua-
tion nodes compute continuous states and outputs
of the feedback controllers, the discrete evaluation
nodes switch the discrete states of the components
and reconfigure subordinated Hybrid Components. As
the application of certain continuous evaluation nodes
depends on the actual configuration and thus on the
actual discrete state, safety can only be guaranteed
if one continuous evaluation cycle is not preempted

ui:UserInput

xBody:Sensor

xCar:Sensor

a:Actuator

a:ActuatorxCar:Sensor :BC[Robust]xCar:Sensor :Actuator

:Actuator
xBody:Sensor

xCar:Sensor:BC[Comfort]

:BC[Robust]

:BC[SemiComfort]
[Default]

NoneAvailable

BodyAvailableAllAvailable

UIAvailable

a) Hybrid Statechart b) Hybrid Interface Statechart

ui.active /

ui.inactive /

ui.active /

xBody.failure /xBody.resume /

xBody.resume / xBody.failure /

d7

ui.inactive /

d6

d5

d8

Figure 6: a) Behavior and b) Interface Statechart of the Monitor component

by the evaluation of a discrete node which switches
the actual discrete state. Therefore we separate the
evaluation of the discrete nodes from the evaluation of
the continuous nodes in time.

Basic Continuous Components

As already said, we have to determine the evaluation
order of the continuous nodes in dependency of their
external couplings. In order to minimize computational
effort, we partition multiple single evaluation nodes of
subordinated components into evaluation nodes of the
superordinated component. The order within such a su-
perordinated evaluation node is static and thus does not
change. We apply the partitioning algorithm from Ap-
pendix A which extends the partitioning algorithm from
[Oberschelp et al., 2004] in order to build the superor-
dinated evaluation nodes.
One of the nodes contains only expressions which influ-
ence only the inner continuous state of the controller. In
[Oberschelp et al., 2004] this evaluation node is known
as state node (S). There is no particular evaluation order
required for these expressions. Furthermore one eval-
uation node is created that determines outputs which
do not depend on the current inputs (non-direct link
node (ND)). Only the expressions whose outputs de-
pend on the inputs (direct link nodes (D)) are parti-
tioned into multiple evaluation nodes. The output of
the algorithm is called the reduced evaluation graph of
the configuration. It shows the interface of the compo-
nent, the partitioned evaluation nodes, and their input-
output dependencies. Figure 7a shows for example the
P and a PIDT1 controller. Each node represents a set
of expressions (e.g., mathematical expressions) and the
arrows indicate the dependencies. The reduced evalua-
tion graphs, which are obtained from the application of
the partitioning algorithm, are shown in Figure 7b. The
P controller consists of one (direct link) node nd0, the
PIDT1 controller consists of one (direct link) node nd0

u1

u2

u1

u2

u1 v1 v1

P PIDT1a)

b) P PIDT1

u1
nd0

v1 v1

nd0

ns0

Figure 7: a) Evaluation node structure and b) Reduced
evaluation graph of a P and a PIDT1 controller

and a (state) node ns0.

Basic Discrete Components

Discrete evaluation nodes do not need to be partitioned,
because every discrete component consists of exactly one
discrete node. In dependency of the current discrete
state, transitions are checked for activation and – as the
case may be – are fired in this evaluation node.

Hybrid Hierarchical Components

When the controller is embedded into a well-known con-
figuration (that defines the external coupling of the sin-
gle controllers), the algorithm is applied again to parti-
tion the configuration. Figure 8a shows the configura-
tion of the SemiComfort state from Figure 4 (cf. Figure
2b). The partitioning results in the reduced evaluation
graph of Figure 8b. Partitioning of the other configura-
tions of Figure 4 (cf. Figures 2a and 2c) is done similar.
Thus each of the three discrete states of the BC com-
ponent is associated with another reduced evaluation
graph.
As shown in Figure 6, the configuration that is associ-
ated with a discrete state does not have to consist exclu-

a)

b)

ns1

x
body
current

x
carriage
current u

nd1

1

x
carriage
current

x
body
current

P

nd0

PIDT1

nd0

PIDT1

nd0

u

ns0

ns0

Figure 8: Configuration and reduced evaluation graph
of the semi comfort controller

sively of continuous components, but may also consist of
Hybrid Components. These Hybrid Components are in
a specific discrete state in this configuration. Then the
partitioning algorithm works on the reduced evaluation
graphs of the appropriate discrete states.
When evaluating the discrete evaluation nodes of hierar-
chical components one has to make sure that a change at
the top-level component affects the subordinated com-
ponents within the same execution cycle. Therefore the
discrete nodes of the components at a higher hierarchy
level must be evaluated prior to the ones at the lower
hierarchy levels.

