
Component Behavior Synthesis for Critical

Systems�,��

Tobias Eckardt and Stefan Henkler

Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn,
Warburger Str. 100, Paderborn, Germany
{tobie,shenkler}@uni-paderborn.de

Abstract. Component-based architectures are widely used in embed-
ded systems. For managing complexity and improving quality separation
of concerns is one of the most important principles. For one component,
separation of concerns is realized by defining the overall component func-
tionality by separated protocol behaviors. One of the main challenges of
applying separation of concerns is the later automatic composition of the
separated, maybe interdependent concerns which is not supported by cur-
rent component-based approaches. Moreover, the complexity of real-time
distributed embedded systems requires to consider safety requirements
for the composition of the separated concerns. We present an approach
which addresses these problems by a well-defined automatic composition
of protocol behaviors with respect to interdependent concerns. The com-
position is performed by taking a proper refinement relation into account
so that the analysis results of the separated concerns are preserved which
is essential for safety critical systems.

1 Introduction

Component-based architectures are widely used in the domain of embedded real-
time systems. The main benefits of using components are their support for in-
formation hiding and reuse. The interface of a component is well defined by
structural elements and a collaboration of protocols (cf. [1]). The overall com-
ponent behavior is defined by the (parallelly executed) protocol behaviors. De-
pendencies between components are reduced to the knowledge of interfaces or
ports. Thus, a component can be exchanged if the specified port remains fulfilled.

� This work was developed in the course of the Special Research Initiative 614 -
Self-optimizing Concepts and Structures in Mechanical Engineering - University of
Paderborn, and was published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

�� This work was developed in the project “ENTIME: Entwurfstechnik Intelligente
Mechatronik” (Design Methods for Intelligent Mechatronic Systems). The project
ENTIME is funded by the state of North Rhine-Westphalia (NRW), Germany and
the EUROPEAN UNION, European Regional Development Fund, “Investing in your
future”.

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 52–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Component Behavior Synthesis for Critical Systems 53

The port and interface definitions of architectural components therefore facili-
tate the construction of complex functionality by the composition of components
and protocols.

For managing complexity and improving quality of systems, separation of
concerns [2] is one of the most important principles. It enables primary software
engineering goals like adaptability, maintainability, extendability and reusabil-
ity. Accordingly, advanced applications of separation of concerns have gained
popularity like aspect-oriented programming (AOP) [3], for example. For one
component, separation of concerns is realized by defining the overall component
functionality by separated protocol behaviors [4].

One of the main challenges of applying separation of concerns is the later
(application specific) composition of the separated, maybe interdependent con-
cerns [5]. In general, we can distinguish between structural, data, and behavioral
composition. In the area of structural composition, approaches exist for exam-
ple, that consider the software architecture as well as architectural patterns
[6,7]. For data composition approaches like [8] support the generation of suitable
translators. In [9,4] approaches for the behavioral composition are presented.
The overwhelming complexity of embedded real-time systems, however, requires
to also consider safety and bounded liveness requirements for the composition
which is not included in these approaches. On the other hand, component-based
approaches for embedded real-time systems (e. g. [10,11]) suffer the support for
interdependent concerns for the well-defined composition.

In this paper, we present an approach which addresses these problems by a
well-defined automatic composition of protocol behaviors with respect to inter-
dependent concerns specified as composition rules. The defined composition rules
preserve timed safety properties which is inherently important for safety critical
systems. The composition is performed by taking a proper refinement relation
into account, which we call role conformance. This way also untimed liveness
properties are preserved which is equally essential for safety critical systems.
This work extends the fundamental work of [4] to the domain of critical systems
(cf. Section 7).

In contrast to approaches which integrate interdependent behavior by an ad-
ditional observer automaton (e.g., our former work as presented in [12]), our
approach enables the explicit specification of interdependent concerns and the
synthesis algorithm integrates the specified concerns automatically.

In general, the observer based approach is difficult to apply and error prone.
Owned by the implicit specification of composition rules by the observer au-
tomata, the developer did not know if the composition rule in mind is really
correctly implemented by the observer automata. To forbid for example that two
protocol behaviors are at the same time in a specific state, all “relevant” events
(timing and messages) have to be observed which lead to the forbidden states.
After a corresponding observer automaton has been specified the developer did
not know if all relevant events are observed, if too much behavior is observed
(forbidden) or if timed safety properties and untimed liveness properties of the
protocol behaviors are violated.

