
Tool Integration at the Meta-Model Level
within the F UJABA Tool Suite

Sven Burmester∗, Holger Giese†, Jörg Niere,
Matthias Tichy†, Jörg P. Wadsack‡, Robert

Wagner§, Lothar Wendehals‡
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[burmi|hg|nierej|mtt|

maroc|wagner|lowende]@upb.de

Albert Zündorf
Research Group Programming

Methodologies
Department of Computer Science

University of Kassel
Wilhelmsḧoher Allee 73
34121 Kassel, Germany

albert.zuendorf@uni-kassel.de

Abstract
Current initiatives in the field of integrated development en-
vironment (IDE) and CASE tool integration such as Eclipse
as well as the lately happened acquisitions of Rational and
Together by major IDE vendors indicate that tool integration
has become an important issue for the IT industry. However,
as outlined in this paper the current integration platforms fall
short to address the underlying problems of overlapping data
models and their consistency when it comes to a tool integra-
tion. Within the Fujaba Tool Suite in contrast a frame-
work has been developed which enables an integration of tools
at the meta-model level. We report the employed concepts for
meta-model integration and consistency management in this
paper and illustrate them by means of an example.

Keywords
Tool interoperability, meta-model, model integration, frame-
work, graph grammars, plug-in

1. Introduction
Nowadays tool integration gains importance in industry as

well as in academia. This trend results from unifying efforts
like UML and XML of the last years. Tool integration has
three main problem areas.

First problem area is the integration of functionality. This
means, that one tool would like to be able to use some func-
tionality of another tool. This is usually easy to achieve via
some Application Programming Interface (API). In addi-
tion, one tool may want to modify and enhance a certain
functionality of some other tool. This requires mechanisms
∗Supported by the International Graduate School of Dyna-
mic Intelligent Systems. University of Paderborn
†This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft (DFG).
‡This work is part of the Finite project funded by the DFG,
project-no. SCHA 745/2-1.
§This work has been supported by the DFG grant GA 456/7
Isileit as part of the SPP 1064.

like the template method design pattern [3] or a listener con-
cept for command executions. A tighter coupling of different
functionality or even a replacement of existing functionality
with an alternative implementation is not always supported.

Second problem area is the adaption of the (graphical)
user interface of one tool by another. This includes the ex-
tension of menus, tool bars and dialog windows as well as
the extension of the representation of certain data at the
user interface. The former points are frequently supported,
the last point is seldom.

Third problem area is the access and extension of data.
The data of one tool may be utilised by another tool. A
tool may even try to achieve a tight integration between
the data of the used platform and its own data. Generally,
the problem area of integrating the data of different tools
may be classified as follows: (1) the same content in different
formats is integrated; (2) an integrating part contains added
information; (3) the integration has to deal with overlapping
information.

To integrate tools that exchange the same content in dif-
ferent formats, typical solutions are standardised exchange
formats (e.g. XMI) or format transformation without loss of
information. A comparison about how and where the sche-
mas are defined, i.e. organisation of the model data to be
exchanged, is given in [9].

In case of added information a typical solution is to add
extensions to the original format and hide them for the ori-
ginal tool. Another solution is to use a meta-model that is
extended for the integration purpose. The resulting depen-
dency between the models of the different tools is that the
extension depends on the involved tool or format.

To integrate tools that exchange overlapping information
the multiple meta-models have to be integrated and exten-
ded. To handle the data consistency during changes, an up-
date mechanism has to be established. This usually requires
bi-directional references between the data elements of the
different tools in order to facilitate the propagation of data
changes of one tool to the corresponding data elements of
the other tool. Using bi-directional references easily creates
mutual compile time dependencies. However, mutual com-
pile time dependencies must be avoided in order to allow in-
dependent tool development and to provide platforms that

shall be extensible by tools to be developed in the future.
To preserve consistency when exchanging overlapping ar-

tifacts is however not a new problem. The IPSEN approach
[14] presented a framework to integrate tools through a com-
mon meta-model. However, this approach is not easily app-
licable for the integration of existing tools.