IMPLEMENTATION

We have already stated that the evaluation order of the
different nodes of a component depends on the external
couplings. Thus an implementation must allow evalua-
tion of the nodes in a different order, dependant on the
couplings of the current configuration.

Basic Continuous Components

In order to evaluate the nodes in a different order each
basic continuous component is implemented as a class,
providing an evalCont(int nodeId) method. According to
the parameter of the method, the corresponding node
is evaluated (cf. Figure 9). The possible nodeIds nd0

or nd0, and ns0 resp. correlate to the nodes which have
been determined by the partitioning algorithm (cf. Fig-
ure 7b), the internals (auxiliars[0]=...) are the expressions
of the components (cf. Figure 7a).

Basic Discrete Components

Similar to the implementation of a basic continuous
component, a discrete component consists of a method
evalDiscrete(). It has no nodeId parameter as it consists of
exact one evaluation node. Furthermore it consists of an

P::evalCont(int nodeId) : void

auxiliars[0] = inputVectors[0] + ...

auxiliars[0] = inputVectors[1] − ...

auxiliars[0] = inputVectors[0] +

...

...

[nodeId == nd0]

[else]

PIDT1::evalCont(int nodeId) : void

[nodeId == nd0]

[else]

[nodeId == ns0]

[else]

Figure 9: Activity Diagram of the evalCont(int nodeId)

method of a P and a PIDT1 controller

attribute current indicating the current discrete state.1

Inside the evalDiscrete() method, there is a check – in
dependency of the current discrete state – if transitions
are triggered. In case of some triggered transitions, one
is selected, its side-effects are executed and the discrete
state is changed. This application flow is displayed in
Figure 10.

BC::evalDiscrete() : void

[current == SemiComfort]

[current == Robust]

[current == Comfort]

...

if (queue.isAvailable(eventZRefOk)) {...}
...

if (queue.isAvailable(eventZAbsOk)) {...}
...

if (queue.isAvailable(eventZAbsFailure)) {...}
[else]

[else]

[else]

Figure 10: Activity Diagram of the evalDiscrete() method
of BC

Hybrid Hierarchical Components

embeds
embeds embeds embeds

embeds

bc:BC

current : State

evalCont(int nodeId) : void
evalDiscrete() : void

embeds embeds

p2:Pp1:P

fader:Fader

embeds

car1:PIDT1

body2:PIDT
1

body1:PIDT
1

car3:PIDT1

car2:PIDT1

Figure 11: Object structure at run-time (cut-out)

An implementation of the hybrid hierarchical compo-

1In case of a flat automata model, current is usually of a simple
data type, like int. In a statechart model with hierarchical and
orthogonal states it is of a more complex type.

nents, like BC, consists of the methods evalCont(int

nodeId) and evalDiscrete(). These methods call the ac-
cording methods of the embedded components. There-
fore the hierarchical component needs to have references
to these components. Figure 11 displays this structure
by a UML object diagram for the BC component.
The implementation of the evalCont(int nodeId) method
of a hybrid hierarchical component differs from that of a
basic continuous component. It contains not expressions
but lists of continuous nodes of the embedded (basic con-
tinuous or hybrid hierarchical) components. These lists
are dependent on the current discrete state. Figure 12
shows the content of the evalCont(int nodeId) method of
BC as an activity diagram. In dependency of the current
discrete state each node (nd1 and ns1) consists of a dif-
ferent list of evaluation nodes of embedded components.
If, for example, the component is in state SemiComfort,
the node nd1 will consist of three sequential calls of the
nodes nd0 from P controller p1, block nd0 from PIDT1