54 T. Eckardt and S. Henkler

Additionally, the developer of the observer automaton has to instrument the
protocol behaviors to enable the observation. This is not intended, however, as
this may cause malfunctions originating from mistakes of the developer. Alto-
gether the observer based approach is not well suited for safety critical systems.

For our synthesis approach, we extend our modeling approach Mecha-
tronic UML which addresses the development of complex embedded real-time
systems. Mechatronic UML supports the compositional specification and veri-
fication of real-time coordination by applying component-based development and
pattern-based specification [12]. Furthermore, it also supports the integrated de-
scription and modular verification of discrete behavior and continuous control
of components [13].

We evaluate our approach by the RailCab project of the University of Pader-
born1. The vision of the RailCab project is a mechatronic rail system where
autonomous vehicles, called RailCabs, apply a linear drive technology, as used
by the Transrapid system2, for example. In contrast to the Transrapid, RailCabs
travel on the existing track system of a standard railway system and only re-
quire passive switches. One particular problem (previously presented in [12]) is
the convoy coordination of RailCabs. RailCabs drive in convoys in order to re-
duce energy consumption caused by air resistance and to achieve a higher system
throughput. Convoys are established on-demand and require small distances be-
tween RailCabs. These small distances cause the real-time coordination between
the speed control units of the RailCabs to be safety critical which results in a
number of constraints that have to be addressed when developing the RailCabs
control software.

In the following section, we present the relevant parts of Mechatronic UML
and give an overview of our synthesis approach. For the formalization of the
approach, we give fundamental definitions for the input behavioral specifications
in Section 3. In Section 4, we present the concept of composition rules which
formalize interdependent concerns. These composition rules are applied within
the automatic composition of protocol behavior, as defined by the synthesis
algorithm in Section 5. As the effect of the application of a set of composition
rules cannot be anticipated, the result of the synthesis can violate properties of
the protocol behavior. Therefore, we present the check for role conformance in
Section 6. Related work is discussed in Section 7 and at last we conclude with a
summary and future work in Section 8.

2 Approach

In Mechatronic UML separation of concerns is realized by applying
component-based development and in accordance with that by rigorously separat-
ing inter-component from intra-component behavior. Following this concept, the
system is decomposed into participating components and real-time coordination
patterns [12], which define how components interact with each other.
1 http://www-nbp.uni-paderborn.de/index.php?id=2&L=1
2 http://www.transrapid.de/cgi-tdb/en/basics.prg

Component Behavior Synthesis for Critical Systems 55

Fig. 1. RailCab example

Fig. 2. Combining Separate Specifications in Mechatronic UML

To exemplify this, we use our RailCab case study. In Figure 1, we depict
a situation of RailCabs driving in a convoy. The figure on the left shows this
situation in the real test bed and on the right an abstraction is shown. In addition
to the RailCabs, we depict a base station which is responsible for the power
supply of the RailCabs and the management of track information for a specified
section. The track information includes the data of all RailCabs in this section.
RailCabs use this information to be aware of other RailCabs in their section in
order to avoid crashes and possibly build convoys.

We specify two components BaseStation and RailCab (Figure 2) and two co-
ordination patterns Registration and Convoy, which define the before described
communication behavior between RailCabs and base stations.

In real-time coordination patterns, roles are used to abstract from the actual
components participating in one coordination pattern. This way, it is possible
to specify and verify coordination patterns independently from other coordi-
nation patterns and component definitions and therefore to reduce complexity.
In Figure 2 the participating roles of the Registration pattern are registrar and
registree; the roles of the Convoy pattern are front and rear. Each role behavior is

56 T. Eckardt and S. Henkler

Fig. 3. Simplified Rear Role Timed
Automaton

Fig. 4. Simplified Registree Role Timed
Automaton

specified by one timed automaton3 [15,16]. The automata of the rear role and the
registree role are depicted in Figure 3 and Figure 4. The automata for the front

role and the registrar role only form corresponding counterparts and are therefore
not depicted. We present only a simplified version of the behavior in order to
present the complete approach by an example.