The CORUM approach [22] suggests the usage of a com-
mon information model which is used by all tools. For the
integration of tools, which are not based on the CORUM ap-
proach and cannot use the CORUM API, the special input
can be generated by means of transformation tools. In [11]
the CORUM II approach is presented, integrating different
reengineering tools operating on different levels. In order to
exchange data all tools need to agree on a common syntac-
tic format. Thus, these approaches are not applicable for the
tight integration of software tools.

One prominent tool integration platform is Eclipse which
is promoted by several mid-size and major IT enterprises.
However the supported integration aspects are restricted to
a framework which is build on a mechanism for discovering,
integrating, and running plug-ins. Each plug-in uses so cal-
led extension points and the Eclipse API. Further two add-
ons to Eclipse, the Generative Model Transformer (GMT)
and the Eclipse Modeling Framework (EMF) are provided.
The GMT enables the transformation of one model to ano-
ther. The EMF, beside code generation facilities out of XMI
descriptions, provides a basis for interoperability of EMF-
based tools. This basis is the Ecore meta-model, i.e., a cen-
tral meta-model for tool integration. Further to our best
knowledge, most UML tools, like TogetherJ or Rational Ro-
se, are also only extendable via APIs.

In this paper we present the approach chosen within the
Fujaba Tool Suite which overcomes these problems by
means of an extensible tool integration framework. Fujaba
itself is an Open Source UML CASE tool project. It was
started by the software engineering group at the University
of Paderborn in fall 1997 and was designed as one monolithic
application integrating several functionalities from different
domains. In 2002 Fujaba has been redesigned and became
the Fujaba Tool Suite with a plug-in architecture allowi-
ng developers to add functionality easily while retaining full
control over their contributions.

At the early days, Fujaba had a special focus on code
generation from UML diagrams resulting in a visual pro-
gramming language. Today, at least four rather independent
tool versions are under development at the Universities of
Kassel and Paderborn for supporting (1) reengineering, (2)
embedded systems, (3) the Fujaba Development Process,
and (4) education of object-oriented concepts. According to
our knowledge, quite a number of research groups have al-
so chosen Fujaba as a platform for their own UML related
research.

The next section describes the architecture of the Fujaba
Tool Suite to support tool integration. The integration on
the model level is presented in Section 3. In Section 4 the
consistency management issues that result from integration
on model level are sketched. Before concluding and discus-
sing future work, Section 5 presents experiences with the
Fujaba Tool Suite.

2. Architecture
The Fujaba Tool Suite provides a platform for the inte-

gration of third party modelling tools. It offers several means
to add functionality and provides infrastructure support for
building menus, loading images, drawing diagrams (inclu-
ding managing consistency between model and view), etc.

Plug-ins are the basic mechanism to add third party soft-
ware to Fujaba. A plug-in has to provide information about
its version, its dependencies on other plug-ins and its devel-
opers. Additionally, a plug-in can change menus and menu
entries as well as pop-up menus and toolbars described in an
XML based graphical user interface configuration file. Ad-
ditionally, it is possible for plug-ins to notice the execution
of menu actions of other plug-ins.

Fujaba’s meta-model is based on the abstract syntax
graph (ASG) concept. The ASG concept provides the buil-
ding blocks for the integration of the Fujaba meta-model
with the different meta-models provided by the third party
developers. In order to support this integration Fujaba’s
ASG concept implements the meta-model integration pat-
tern presented in Section 3.

A basic problem for extensible frameworks is to provide
the possibility to integrate meta-models although the diffe-
rent meta-models might be in different parts (plug-ins) of
the software system.

In monolithic applications a tight integration of different
meta-models is no problem, since the classes just have to be
connected via bi-directional associations. In an extensible
framework this solution is obviously not appropriate since
the different parts would not even compile separately.

Therefore another solution must be used which preserves
the separation of core and plug-in as well as allows the tight
integration of the meta-models. Technically spoken, it must
be possible to connect both meta-models bi-directionally wi-
thout explicitly adding references to the meta-models.

