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ABSTRACT
Model-based software engineering aims at specifying the system
under construction by abstract models that can be used for for-
mal verification of the system behavior. In the case of real-time
systems, such verification requires special algorithms dealing with
time computations. These computations can be performed effi-
ciently by using zone graphs [1, 3]. Current implementations,
however, cannot be used in FUJABA. Therefore, we introduce a
TCP/IP-based client/server architecture wrapping an existing im-
plementation in a server such that it can be used by arbitrary clients.
In our evaluation, we show that the TCP/IP overhead is negligible
compared to the total run-time.

1. INTRODUCTION
Model-based software engineering aims at specifying the sys-

tem under construction by abstract models that can be used for for-
mal verification of the system behavior. This approach can also be
used in the domain of real-time systems in order to build safe real-
time systems by using appropriate models and verification tech-
niques addressing the real-time characteristics [8]. The MECHA-
TRONIC UML approach is one technique for model-based devel-
opment of real-time systems [9].

A suitable formalism to model the behavior of real-time systems
is given by timed automata [1] that have been extended to real-time
statecharts [7] in the MECHATRONIC UML. Timed automata have
successfully been used in Uppaal as a formal model for the verifi-
cation of real-time behaviors [3]. Uppaal, however, cannot be used
for all analysis techniques being applied in MECHATRONIC UML
like refinement checking [10] or a behavioral synthesis [6]. Thus,
such algorithms have to be implemented separately which requires
the implementation of time computations in the case of real-time
systems.

Time computations, as they are needed for our analysis tech-
niques, can be efficiently performed by using so-called zone graphs
[1] that are also used in Uppaal [3]. For Uppaal, there exists a
C++ library, the Uppaal DBM library [4], implementing the neces-
sary functionality for computing zone graphs. Additionally, a Ruby
binding of this library exists. Both implementations have in com-
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mon that they cannot be used in FUJABA directly.
We try to overcome this problem by providing a TCP/IP-based

client/server architecture that allows to use the existing Uppaal
DBM library by clients being implemented in arbitrary program-
ming languages supporting TCP/IP. On the one hand, our architec-
ture consists of a server, written in Ruby, that directly uses the ruby
binding of the Uppaal DBM library. On the other hand, we provide
a reference Java interface and a TCP/IP-based implementation of
this interface managing the communication with the server. That
interface can be used directly in FUJABA to implement the timing
computations needed for our analysis techniques.

An alternative to our TCP/IP based client/server architecture
would be, obviously, to write specific adapters to the Uppaal DBM
library for each programming language and compile it for each op-
erating system. In case of Java, a JNI (Java Native Interface) bind-
ing to the C++ library would be possible. Probably, such binding
would be more efficient than our approach, but it restricts the usage
of the library to one specific language and requires to re-compile
the library for all required operating systems. The latter was sim-
ply not possible in our case due to missing third-party libraries.

The contribution of this paper is a TCP/IP-based client/server
architecture providing efficient clock zone computations to all pro-
gramming languages supporting TCP/IP.

The paper is structured as follows. First, we introduce the foun-
dations of the paper (Section 2). Afterwards, the general architec-
ture of our approach is described in Section 3. Then, we discuss
the client and the server in detail in Sections 4 and 5, respectively.
Finally, we present our evaluation results concerning the TCP/IP
overhead in Section 6 before we conclude the paper in Section 7.

2. FOUNDATIONS
For the illustration of the possibilities using clock zones and clock
zone operations we employ a timed automaton as a behavioral
model with timing constraints as it can be specified in Uppaal (Fig-
ure 1).

Informally, a timed automaton consists of finite sets of locations,
transitions and real-valued clocks. Starting in the initial location, it
may either rest in a location or switch between locations using tran-
sitions and corresponding event occurrences. Events are modeled
using a synchronous channel concept, where events can either be
thrown using the special symbol “!” or received using the special
symbol “?”.

The example automaton in Figure 1 describes the behavior of
a simple lightswitch. By pressing the switch once the light is
switched to dim; by pressing the switch twice within 10 ms the
light is switched to bright. If pressing the switch a second time
does not happen within 10 ms, the light is switched of again. If
the light is currently switched to bright, it can also be switched off



by the press operation. If this is not performed, it switches to off
automatically inbetween 59.5 s and 60 s.

Figure 1: Example of a Timed Automaton describing a
lightswitch

The timing of the behavior is specified using time guards, clock
resets and location invariants. Initially, all clocks’ values are set
to zero. From then on, time can only pass, i.e. all clocks’ values
increase by the same value, while the automaton rests in a location,
not while a transition is executed. Clocks can be reset using clock
resets and the execution of a transition can be constrained to an
integer-bound interval of clock values using clock constraints.