Initially, the rear role is in state noConvoy and sends a startConvoy event. The
clock cr is set to zero before entering the convoy state. In the interval of 200 to
1000 time units the breakConvoy event has to be received as the location invariant
of state convoy is cr ≤ 1000 and the time guard of the transition is cr ≥ 200 or
in the interval of 400 to 1000 time units, periodically an update event is sent.
The registree role is initially in the unregistered state, sends a register event and
resets the clock. In the registered state in the interval of 800 to 2000 time units,
periodically the lifetick event is sent or in the interval of 500 to 2000 time units
the unregistered event is sent. The decision of sending the lifetick or unregistered

event is at this point of nondeterministic choice.
To obtain an overall system specification later in the development process,

the separated components and coordination patterns have to be combined again
(Figure 2). The problem which inherently arises at this point is that separate
parts of the system were specified as independent from each other when they are
in fact not. This means that during the process of combining the separate parts of
the system, additional dependencies between the particular specifications have to
be integrated. At the same time, the externally visible behavior of the particular
behavioral specifications may not be changed in order to preserve verification
results [12].

In the overall system view of the RailCab example (Figure 2), the RailCab

component takes part in both, the Registration and the Convoy pattern. While
those patterns have been specified independently from each other, a system
requirement states:

In convoy operation mode, each participating RailCab has to be registered
to a base station.

Accordingly, a dependency between both patterns exists, when applied by the
RailCab component. As a result, the behavior of the registree role and the
3 In Mechatronic UML, realtime statecharts [14] are used to describe role behavior.

Realtime statecharts, however, are based on timed automata. Therefore, we define
the complete synthesis procedure on the basis of timed automata in order to make
the approach as general as possible.

Component Behavior Synthesis for Critical Systems 57

Fig. 5. Activity Diagram Illustrating the Basic Synthesis Approach

behavior of the rear role have to be refined and synchronized with each other
when applied by the RailCab component in order to fulfill the system require-
ments. Still, it has to be regarded that the externally visible behavior of the
RailCab component does not change. If this process of refinement and synchro-
nization is performed manually, it is a time consuming and error-prone process.
Consequently, this implies the necessity for automation in order to guarantee
the required quality of safety critical systems.

In the proposed approach, we formalize the specification of inter-role dependen-
cies and further separate this specification from the specification of pattern role
behaviors in order to perform an automatic synthesis for the overall component
behavior. Once the synthesis is performed, it is checked if the synthesized compo-
nent behavior refines each of the particular pattern role behaviors properly.

The approach requires (1) the definition of a suitable refinement relation for
(real) dense time systems and (2) the employment of a suitable and efficient
abstraction of the timed behavioral models which is needed to perform the refine-
ment check. The result is a fully automatic synthesis algorithm where dependen-
cies between separate behavioral specifications are specified explicitly by so-called
composition rules (cf. [5]). Accordingly, the input for the algorithm are composi-
tion rules and separate behavioral specifications (Figure 5) in the form of timed
automata. If the synthesis is possible without violating the externally visible be-
havior of any of the input specifications, the output is one parallelly composed
component behavior which combines all of the input behavioral specifications as
well as the composition rules. If the synthesis is not possible, the algorithm returns
a conflict description indicating the reason for the impossibility.

We continue with the basic definitions for the input behavioral specifications
in the form of timed automata.

3 Prerequisites

For the verification of real-time coordination patterns, Mechatronic UML
employs the model checker UPPAAL4. UPPAAL uses timed safety automata
[16] as the input model [17]. Consequently, we also employ the concept of timed
4 http://www.uppaal.com/

58 T. Eckardt and S. Henkler

safety automata for the entire approach and refer to them as timed automata in
the following.

Within a timed automaton, we use clock constraints to make the behavior of
the automaton dependent on the values of certain clocks of the automaton. A
general clock constraint is a Boolean formula joining a set of equations and in-
equations describing the lower and upper bounds for clocks and clock differences.

Definition 1 (General Clock Constraint). For a set C of clocks, the set
Φ(C) of general clock constraints is inductively defined by the grammar ϕ ::=
x ∼ n | x − y ∼ n | ϕ ∧ ϕ | true | false, where x, y ∈ C, ∼∈ {≤, <, =, >,≥},
n ∈ N.