These requirements demand a smart and flexible solution
for bi-directional integration. The basis of the architecture
is the Fujaba meta-model. Every tool that participates in
the Fujaba Tool Suite is a plug-in. Two plug-in inter-
operability variants exist. First, an existing tool (plug-in)
with a meta-model should be extended by a new plug-in,
i.e., the meta-model of the existing tool should be exten-
ded in the new plug-in. Second, two existing tools (plug-ins)
should be used in a consistent manner, i.e., instances of two
meta-models should be kept consistent.

P1 P2
<<uses>>

Fujaba
<<uses>>

Figure 1: Architecture with meta-model extension

Figure 1 shows variant 1, the meta-model extension for
an existing tool (plug-in). The plug-in P1 is an independent
tool with its own meta-model. P2 is the plug-in that extends
the meta-model of P1. In terms of compiling this means that
P1 can be compiled alone whereas P2 cannot.

Second, two independent (existing) tools, plug-in P1 and
plug-in P2, should be used together in a consistent manner.
The meta-models of these two plug-ins are independent. The

P1

P2

<<uses>>

Fujaba
<<uses>>

P3

<<uses>>

<<uses>>

Figure 2: Architecture with meta-model integration

aim is that both tools P1 and P2 can be used whereas their
meta-models are integrated. Figure 2 shows such a meta-
model integration within the plug-in P3. P3 establishes the
link between the two disjunct meta-models of P1 and P2.
Hence, P1 and P2 are compilable separately. Of course P3
needs P1 and P2 to compile.

The next section describes the proposed meta-model in-
tegration pattern and its application in the Fujaba Tool
Suite to fulfill the above specified requirement on meta-
model extension and integration.

3. Integration on the Model Level
When connecting meta-models of two different tools or

plug-ins, bi-directional associations are needed to naviga-
te the elements of the meta-models. Figure 3 shows such
a tight connection between two elements in different meta-
models using an association. Each of both classes references
the other class. Links between objects of those meta-model
elements can then be navigated in both directions.

ConcreteElementA ConcreteElementB
0..n0..1

< connection

Meta-Model A Meta-Model B

Figure 3: Tight connection between meta-models

Such a bi-directional association prevents a separate com-
pilation of the two tools. Both meta-models depend on each
other so that the tools cannot be deployed separately. For
extending an existing tool where meta-model elements are
distributed over different plug-ins, this approach is not suf-
ficient.

Meta-Model Integration Pattern

In Figure 4 a pattern is presented to integrate different tools
on the meta-model level. A Meta-Model B can be integrated
into Meta-Model A without affecting the interface and the
compilation of Meta-Model A, but still a bi-directional asso-
ciation between elements of the two meta-models is given.

The two classes MetaModelElement and MetaModelAsso-
ciation are provided by the tool that enables integration on
the model level. All elements of meta-models have to subty-
pe the class MetaModelElement. This class provides a qua-
lified association to the class MetaModelAssociation. To mo-
del a bi-directional association between ConcreteElementA
of Meta-Model A and ConcreteElementB of Meta-Model B as
depicted in Figure 3, a subclass of MetaModelAssociation has
to be created and an association between ConcreteElementB
and ConcreteAssociation has to be established. This associa-
tion has the same cardinalities as the intended association in

MetaModelElement MetaModelAssociation
key

0..1
0..1

associations >

ConcreteElementA ConcreteAssociationConcreteElementB
0..n 0..1

connection >

Meta-Model A Meta-Model B

Figure 4: Meta-model integration pattern

Figure 3. All associations in this pattern are bi-directional.
The name of the ConcreteAssociation class is used as the key
for the qualified associations-Association.

connection ^Meta-Model A

Meta-Model B

a1:ConcreteElementA

b1:ConcreteElementB

assoc:ConcreteAssociation

b2:ConcreteElementB

connection ^

associations >

Figure 5: Objects linked via an association object

The association modelled by an additional class Concre-
teAssociation can now be navigated in both directions. Figu-
re 5 shows how objects of ConcreteElementA and Concrete-
ElementB are linked via an association object. It is obvious
how to navigate from a ConcreteElementB object b1 via the
object assoc of type ConcreteAssociation to an object a1 of
type ConcreteElementA. In the other direction from a Con-
creteElementA object a1 you can get the ConcreteAssociation
object assoc by using the class name of the ConcreteAsso-
ciation as key and then navigate to an object b1 of type
ConcreteElementB.