controller body2, and block nd0 from PIDT1 controller
car2.
Note that the evaluation nodes of the embedded compo-
nents, which are executed when nd1 or ns1 is evaluated,
are determined by the partitioning algorithm as shown
in Figure 8. These nodes of the subordinated compo-
nents are the nodes from their corresponding reduced
evaluation graphs. Thus no knowledge about the in-
ternal node structure of the embedded components is
required inside BC.
Furthermore there exists source code for the so-called
fading states FadeRobustComfort, etc. These states be-
long to the underlying hybrid automata model, as pre-
sented in [Giese et al., 2004]. The component resides in-
side these states while fading transitions are executed.
Note that in this case the nodes nd1 and ns1 are similar
to a concatenation of the according nodes of states Ro-

bust and Comfort and an additional evaluation node of a
Fader component. Due to limited space, not all fading
states are displayed in Figure 12.
The discrete evaluation node of BC is the node presented
in Figure 10. As BC embeds only basic continuous com-
ponents, no other discrete nodes have to be evaluated.
Figure 13 shows the implementation of the evalCont(int

nodeId) method of the Monitor component in form of an
activity diagram. Due to a lack of space we do not
show that a Monitor instance references the embedded
sensor and actuator components and the BC component
(similar to Figure 11). As Monitor is a self-contained
component it consists of exactly one continuous evalu-
ation node nd2. This node is periodically evaluated at
run-time.

RELATED WORK

Due to an ever-increasing complexity of technical sys-
tems methods for modular simulation have been devel-
oped in recent years. To be emphasized in particular

are descriptor methods based on differential-algebraic
equations (DAE). One drawback of these methods is
that they cannot be used in real time contexts because
of the iterative parts of the necessary solvers. There are
several CAE tools that are also based on DAEs, such as
ADAMS2 or SIMPACK3 which allow multi-body model-
ing and simulation yet have the same drawbacks in real-
time evaluation as do all DAE-based tools [Hahn, 1999].
MATLAB/Simulink and Stateflow4 are the de facto in-
dustry standard for the modeling of technical systems.
Reconfiguration can be modeled by conditionally exe-
cuted subsystems which are executed in dependency of a
control signal. Although this approach allows modeling
of reconfiguration, it has the disadvantage that systems
will become very complex. The models consist of all
active and inactive components. The use of our notion
of Hybrid Statecharts results in multiple configurations,
consisting of just the active components.
Hybrid bond graphs [Mosterman and Biswas, 1995] in-
troduce so-called controlled junctions to model recon-
figuration. A finite-state machine (FSM) is associated
with each controlled junction. Each state of the FSM
is of the type on or off, indicating if the controlled junc-
tion acts like a normal junction or as a 0 value source.
Therefore state changes turn parts of the model on or
off. Modeling reconfiguration with hybrid bond graphs
has the same drawback like conditionally executed sub-
systems, as graphs consist of all active and inactive con-
figurations.
In [Mosterman, 2000] a Java and a C/C++ export to
support simulation of hybrid bond graphs is outlined.
The evaluation order has to be derived for every global
state (the cross product of FSMs of all controlled junc-
tions). In our approach, we exploit the hierarchical com-
ponent structure to build a tree structure, that avoids
getting a number of evaluation orders that is exponential
in the number of states. Further, a switch of a discrete
state in a FSM can trigger transitions in other FSMs.
Therefore no upper bound is given, describing the num-
ber of transitions, which fire before the system reaches
a consistent, stable state and continuous evaluation can
proceed. In our approach the discrete and the contin-
uous evaluation are decoupled and the upper bound of
firing transitions is set by the hierarchy.

CONCLUSION AND FUTURE WORK

In this paper we presented a way to generate modular
source code for reconfigurable, safety-critical systems.
The reconfiguration was specified by our notion of Hy-
brid Components and Hybrid Statecharts.
The main problem to be solved in the implementation of
feedback controllers and hybrid systems is the partition-
ing of the model into nodes and the determination of the

2www.adams.com
3www.simpack.com
4www.mathworks.com

BC::evalCont(int nodeId) : void

[current == Comfort]

[current == SemiComfort]

[current == Robust]

[current == FadeRobustComfort]

car1− > evalCont(nd0)body1− > evalCont(nd0)

body1− > evalCont(ns0)

[nodeId == nd1]

[nodeId == ns1]

[else]

[else]

[nodeId == nd1]

[nodeId == ns1]

car2− > evalCont(ns0)body2− > evalCont(ns0)

[nodeId == nd1]

[nodeId == ns1]

p1− > evalCont(nd0) car2− > evalCont(nd0)body2− > evalCont(nd0)

car1− > evalCont(ns0)