In the example, the clock x is used to measure the time that the
system rests in dim. The time guard x<=10 at transition dim to
bright further specifies, that this transition can only be executed if
the value of x is between 0 and 10. If it is greater and the press-
signal occurs, the transition from dim to off will be executed corre-
sponding to its time guard x>10.

Finally, location invariants may be used to describe progress
conditions. A location invariant describes an upper bound for the
clock values in a certain location. In the example, the location in-
variant of location bright (in combination with the empty transition
from bright to off) is used to specify that the light switches to off
again automatically after 1 minute (60000 ms) at the latest, if the
switch was not pressed before.

2.1 Analysis of Timing Specifications
While the untimed behavior of a state based specification can

simply be performed by examining the states and transitions be-
tween states, this becomes more complex for timed specifications.
Here, clock values, clock resets and clock constraints have to be
taken into account. A suitable formalism for analyzing sets of clock
values is the clock zone formalism [2, 1, 3] that is briefly described
in the following.

A clock zone is syntactically described by a boolean conjunc-
tive formula where the atomic propositions are inequialities with
clock references and integer values describing clock value lower
and upper bounds. Semantically, it describes an infinite, integer-
bound set of clock values that can be visualized as a convex set
in a k-dimensional euclidean space for k clocks being contained in
the zone [1]. An example of a clock zone describing all values of
clock x between 0 and 10 and all values of clock y higher than 20
is x < 10 ∧ y > 20.

If a clock zone is combined with a system state, for example
a timed automaton location, this clearly defines a distinguishable
timed state of the system, where the timing part is respresented as
a set of clock values. For the calculation of transitions between
states, whose execution is restricted to a distinct time interval only,
for the consideration that time may elapse in some states and for
the case that clocks may be resetted, operations on clock zones are
provided. Four of these operations, which are the most important
ones, are explained in the following.

The time elapse operation (↑), also called up-operation, describes
the elapse of an arbitrary amount of time for a clock zone. It is

realized by removing all upper bounds of a clock zone. The time
elapse operation applied, for example, on the above given zone,
denoted (x < 10 ∧ y > 20)↑ results in y > 20.

The clock reset operation describes the appliance of clock resets,
that is setting the value of a set of clocks to zero. Applying this
operation on the clock y and the example zone, denoted (x < 10∧
y > 20)[{y} := 0], results in the zone (x < 10 ∧ y = 0).

The intersection of clock zones (∧), also called and-operation,
describes the set of clock values that are in both of the intersected
zones. Intersecting the example zone with the zone x > 5, denoted
(x > 5)∧(x < 10∧y > 20) results in (x > 5∧x < 10∧y > 20).

The subtraction operation on clock zones subtracts one clock
zone from another. This means that the subtrahend set of clock
values is removed from the minuend set of clock values. An ex-
ample is (x < 10 ∧ y > 20) − (x <= 5) which results in
(x > 5 ∧ x < 10 ∧ y > 20).

In case of substractions on zones, the convexity of the set of
clock values is no longer guaranteed. In this case, a time interval
can be removed from the zone. The result is a non-convex set of
clock values, called a federation [3], that can be represented by a
finite number of convex sets (zones).

To give an example for the application of clock zones and corre-
sponding operations, we show how a timed analysis model of the
example timed automaton (Figure 1) can be created in the follow-
ing. This timed analysis model (Figure 2), also called the zone
automaton or zone graph [1], can, for example, be used to perform
a reachability analysis over the timed system states.

off
(x=0)

press?,x:=0 press?,(x<=10)

press?,x:=0

press?

press?,x:=0

dim
(x=0)

bright
(x<=10)

off
true

off
(x>10)

press?,(x>10)

off
(x>=59500)

(x>=59500)

press?,x:=0

Figure 2: Zone Automaton of the Timed Automaton of the
Lightswitch Example According to [1]

The zone automaton is created by starting in the first location,
and the zone where all clocks are set to zero, in this case (x = 0).
For each outgoing transition, a successor zone location is now cre-
ated by (1) applying the time elapse operation on the original zone,
(2) applying an intersection with the location invariant of the source
location, (3) applying an intersection with the time guard of the
transition, (4) applying the clock resets of the transition and, fi-
nally, (5) applying an intersection with the location invariant of the
target location. The resulting clock zone describes those clock val-
ues that are possible at the moment where the next target location is
entered. In the example, the transition from (off,x=0) with the clock
reset x:=0 leads to (dim,x=0) as the clock x must be zero when en-
tering dim. On the other hand the transition from (dim,x=0) with
the time guard x<=10 leads to bright with the zone x<=10 as the
exact value of clock x is not known when entering bright, only that
it is somewhere between 0 an 10.

After computing a successor zone in a zone automaton, a so-
called normalization can be applied [3]. The normalization com-
putes a canonical form of the zone and guarantees that the corre-
sponding zone automaton of a timed automaton is always finite.