Sample Pattern Application

The following example for meta-model integration stems
from our Isileit1 project. Isileit explores the possibilities of
modern specification languages concerning their usefulness
for the specification of flexible and autonomous producti-
on control systems. The production control system depicted
in Figure 6 consists of several working stations and robots
connected by monorail tracks and switches. The switches
are controlled components which allow forking and joining
of the tracks. Special shuttles moving along the tracks trans-
port materials and goods between the working station.

The specification of the controller software is a combina-
tion of SDL block diagrams [7], UML class diagrams, and
UML behaviour diagrams like collaboration diagrams, ac-
tivity diagrams and state charts [17] as an executable gra-
phical language. We use SDL block diagrams to specify the
overall static communication structure connecting proces-
ses by channels and signal routes. From this block diagram
we derive an initial class diagram in which each process is
represented by a respective class in the class diagram. In
addition, each signal received by a process in the SDL block
diagram is mapped to a method in the appropriate class in
the UML class diagram. Finally, the class diagram is refi-
ned and for each process class a state chart is assigned. This
briefly summarised modelling approach allows us both to

1Isileit is the German acronym for “Integrative Specifi-
cation of Distributed Production Control Systems for the
Flexible Automated Manufacturing”.

Figure 6: Snapshot of a production system

specify the reactive behaviour and (with respect to the other
diagrams) the modification of complex application specific
object-structures. For a more detailed description of our mo-
delling approach see [12, 15].

Since the UML meta-model and appropriate diagram edi-
tors were already integrated in our Fujaba Tool Suite, we
just had to implement an editor and the underlying meta-
model for SDL block diagrams. To achieve a consistent speci-
fication between the SDL block diagram (processes) and the
UML class diagram (process classes), changes in the UML
meta-model have to be reflected in the SDL meta-model and
vice versa. Thus, a tight integration of both meta-models
was required.

ASGElement ASGAssociation
key

0..1
0..1

associations >

UMLClass

IntegrationNode
SDLProcess 0..10..1

UML Meta-Model

SDL Meta-Model

ToUMLClass

ToSDLProcess

left >

0..1

0..1

right >

Consistency Meta-Model

Figure 7: Integration of SDL and UML Meta-Models

Figure 7 shows how the meta-model integration pattern
was applied twice to the UML and SDL meta-models. A
connection between an SDLProcess and a UMLClass is esta-
blished. Details about the IntegrationNode will be given in
the next section.

4. Inter-Model Consistency
In an integrated development environment with one ge-

neral meta-model, consistency is preserved by the abstract
syntax of the meta-model itself and additional well-formed-
ness rules. Therefore, the consistency can be preserved wi-
thin the implementation of the development environment.

This does not hold for a tool integration platform. In a
tool integration platform new tools are added and old tools

are replaced by new ones. Usually, a new tool extends an exi-
sting meta-model of another tool or provides its own meta-
model with overlapping data concerning other tools. This
often leads to inconsistencies between the data of the inte-
grated tools.

To overcome this problem, a third party tool developer
has the possibility to develop the tool for one special case
and to preserve the consistency in the tool itself, as seen in
the previous section. The main drawback of this method is
that the new tool cannot be used without the tool it relies
on. For the example from Section 3 this would mean, that
the SDL editor cannot be used without the UML editor.
Another drawback is that a third party tool developer can-
not foresee consistency rules and integrations for tools which
will be developed in the future. Moreover, he cannot fore-
see in which way and in which combination with other tools
his tool will be used. Therefore, we need a flexible mecha-
nism to specify semantic relationships between syntactically
unrelated meta-models.