We further define downwards closed clock constraints as those constraints, which
only define upper bounds for clock values. The lower bound of all clocks in a
downwards closed clock constraint, consequently, is always zero.

Definition 2 (Downwards Closed Clock Constraint). For a set C of
clocks, the set Φdc(C) ⊂ Φ(C) of downwards closed clock constraints is in-
ductively defined by the grammar ϕ ::= x ∼ n | x − y ∼ n | ϕ ∧ ϕ | true, where
x, y ∈ C, ∼∈ {≤, <}, n ∈ N.

With the definitions of clock constraints we can proceed with the definition of
the syntax of a timed automaton. Note that this definition corresponds to the
one given in [18], which is employed in UPPAAL.

Definition 3 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
Σ, C, I, T) where L is the set of locations, l0 ∈ L is the initial location, Σ is
the finite set of events where the symbol τ is used for internal events (silent
transitions), I : L → Φdc(C) assigns each location a location invariant as a
downwards closed clock constraint, C is the finite set of clocks, and T ⊆ L×Σ×
Φ(C)× 2C ×L is the finite set of transitions t = (l, e, g, r, l′) ∈ T with l ∈ L the
source location, e ∈ Σ the related event, g ∈ Φ(C) the time guard as a general
clock constraint, r ⊆ C a set of clocks to be reset, and l′ ∈ L the target location.

Examples of timed automata are depicted in Figure 3 and Figure 4 describing
the communication behavior of the rear role and the registree role of the Convoy

and the Registration real-time coordination pattern as described in Section 2. On
the basis of the above given definitions, we formally define inter-role dependency
specifications in the form of composition rules in the next section.

4 Composition Rules

With composition rules, interdependent concerns for the separate role behaviors
can be specified as system properties which synchronize parts of the separated
role behavioral models.

We divide composition rules into two distinct formalisms that are state com-
position rules and event composition automata. With state composition rules

Component Behavior Synthesis for Critical Systems 59

we are able to synchronize the role behavior with respect to certain state com-
binations of the particular role automata. Event composition automata, on the
other hand, provide the possibility to synchronize the role automata on the
basis of events and event sequences. Both formalisms also include the specifica-
tion of timing information for synchronization referring to the clocks of the role
automata.

Generally speaking, system properties can be specified in terms of safety and
liveness properties for a given behavioral specification [19,20]. Safety properties
state that something bad will never happen during the execution of a program.
Liveness properties state that something good will happen eventually. Transfer-
ring this to the context of automata synchronizations, these properties always con-
cern two or more automata. Consequently, a safety property for synchronization
states that something bad will never happen, when executing the corresponding
automata in parallel, while a liveness property for synchronization expresses that
something good will eventually happen during this parallel execution.

Transferring these properties to composition rules, we are able to specify both
safety and liveness properties. Safety properties can be specified (1) by means of
state composition rules in terms of forbidden state combinations of the parallel
execution and (2) by means of event composition automata by adding further
time constraints to time guards of selected transitions. Liveness properties in
turn can be specified through state composition rules and event composition
automata by adding further time constraints to location invariants of location
combinations of the parallel execution.

State composition rules define forbidden state combinations, including timing
information, in the parallel execution of the role automata. In order to make
statements about forbidden state combinations of a component behavior, we
need to define which clock values are forbidden in which automaton location. As
the location invariant of an automaton location must be downwards closed (see
Definition 3), the forbidden clock valuations can only be described by an upwards
closed clock constraint. This is then used in a location predicate to connect the
forbidden clock valuations to a certain location.

Definition 4 (Upwards Closed Clock Constraint). For a set C of clocks,
the set Φuc(C) ⊂ Φ(C) of upwards closed clock constraints is inductively defined
by the grammar ϕ ::= x ∼ n | x−y ∼ n | ϕ∧ϕ | true, where x, y ∈ C, ∼∈ {≥, >},
n ∈ N.

Definition 5 (Location Predicate). For a timed automaton A = (L, l0, Σ,
C, I, T), a location l ∈ L and an upwards closed clock constraint ϕ ∈ Φuc(C) the
set Γ (A) of location predicates γ = (l, ϕ) is defined by Γ (A) = L × Φuc(C).