Other application examples, appart from model checking timed
automata, are checking a refinement of timed automata as described
in [6] or applying a reachability analysis on timed graph transfor-
mation systems as described in [11].

3. GENERAL ARCHITECTURE
The Uppaal DBM1 library (UDBM, [4]) is a C++ library that

was originally designed for the Uppaal model checker [3]. It im-
plements operations on clock zones and federations (cf. Section
2.1) using DBMs [5] as an internal data structure for efficient mem-
ory management. We integrated this library into FUJABA using a
client/server approach. The general architecture is shown in Fig-
ure 3.

UDBM Server

UDBM Client

UDBM Binding
Interface

TCP/IP-based
implementation TCP/IP

Figure 3: Architecture of the UDBM Integration

The UDBM Server executes the DBM operations using the Up-
paal DBM library implementation. The UDBM client consist of an
abstract UDBM Binding interface which can be used by applica-
tion programs and a TCP/IP-based implementation of the interface
managing the communication with the server in order to execute
the operations requested by the application programs. Detailed in-
formation on our server and client implementation can be found in
the subsequent Sections 4 and 5.

The client/server architecture allows to implement more than one
client (even in different languages) for the same server as well as
implementing more than one realization of the DBM computations
without changing the client interface. Additionally, our architec-
ture allows to execute client and server on different machines using
different operating systems.

4. UDBM SERVER
The UDBM server is implemented in Ruby2 and uses the pre-

compiled Ruby binding of the Uppaal DBM library. The server
manages the communication with the client and delegates DBM
operation requests to the UDBM library. By default, the server
opens a socket on port 8326 on localhost for client communication,
but it is possible to pass a different port and hostname to the server
on start up as a parameter.

The server implements the statemachine shown in Figure 4 that
specifies the protocol to interact with it. The events before the "/"
have to be passed as strings to the server, the events after the "/"
are sent as strings back to the client. Strings in italics denote ruby
code that is passed and directly executed by the server as described
below.

The server starts in state idle. First, a so-called context has to be
created by passing the command createContextReq to the server.
A context is required for the execution of the DBM operation as
it defines the names of the clocks to be used. The server answers
1http://www.cs.aau.dk/~adavid/UDBM/
2http://www.ruby-lang.org
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Figure 4: Statemachine of the UDBM Server

with an acknowledgement and a unique number for the next con-
text to be created. Then, the client can submit an operation creat-
ing a context. This operation is submitted as ruby code which is
then directly interpreted by the Ruby interpreter. In our example,
a context for one clock x has to be created using the ruby code
c = Context.create(’c0’,:x) for the context number 0.

The server answers with contextCreated to acknowledge the
creation of the context before switching to CreateContextAck.
The creation of a new context can be omitted if the context did
not change compared to the last operation being executed. That al-
lows to reuse contexts from prior operations thereby reducing the
memory consumption of the server.

The second step is defining the clock variables. In order to use
clock variables for the specification of clock constraints, the clocks
being defined in the context have to be bound to variables. The
client submits a clockVarDefReq to the server which switches into
ClockVarDefReq. Again, the definition of the variables is encoded
into ruby code submitted as a string. For our clock x, the submitted
ruby code would be x=c0.x; As before, the server acknowledges
the operation and switches to ClockVarDefAck.

The state ClockVarDefAck has two outgoing transitions repre-
senting the two possible classes of DBM operations. First, a prop-
erty of a DBM can be checked. Such an operation always evaluates
to either true or false. Second, an operation can be executed on a
DBM such as intersection with another DBM. Such an operation
always evaluates to a DBM. The client can select the desired oper-
ation by submitted either checkFedPropertyReq or executeFe-
dOpReq to the server. Then, the actual operation to be executed
has to be passed as ruby code as before and is directly interpreted.
The result, either a Boolean or a DBM, is returned to the client. For
instance, the operation ((x>=0)).and!(x<=10) will evaluate
to the DBM ((x>=0)&(x<=10)).

After all operations have been executed, the client can send dis-
connect to the server causing it to switch to idle.

Then, a new context having a different number of clocks com-
pared to the prior context can be created. That allows to support
changing DBM sizes during the run of an algorithm on the client
side.

5. JAVA UDBM CLIENT
In addition to the server, we have implemented a Java side client

for the UDBM server. As introduced in Section 3, the client con-
sists of an abstract interface for modeling DBMs as shown in Figure
5 as well as a TCP/IP-based implementation managing the commu-
nication with the server. Both are implemented as Eclipse plugins

http://www.cs.aau.dk/~adavid/UDBM/
http://www.ruby-lang.org
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Figure 5: Class Diagram of the UDBM Java Client

and can be used in any Eclipse based tool such as FUJABA.
The bottom part of the client model allows the definition of clock

constraints as defined in Section 2.1. In the two simplest cases, a
clock constraint is either true or false represented by the classes
TrueClockConstraint or FalseClockConstraint. In a Compara-
tiveClockConstraint, a comparison with an integer is supported.
Therefore, these clock constraints have a value and an operator. In
a SimpleClockConstraint, the value of one clock is compared to
the integer while in a difference clock constraint the difference of
two clocks is compared to this value. In our example, x <= 10 of
x == 0 are instances of a SimpleClockConstraint using the clock
x. The classes can be used to model all valid clock constraints.