For this purpose, we have implemented a flexible consi-
stency management plug-in. The consistency management
system allows the specification and the automated checking
of consistency rules. The consistency rules and the consisten-
cy checking mechanism are based on triple graph grammar
theory [18]. In the original work [13], triple graph gram-
mars are used for the transformation between different meta-
models using an integration model (cf. Figure 8).

Meta Model BIntegration
ModelMeta Model A

Inter-Model Relation

Intra-Model Relation

Figure 8: Triple Graph Grammar

Following this idea, we have adopted the triple graph
grammars based on and using the integration pattern from
the previous section. Assume that Meta-Model A is the SDL
meta-model and Meta-Model B is the UML meta-model.
Then we need bidirectional association from the Integrati-
on Model to both meta-models. These Inter-Model Relations
are implemented using the meta-model integration pattern.

In Figure 9, an application of a consistency rule is de-
picted. In our example this means, that each time the user
creates a new SDL process, cf. 1. create() in Figure 9, the
mechanism will check the consistency rule and will search
for the appropriate UML class in the class diagram. Sin-
ce no such class can be found, the automatic repair action
will create a new class, the appropriate integration node
and new links between the SDL process and the UML class.
This is depicted in Figure 9 where the :IntegrationNode to-

:SDLProcess :IntegrationNode :UMLClassleft right

Consistency Management SystemUser

1. create() 2.1 repair() 2.2 repair()

Figure 9: TGG Consistency Rule Example

gether with the left link and the :UMLClass with the right
link are created. This way further consistency checks can
be executed, for example checking for equal names or other
constraints that should hold between the SDL process and
the UML class. A more detailed description about our con-
sistency management system can be found in [20].

5. Experiences
After the redesign of Fujaba, it is now possible to in-

tegrate third party software through plug-ins by using the
meta-model integration pattern. The redesign process com-
prised reengineering and analysis of the monolithic architec-
ture. The parts which build the application’s core and the
ones which should be rolled out into plug-ins needed to be
identified. When extracting the components all associations
between the core and the new created plug-ins needed to
be transformed to instances of the meta-model integration
pattern.

Reengineered Plug-Ins

Pattern Definition and Recognition. Two successfully ex-
tracted plug-ins are the pattern definition and pattern re-
cognition plug-ins. The patterns are graphically defined as
graph-rewrite-rules and related to Fujaba’s UML meta-
model for automatic code generation of pattern engines. The
engines are used by the pattern recognition plug-in to de-
tect pattern instances in source code. The source code is
parsed into Fujaba’s meta-model. Information about found
instances within the ASG are stored as annotation objects
linked to the ASG elements. A more detailed description of
our pattern recognition approach can be found in [16].

SDL and Consistency Management.Besides the extracted
pattern definition and recognition, and the already mentio-
ned SDL and consistency management plug-ins a couple of
new plug-ins have been developed since Fujaba offers this
mechanism.

New developed Plug-Ins

Real-Time State charts. In order to support the design of
embedded systems a real-time variant of state charts was
created [2, 4]. Execution times, deadlines and time cons-
traints are considered on the modelling level and induce
transitions to react and fire within predictable time inter-
vals. Events are generated through the call of special signal-
methods wherefore an association to the class diagram is
needed.

Service-Based Architectures.As part of an effort to create
a process for the development of service-based architectures
[19] two plug-ins have been created for deployment and com-
ponent diagrams. In order to provide a seamless support it
is necessary that the interfaces within the component dia-

grams are linked at the meta-model level with the classes
modelling the interfaces in the class diagram. Similarly the
components specified in the component diagrams must be
linked to the components deployed on different nodes in the
deployment diagram. We have successfully applied the pro-
posed pattern to satisfy the above described requirements.

Memory Constrained Embedded Systems.In a collabora-
tive research effort our proposed meta-model integration is
used to support the development of memory constrained em-
bedded systems. Here we have to integrate the meta-models
of class diagrams and the real-time variant of state charts
with the meta-models of UML 2.0 [1] component and deploy-
ment diagrams for memory constrained embedded systems.
We are currently realising this support using our pattern for
meta-model integration.