[nodeId == nd1][else]

[nodeId == ns1]

car3− > evalCont(ns0)

p2− > evalCont(nd0) car3− > evalCont(nd0)

p2− > evalCont(nd0) car3− > evalCont(nd0)

body1− > evalCont(ns0)

fade− > evalCont(ns2)

fade− > evalCont(ns2)car1− > evalCont(nd0)body1− > evalCont(nd0)

car3− > evalCont(ns0)

car1− > evalCont(ns0)

Figure 12: Activity Diagram of the evalCont(int nodeId) method of BC

Monitor::evalCont(int nodeId) : void

[current == NoneAvailable]

[current == BodyAvailable]

[nodeId == nd2][else]

[else] [nodeId == nd2]

[else]

[else]

bc− > evalCont(nd1) actor− > evalCont(nd0)

bc− > evalCont(ns1)xCar− > evalCont(nd0)

xCar− > evalCont(nd0)xBody− > evalCont(nd0)

bc− > evalCont(ns1) actor− > evalCont(nd0)bc− > evalCont(nd1)

Figure 13: Activity Diagram of the evalCont(int nodeId) method of Monitor

node’s evaluation order. In this paper we presented an
advanced version of an algorithm that partitions basic
continuous and discrete components, as well as hybrid
hierarchical components. Then we showed how the par-
titioned model is mapped to modular structured code
and presented a way of executing the code so as to en-
sure safe reconfiguration.

In current work we are implementing the automatic code
generator and methods for the propagation of signals.
Then we will test the presented example and evaluate
the results.

ACKNOWLEDGEMENTS

The authors thank the students Vadim Boiko, Björn
Schwerdtfeger, and Andreas Seibel for the interesting
discussions.

REFERENCES

[Burmester and Giese, 2003] Burmester, S. and Giese, H.
(2003). The Fujaba Real-Time Statechart PlugIn. In Proc.
of the Fujaba Days 2003, Kassel, Germany.

[Burmester et al., 2004] Burmester, S., Giese, H., and Ober-
schelp, O. (2004). Hybrid UML Components for the De-
sign of Complex Self-optimizing Mechatronic Systems. In
Proc. of 1st International Conference on Informatics in
Control, Automation and Robotics (ICINCO 2004), Se-
tubal, Portugal. IEEE.

[Giese et al., 2004] Giese, H., Burmester, S., Schäfer, W.,
and Oberschelp, O. (2004). Modular Design and Veri-
fication of Component-Based Mechatronic Systems with
Online-Reconfiguration. In Proc. of 12th ACM SIGSOFT
Foundations of Software Engineering 2004 (FSE 2004),
Newport Beach, USA. ACM. (accepted).

[Hahn, 1999] Hahn, M. (1999). OMD - Ein Objektmodell für
den Mechatronikentwurf. Anwendung in der objektorien-
tierten Modellbildung mechatronischer Systeme unter Ver-
wendung von Mehrkörpersystemformalismen. Fortschritt-
Berichte VDI. Reihe 20. Nr. 299. VDI Verlag, Düsseldorf.

[Mosterman, 2000] Mosterman, P. J. (2000). HYBRSIM - A
Modeling and Simulation Environment for Hybrid Bond
Graphs.

[Mosterman and Biswas, 1995] Mosterman, P. J. and
Biswas, G. (1995). Modeling Discontinuous Behav-
ior with Hybrid Bond Graphs. In Proc. of the Intl.
Conference on Qualitative Reasoning, Amsterdam, the
Netherlands, pages 139–147.

[Oberschelp et al., 2004] Oberschelp, O., Gambuzza, A.,
Burmester, S., and Giese, H. (2004). Modular Genera-
tion and Simulation of Mechatronic Systems. In Proc. of
the 8th World Multi-Conference on Systemics, Cybernet-
ics and Informatics (SCI), Orlando, USA.