The left hand side of the model (ClockZone and Federation) is
used to model clock zones and federations. For the sake of consis-
tency, each zone must be contained in a federation even if there is
only one zone in the federation. In our example in Figure 2, each
represented zone can be represented in one zone and thus, each
federation consists of one zone, only.

The class Federation also defines the interface to the operations
which can be performed on a federation. The operation and, e.g.,
allows to intersect a federation with additional clock constraints or
another federation. The executed operation is then transformed into
a query to the server and the provided result and parsed back into a
federation.

Clocks are assigned to federations because all zones in one fed-
eration must be specified over the same set of clocks. In order to
improve memory efficiency, clocks can be used for different feder-
ations. In our example, all federations share the same clock object
x.

The Java interface allows to add and remove clock instances

from federations. The addition and removal of clocks can be easily
done on the object level. Clocks being added to a federation are
initialized with the value 0.

In some application scenarios, e.g. the reachability analysis in-
troduced in [11], fast equivalence checks on DBMs are required.
Therefore, the client interface implements a hash algorithm on fed-
erations fulfilling the general hash function contract.

f1 ≡ f2 ⇒ hash(f1) = hash(f2)

That means whenever the federations are equal, their hash values
are equal as well. Thus, the equality check invoking the server only
has to be executed in case of equal hash values.

6. EVALUATION
We evaluated the performance of our server and the TCP/IP con-

nection using a socket via localhost utilizing the rechability anal-
ysis and the example presented in [11]. There, nine samples for
run-times of a reachability analysis were presented. We choose to
use this example, although it produces some odd numbers of DBM
operations, because we wanted to have a realistic sample of DBM
operations. During the reachability analysis, the size of the DBM
varies such that multiple contexts have to be created (cf. Section 4).
The results are summarized in Table 1. In the table, one DBM oper-
ation refers to the execution of one operationString in the protocol
of Figure 4.

The runtime results have been obtained by first measuring the
runtime on the Java side in order to obtain a runtime result includ-
ing the TCP overhead. Second, we measured the runtime inside the
ruby server to obtain a runtime result without the TCP overhead.
Finally, the TCP overhead has been obtained by arithmetics. The



Table 1: Evaluation results
# of DBM Operations Run-time of DBM Operations in s Server memory in MB

Server incl. TCP Server excl. TCP TCP
108 0,3 0,3 0,0 15
342 1,0 1,0 0,0 15
737 3,4 3,1 0,3 16

1329 8,5 8,0 0,6 25
2154 17,1 16,4 0,7 25
3248 33,4 32,4 1,0 31
4647 61,1 59,1 2,0 35
6387 109,9 106,4 3,4 45
8504 190,1 185,3 4,8 63

run-time results in Table 1 are the sum of all executed DBM oper-
ations. The results show that the runtime increases slightly faster
than the number of executed DBM operations. This is due to the
fact that the maximum size of the DBMs increases from row to row.
Thus, the additional runtime results from the fact that operations on
larger DBMs consume more computation time. The overhead in-
troduced by the TCP/IP connection to the server is approximately
3% of the overall runtime which we consider as quite low.

The memory consumption of the server includes the memory
consumption of the ruby interpreter running the server script and
the ruby binding of the Uppaal DBM library. Due to the reuse
of contexts, the memory consumption increases only slowly for a
large number of DBM operations. In cases where the DBM di-
mension does not change during runtime, the increase in memory
consumption will be 0.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced a client/server architecture for inte-

grating time computations into FUJABA. The Java client allows to
model clock as well as constraints on these clocks that can be repre-
sented by clock zones. The server uses the Uppaal DBM library to
perform the actual time computations. Our presented architecture
is flexible as the server can be used by application programs written
in any programming language supporting TCP/IP communication.
Additionally, our client interface is independent of the actual server
implementation. The overhead introduced by the TCP/IP commu-
nication is negligible according to our evaluation results.

Our implementation allows for an easy integration of time com-
putations in any real-time analysis algorithm.

In our future work, we will try to apply further optimizations to
our implementation. One of these optimizations is the support of
concurrency in the server by allowing and processing multiple con-
nections in parallel. Additionally, different server implementations
could be evaluated for obtaining the most efficient realization of
time computations.
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