With state composition rules, we want to restrict certain state combinations of
the concerned role automata. Consequently, we define these state combinations
by connecting location predicates by Boolean joins and meets in order to express
which timed location combinations are not allowed in the composed component.

Definition 6 (State Composition Rule). For two timed automata A1 =
(L1, l

0
1, Σ1, C1, I1, T1) and A2 = (L2, l

0
2, Σ2, C2, I2, T2) the set RS(A1, A2) of

60 T. Eckardt and S. Henkler

state composition rules ρ is defined by the grammar ρ ::= ¬ργ , ργ ::= ργ ∧ ργ |
ργ ∨ ργ | γ, where γ ∈ Γ (A1) ∪ Γ (A2).

An example of a state composition rule is the rule r1, given with:

r1 = ¬((unregistered, true) ∧ (convoy, true)).

The state composition rule r1 formalizes the pattern overlapping system re-
quirement explained in Section 2. Correspondingly, it defines that a RailCab
is not allowed to rest in states (unregistered, true) and (convoy, true) at the
same time, where the clock constraint true denotes that all clock values of the
corresponding automata are concerned.

Event composition automata synchronize the parallelly executed role au-
tomata on the basis of events and event sequence by adding further timing
constraints to the parallel execution.

For event composition automata, we also apply the syntax of timed automata
themselves, as event composition automata are also used to describe possible
event sequences of the component behavior. In contrast to pattern role automata,
event composition automata do not add any further event occurrences, which
means that they do not consume or provide any signals from the channels of the
corresponding role automata. In other words, event composition automata are
only monitoring event occurrences for a given set of role automata while they do
not distinguish between sending or receiving events. They do, however, allow to
add further timing constraints to the monitored event occurrences, also in terms
of location invariants for the locations between the monitored events. This way,
safety and liveness properties for the synchronization of several role automata
can be specified. Formally, an event composition automaton is defined as follows.

Definition 7 (Event Composition Automaton). Let A1 = (L1, l
0
1, Σ1, C1,

I1, T1) and A2 = (L2, l
0
2, Σ2, C2, I2, T2) be two timed automata. An event com-

position automaton AE ∈ RA(A1, A2) is again a timed automaton as a tuple
(LE , l0E, ΣE , CE , IE , TE) , where LE is a finite non empty set of locations, l0E
⊆ L is the initial location, ΣE ⊆ Σ1∪Σ2 is the finite set of events to be observed,
I : L → Φdc(CE) assigns each location a downwards closed clock constraint, CE

is a finite set of clocks, with CE∩(C1∪C2) = ∅ TE ⊆ LE×ΣE×Φ(CE)×2CE×LE

is a finite set of transitions t = (l, e, g, r, l′) ∈ TE, l ∈ LE is the source location,
e ∈ ΣE is the observed event, g ∈ Φ(CE) is the time guard, r ⊆ CE is a set of
clocks to be reset, and l′ ∈ LE is the target location.

Semantically, an event composition automaton only observes event occurrences
of the given role automata. Consequently, only those events can be used in an
event composition automaton, as others can never be observed. Additionally, the
set of clocks of the event composition automaton is restricted to be disjoint to
the set of clocks of the role automata. This way, it is guaranteed that the event
composition automaton cannot widen the time intervals of event sequences of the
automata to be synchronized. This in turn guarantees that all verified deadlines
of the role automata can still be met and, therefore, that all verified safety
properties of the role automata are preserved (see section 6).

Component Behavior Synthesis for Critical Systems 61

Fig. 6. Event Composition Automaton eca1

To give an example for the pattern role automata of the rear role and the
registree role (Figure 3 and Figure 4), assume a further pattern overlapping sys-
tem requirement stating that a RailCab has to be registered to a base station
for at least 2500 time units before starting a convoy. Observe that this require-
ment cannot be implemented using a state composition rule, as it is based on
the occurrence of the startConvoy! event of the rear role automaton. Accordingly,
we specify the event composition automaton eca1 (Figure 6) to implement this
requirement.