APPENDIX A: PARTITIONING ALGORITHM

A single node is characterized by input, output, and state
variables and a set of expressions with a left-hand-side vari-
able and a right-hand-side expression with references to other
variables. We derive an acyclic expression graph G = (N, E)
with node set N and edge set E ⊆ N × N , where for each
n ∈ N and the related expression v := . . . v′ . . . holds that
for each variable v′ the expression refers to in the right-hand-
side an edge (n′, n) ∈ E exists with n′ the node related to
variable v′.
For an acyclic graph G = (N, E) we have the following addi-
tionally defined terms: dout((N, E), n) := |{n′ ∈ N |(n, n′) ∈
E}| the out-degree of node n, din((N, E), n) := |{n′ ∈
N |(n′, n) ∈ E}| the in-degree of node n, Nout ⊆ N the subset
of output nodes with ∀n ∈ Nout holds dout((N, e), n) = 0,
Nin ⊆ N the subset of input nodes with ∀n ∈ Nin holds
din((N, E), n) = 0, and Nstate ⊆ N the subset of nodes
which represent the internal state of the block.
The partitioning problem for a given acyclic expression
graph G = (N, E) of a block is how to determine a min-
imum number of partitions N1, . . . , Nn ⊆ N such that:
N = N1 ∪ . . . ∪ Nn and ∀i 6= j Ni ∩ Nj = ∅, the de-
rived graph Gp = (Np, Ep) with Np = {N1, . . . , Nn} and
Ep = {(Ni, Nj)|i 6= j ∧ i, j = 1, . . . , n ∧ ∃n′ ∈ Ni ∧ n′′ ∈
Nj : (n′, n′′) ∈ E} is acyclic, and for any context graph G′ =
(N ′, E′) with (N ∩ N ′) ⊆ (Nin ∪ Nout) and G′′ = (N ′′, E′′)
with N ′′ = N ∪N ′ and E′′ = E ∪E′ an acyclic graph holds
that the related derived graph for the partitioning build by
N1, . . . , Nn and each node of N ′−N is also an acyclic graph
(cf. [Oberschelp et al., 2004]). Such a minimal partitioning
can be computed by means of the following algorithm:

block partitioning((N,E)) begin

Din : N → ℘(Nin ∪ Nstate); // input dependencies

Iout : N → ℘(Nout ∪ Nstate); // influenced outputs

L : N → ℘(Nin); // related input nodes

c : N → IN; // visited successors

// forward traversal to compute all input dependencies

F := Nin ∪ Nstate;

forall n ∈ F do Din[n] := { n }; done

forall n ∈ N do c[n] := 0; done

while (F 6= ∅) do

forall (n ∈ F) do

forall n′ ∈ N with (n, n′) ∈ E do

c[n′] := c[n′] + 1;
if c[n′] == din((N, E), n′) then

Din[n′] :=
⋃

(n′′,n′)∈ E
Din[n′′];

if (n′ 6∈ Nstate ∪ Nout) then

F := F ∪ {n′};
fi

fi

done

F := F − {n};
done

done

// backward traversal to compute all influenced outputs

F := Nout ∪ Nstate;

forall n ∈ F do Iout[n] := { n }; done

forall n ∈ N do c[n] := 0; done

while (F 6= ∅) do

forall n ∈ F do

forall n′ ∈ N with (n′, n) ∈ E do

c[n′] := c[n′] + 1;
if c[n′] == dout((N, E), n′) then

Iout[n′] :=
⋃

(n′,n′′)∈ E
Iout[n′′];

if (n′ 6∈ Nstate ∪ Nin) then

F := F ∪ {n′};
fi

fi

done

F := F − {n};
done

done

// compute S and ND blocks

N ′ := N; //nodes of the D blocks

forall n ∈ N do

// n is an element of the S-block

if (Iout[n] ⊆ Nstate) then

L[n] := ′S′;
N ′ := N ′ − {n};

else

// n is an element of the ND-block

if (Din[n] ⊆ Nstate) then

L[n] := ′ND′;
N ′ := N ′ − {n};

fi

fi

done

// backward traversal to compute L

// L[n] set of related input nodes

E′ := E ∩ (N ′ × N ′);
F := Nout ∩ N ′;
forall n ∈ F do L[n] := Din[n] ∩ N ′; done

forall n ∈ N do c[n] := 0; done

while (F 6= ∅) do

forall n ∈ F do

forall n′ ∈ N ′ with (n′, n) ∈ E′ do

c[n′] := c[n′] + 1;
if c[n′] == dout((N ′, E′), n′) then

L[n′] :=
⋂

(n′,n′′)∈ E′ L[n′′];

F := F ∪ {n′};
fi

done

F := F − {n};
done

done

// n and n′ are in the same block

// iff L[n] = L[n′]
return (L);

end