XProM. The XProM plug-in to Fujaba is a student project
from University Braunschweig. The XProM plug-in extends
the Fujaba Tool Suite with textual project documents
supporting embedded editable UML diagrams and with di-
rect support for the Fujaba development Process (FUP).
In addition, XProM maintains a direct relationship between
diagram elements and the sections of the project handbook,
describing these diagram elements. This facilitates to keep
diagrams and their descriptions consistent and up-to-date.
To achieve this, the XProM plug-in makes heavy use of bi-
directional links between the Fujaba core meta-model and
the meta-model of its textual project documents.

Data Reengineering.Other plug-ins were constructed for
data reengineering tasks. For data reverse engineering pur-
poses a plug-in that enables access to data repositories via
JDBC was added. This plug-in, which is part of the Redd-
mom project, also comprises an extended entity relation-
ship (EER) editor for data model representation and ma-
nipulation. Further it contains mapping rules from logical
schemas (EER diagram) to conceptual schemas (UML class
diagram) and Java code generation for transactional data
access. Other small plug-ins in this context are an editor
for schema refactoring operation definition and execution,
and an editor for constructing and generating triple-graph-
grammar transformations. Beside other publications, a good
overview about the functionality of these plug-ins is given
in [8]; the implementation is described in [21].

Web Application. Another plug-in which is part of Redd-
mom is the web application plug-in. Given web page templa-
tes of the application the user can model the web applica-
tion. Therefore the UML and web (XML) meta-models had
to be combined. Thereby, the application logic can be pro-
cessed and the results can directly be added to templates.
Details of this plug-in can be found in [10]

Package Diagram.A plug-in that is under development
is the addition of package diagrams to Fujaba. Package
diagrams are used in several other plug-ins, e.g. XProM or
Reddmom. The functionality is restricted at the moment to
nested package diagrams, i.e., a package diagram can con-
tain another package diagram, a class diagram or a use case
diagram. This will be extended to more than one package
per diagram and visualisation of the nested structures for
packages and classes.

6. Conclusions
The described concepts of the Fujaba Tool Suite for

meta-model integration and consistency management provi-
de a sound basis for the integration of plug-ins as demonstra-
ted with the ISILEIT example. Thus, in contrast to other
tool integration platforms such as Eclipse the integration
between independently developed plug-ins can include the
plug-in data models as well.

Our in the last section summarised experience further in-
dicate that for many interesting solutions appropriate means
for the tool integration at the meta-model level is advan-
tageous as reuse can be improved. Without the presented
concepts for integration at the meta-model level and consi-
stency management in our example either a special UML or
SDL plug-in had to be developed anew to realise the requi-
red consistent integration.

Besides the presented concepts for meta-model integrati-
on and consistency management, the ASG framework of the
Fujaba Tool Suite further supports a generic model (dia-
gram) exchange via the Graph eXchange Language GXL [5]
or XMI. Therefore, class diagrams can be exchanged, for
example, with TogetherJ via a special XMI dialect. Other
XML (text) formats can also be easily realised within a ge-
neric transformation mechanism [6].

Acknowledgements

We thank all students, PhD students, and all people that
have helped to build the current Fujaba Tool Suite which
is available at http://www.fujaba.de.

7. References

[1] UML 2.0 Superstructure submission V2.0. Unpublished
ad/03-01-02, Jan. 2003. Alcatel, Computer Associates,
Enea Business Software, Ericsson, Fujitsu,
Hewlett-Packard, I-Logix, International Business Machines,
IONA, Kabira Technologies, Motorola, Oracle, Rational
Software, SOFTEAM, Telelogic, Unisys, and WebGain.

[2] S. Burmester. Generierung von Java Real-Time Code für
zeitbehaftete UML Modelle. Master’s thesis, University of
Paderborn, Department of Computer Science, Paderborn,
Germany, September.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[4] H. Giese and S. Burmester. Real-Time Statechart
Semantics. TechReport tr-ri-03-239, University of
Paderborn, 2003.