For implementing the requirement, the event composition automaton eca1

monitors the register! event of the registree role automaton. Along with the oc-
curence of this event the clock ec c1 is reset. The time interval, in which the first
following startConvoy! event my occur is then restricted by the time guard ec c1

>= 2500. This means that a startConvoy! may not occur earlier than 2500 time
units after the register! event which realizes that the RailCab has to be registered
for at least this time to be able to start a convoy.

Once in ec registeredConvoy, eca1 changes its location only on the occurrence
of the event unregister!, as in this situation the monitoring has to be started once
more from the initial location. In all other situations, the component does not
change its state of being registered and therefore this event composition rule
does not have to add any further constraints.

With composition rules, we defined a suitable formalism to describe inter-role
dependencies. We proceed with the definition of the synthesis algorithm in the
next section, which includes the application of composition rules.

5 Synthesis Algorithm

The synthesis algorithm is divided into four distinct steps (see Figure 7). First,
the parallel composition of the role automata is computed, which forms an ex-
plicit model for the parallel execution of the pattern role automata. On this
parallelly composed timed automaton the composition rules are applied, by re-
moving the forbidden system states specified by the state composition rules and
by including the specified event composition automata in the parallelly composed

62 T. Eckardt and S. Henkler

Fig. 7. Synthesis Algorithm for Timed Automata

automaton. In the last step, it is verified that the externally visible behavior of
the particular role automata is preserved, as the changes made on the parallelly
composed automaton by means of the application of composition rules might
lead to violations of properties of the original role behaviors. Note that the
overall procedure can also be applied iteratively in the development process.

The parallel composition applied in our approach is derived from the parallel
composition operator of the process algebra Calculus of Communicating Systems
(CCS) [9] as it has also been applied in networks of timed automata in [21,17]. In
these approaches, the parallel composition allows for both synchronization and
interleaving of events. The pattern role automata applied to one Mechatronic
UML component, however, are defined such that they are independent from
each other, in order to allow for compositional model checking. Consequently,
we do not need to consider synchronizations in the parallel composition defined
here. The parallel composition of the example automata of the rear role and the
registree role (Figure 3 and Figure 4) is depicted in Figure 8.

Definition 8 (Parallel Composition). Let A1 = (L1, l
0
1, Σ1, C1, I1, T1) and

A2 = (L2, l
0
2, Σ2, C2, I2, T2) be two timed automata with C1 ∩ C2 = ∅ and

Σ1 ∩ Σ2 = ∅. We define the parallel composition A1 ‖ A2 as a product au-
tomaton AP = (LP , l0P , ΣP , CP , IP , TP), where LP = L1 × L2, l0P = (l01, l

0
2),

ΣP = Σ1∪Σ2, IP : LP → Φ(C1)∪Φ(C2) with IP ((l1, l2)) = I1(l1)∧I2(l2), CP =
C1 ∪C2, TP ⊆ LP ×ΣP ×Φ(CP)× 2CP ×LP , with ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TP ⇒ (l1, e1, g1, r1, l1

′) ∈ T1, and ((l1, l2), e2, g2, r2, (l1, l2′)) ∈ TP ⇒
(l2, e2, g2, r2, l2

′) ∈ T2.

The application of a state composition rule requires to evaluate each location
predicate of that rule for a given parallelly composed automaton location.

Component Behavior Synthesis for Critical Systems 63

Fig. 8. Parallelly Composed Timed Automaton

Definition 9 (Location Predicate Evaluation). Given two timed automata
A1 = (L1, l

0
1, Σ1, C1, I1, T1), A2 = (L2, l

0
2, Σ2, C2, I2, T2), their parallelly compo-

sition AP = A1 ‖ A2 = (LP , l0P , ΣP , CP , IP , TP), a corresponding parallelly com-
posed location lp = (l1, l2), and a location predicate γ = (l, ϕ) with l ∈ L1 ∪ L2

and ϕ ∈ Φuc(C1) ∪ Φuc(C2) the location predicate evaluation is a function
γ : LP → Φuc(CP) ∪ {false} defined with

γ(lp) =

{
ϕ, iff (l = l1) ∨ (l = l2),
false, else.

On the basis of the evaluation of each location predicate of a state composi-
tion rule, the entire composition rule can be applied to a parallelly composed
automaton location as defined by the state composition rule evaluation.

Definition 10 (State Composition Rule Evaluation). Given two timed au-
tomata A1 = (L1, l

0
1, Σ1, C1, I1, T1), A2 = (L2, l

0
2, Σ2, C2, I2, T2), their parallel

composition AP = A1 ‖ A2 = (LP , l0P , ΣP , CP , IP , TP), a corresponding paral-
lelly composed location lp = (l1, l2), and a state composition rule ρ ∈ RS(A1, A2)
the state composition rule evaluation is a function ρ : LP → Φdc(CP)∪ {false}
defined with

ρ(lp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
¬ρ1(lp), iff ρ is of the form ¬ρ1,

ρ1(lp) ∧ ρ2(lp), iff ργ is of the form ρ1 ∧ ρ2,

ρ1(lp) ∨ ρ2(lp), iff ργ is of the form ρ1 ∨ ρ2,

γ(lp), iff ργ is the literal γ.

where γ ∈ Γ (A1) ∪ Γ (A2).

The application of a state composition rule results in a state composition con-
form timed automaton. This automaton originates from the parallel composition

64 T. Eckardt and S. Henkler

Fig. 9. Synthesized Component Behavior of the RailCab Component

but is modified such that the corresponding state composition rule has been ap-
plied to each automaton location. Automaton locations whose invariant is false
are further removed from the automaton. The example state composition rule
r1 applied to the parallel composition of the rear and registree role automata
(Figure 8) results in the automaton depicted in Figure 9.

Definition 11 (State Composition Conformance). Let AP = A1 ‖ A2 =
(LP , l0P , ΣP , CP , IP , TP) be the parallel composition of the timed automata A1

and A2. Further let RS
1 ⊆ RS(A1, A2) be a set of state composition rules specified

over A1 and A2. The state composition conform, parallelly composed timed au-
tomaton ASC = (LSC , l0SC , ΣSC , CSC , ISC , TSC) is defined with LSC = LP \LR,
where LR = {lp | lp ∈ LP and ∀ ρ1, . . . , ρn ∈ RS

1 : I(lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp) =
false}, l0SC = l0P ⇔ l0P ∈ LSC, ΣSC = ΣP , ISC : LSC → Φ(CSC) with
ISC(lp) = IP (lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp), ∀ ρ1, . . . , ρn ∈ RS

1 , CSC = CP ,
TSC ⊆ LSC × ΣSC × Φ(CSC) × 2CSC × LSC , with (lp, e, g, r, lp

′) ∈ TSC ⇔
(lp, e, g, r, lp

′) ∈ TP ∧ lp, lp
′ ∈ LSC.

Similar to the parallel composition used for the parallel execution of the role
automata, applying event composition automata can also be compared to the
parallel composition operator of the process algebra Calculus of Communicat-
ing Systems (CCS) [9] or the networks of timed automata formalism defined in
[21]. Here, the resulting automaton is a composition of the event composition
automaton and the parallel composition of the role automata.

The fundamental difference is that for the event composition automaton appli-
cation only synchronization of events is taken into account, as event composition
automata do not define any new event occurrences for the parallel execution. Fur-
thermore, these synchronizations do not take the channel concept into account,
which means that a sending event is synchronized with a sending event and also
results in a sending event. This also holds for receiving events and originates
from the fact that the event composition automaton only observes the event

Component Behavior Synthesis for Critical Systems 65

occurrences of the parallel execution. We call this type of synchronization silent
synchronization.

In the resulting automaton the additional time guards, clock resets and loca-
tion invariants of the event composition automaton are added to the composed
locations and synchronized transitions as defined in the following.

Definition 12 (Event Composition Conformance). Let ASC = (LSC , l0SC ,
ΣSC , CSC , ISC , TSC) be a state composition conform, parallelly composed timed
automaton originating from the timed automata A1 = (L1, l

0
1, Σ1, C1, I1, T1) and

A2 = (L2, l
0
2, Σ2, C2, I2, T2) with C1 ∩ C2 = ∅ and Σ1 ∩ Σ2 = ∅. Further-

more, let AE = (LE, l0E , ΣE , CE , IE , TE) ∈ RA(A1, A2) be an event compo-
sition automaton for A1 and A2. We define the event composition conform
and state composition conform, parallelly composed timed automaton AEC =
(LEC , l0EC , ΣEC , CEC , IEC , TEC) with LEC ⊆ L1 × L2 × LE, with (l1, l2, le) ∈
LEC iff (l1, l2) ∈ LSC and ISC((l1, l2))∧ IE(le) �= false) and (l1, l2, le) is reach-
able trough TEC , l0EC = (l01, l