[5] R. Holt, A. Winter, A. Schürr, and S. Sim. GXL: Towards
a Standard Exchange Format. In Working Conference on
Reverse Engineering, Brisbane, Australia, Nov. 2000. IEEE
Computer Society Press.

[6] P. Hoven and M. Liebrecht. Entwurf und Implementierung
einer Import/Export Funktionalität für die
Entwicklungsumgebung Fujaba, Aug. 2002.

[7] International Telecommunication Union (ITU), Geneva.
ITU-T Recommendation Z.100: Specification and
Description Language (SDL), 1994 + Addendum 1996.

[8] J. Jahnke, W. Schäfer, J. Wadsack, and A. Zündorf.
Supporting Iterations in Exploratory Database
Reengineering Processes. 45(2-3):99–136, Nov. 2002.
(Special Issue on Software Maintenance and Reengineering).

[9] D. Jin, J. Cordy, and T. Dean. Where’s the schema? A
taxonomy of patterns for software exchange. In Proc. of the

10th International Workshop on Program Comprehension
(IWPC), Paris, France, June 2002.

[10] M. M. Kamneng. Entwurfsunterstützung Web-basierter
Schnittstellen auf Basis der UML. Master’s thesis,
University of Paderborn, Department of Computer Science,
Paderborn, Germany, Apr. 2003.

[11] R. Kazman, S. Woods, and S. J. Carrière. Requirements for
Integrating Software Architecture and Reengineering
Models: CORUM II. In Proc. of the Working Conference
on Reverse Engineering (WCRE’98), Honolulu, Hawaii,
pages 154–163, october 1998.

[12] H. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating
UML Diagrams for Production Control Systems. In Proc.
of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Irland, pages 241–251.
ACM Press, 2000.

[13] M. Lefering. Software Document Integration Using Graph
Grammar Specifications. In Proceedings of the 6th
International Conference on Computing and Information,
Journal of Computing and Information 1, 1, 1994, pp.
1222–1243, 1994.

[14] M. Nagl, editor. The IPSEN Approach. LNCS 1170. 1996.

[15] U. Nickel, J. Niere, W. Schäfer, and A. Zündorf. Combining
Statecharts and Collaboration Diagrams for the
Development of Production Control Systems. In Proc. of
Object-Oriented Modeling of Embedded Realtime Systems
workshop (OMER). Technical Report 1999-01 University of
the German Armed Forces Munich, 1999.

[16] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348, May 2002.

[17] Object Management Group. OMG Unified Modeling
Language Specification, Version 1.4, September 2001.
OMG document ad/01-09-67.

[18] A. Schürr. Specification of graph translators with triple
graph grammars. In Proceedings of the 20th International
Workshop on Graph-Theoretic Concepts in Computer
Science, Herrsching, Germany, June 1994. Spinger Verlag.

[19] M. Tichy. Durchgängige Unterstützung für Entwurf,
Implementierung und Betrieb von Komponenten in offenen
Softwarearchitekturen mittels UML. Master’s thesis,
University of Paderborn, Department of Mathematics and
Computer Science, Paderborn, Germany, July 2002.

[20] R. Wagner. Realisierung eines diagrammübergreifenden
Konsistenzmanagement-Systems für UML-Spezifikationen.
Master’s thesis, University of Paderborn, Department of
Mathematics and Computer Science, Paderborn, Germany,
Nov. 2001.

[21] F. Wolf. Entwicklung eines Generators für eine
objektorientierte Zugriffsschicht auf einer relationalen
Datenbank. Master’s thesis, University of Paderborn,
Department of Computer Science, Paderborn, Germany,
Apr. 2001.

[22] S. Woods, L. O’Brian, T. Lin, K. Gallagher, and A. Quilici.
An architecture for interoperable program understanding
tools. In Proc. of the 6th International Workshop on
Program Comprehension (IWPC), Ischia, Italy, pages
54–63, July 1998.