0
2, l

0
e), iff (l01, l

0
2, l

0
e) ∈ LEC, ΣEC = Σ1 ∪ Σ2,

IEC : LEC → Φ(C1)∪Φ(C2)∪Φ(CE) with IEC((l1, l2, le)) = ISC((l1, l2))∧IE(le),
CEC = C1 ∪ C2 ∪ CE, TEC ⊆ LEC × ΣEC × Φ(CEC) × 2CEC × LEC,
with ((l1, l2, le), e1, g1, r1, (l1′, l2, le)) ∈ TEC ⇔ ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TSC ∧ ∀ le

′ ∈ LE : (le, e1, ge, re, le
′) /∈ TE, ((l1, l2, le), e2, g2, r2, (l1, l2′, le)) ∈

TEC ⇔ ((l1, l2), e2, g2, r2, (l1, l2′)) ∈ TSC ∧ ∀ le
′ ∈ LE : (le, e2, ge, re, le

′) /∈ TE,
((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1′, l2, le′)) ∈ TEC ⇔ ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TSC ∧ (le, e1, ge, re, le

′) ∈ TE, ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1, l2′, le′)) ∈ TEC ⇔
((l1, l2), e2, g2, r2, (l1, l2′) ∈ TSC ∧ (le, e2, ge, re, le

′) ∈ TE.

To exemplify this, we apply the event composition automaton eca2 to the par-
allel composition of the simplified rear role and registree role automaton, where
the state composition rule r1 has already been applied (Figure 9). This results
in the timed automaton depicted in figure 10. Note that every location of this
automaton refers to both the locations of the role automata as well as the loca-
tions of the event composition automaton eca1. Furthermore, observe that those
composed locations which are not reachable from the initial composed location
(noConvoy, unregistered, ec initial) are omitted.

In the resulting automaton, the clock reset ec c1 := 0 and the time guard
ec c1 >= 2500 originating from the event composition automaton is added to
the register! and to the startConvoy! transition respectively. Furthermore, it is now
distinguished between the (noConvoy,registered,. . .) locations where the RailCab
has just been registered (noConvoy,registered,ec registered) and where the RailCab
has already been in a convoy without being unregistered in-between (noCon-

voy,registered,ec registeredConvoy)).
The resulting automaton describes the synthesized component behavior of

the RailCab component. We have not yet ensured, however, that the externally
visible behavior of each of the role automata is preserved. This is described in
the next section.

66 T. Eckardt and S. Henkler

Fig. 10. Event Composition Rule eca2 Applied to the Timed Automaton Depicted in
Figure 9

6 Preserving Role Behavior

After composition rules have been applied to the parallelly composed timed au-
tomaton, it is not ensured anymore that the visible behavior of each of the par-
ticular role automata is still preserved. Assume for example, the application of an
additional state composition rule r2 = ¬((registered, true)∧ (convoy, cr > 100))
to the composed timed automaton given in Figure 9. This results in a new location
invariant (cr<=100 && ce<=2000) for the location (convoy,registered). As a conse-
quence, the outgoing breakConvoy? transition cannever be enabled, as its time guard
cr>=200cannever evaluate to true.Accordingly, the relevantbehavior of theconvoy
role is not anymore included in the composition conform automaton. Furthermore,
note that this is not always trivial to see when specifying composition rules, as some
relevant behavior is removed not before two or more rules are applied. The rule r2

applied on the original parallel composition (see Figure 8), for example, would not
remove the executability of the breakConvoy? transition, as the automaton could
switch to (unregistered,convoy) to execute the breakConvoy? transition.

In order to preserve the relevant role behavior, we need to ensure that in the
refined component behavior all timed safety properties and all untimed liveness
properties are preserved. This would imply that no deadlines of the original role
automata are violated while still all events of the original automata are (in the
correct order) visible within the original time interval. If both of these properties
are preserved, we say that the refined component behavior is role conform. In
the following, we give a sketch of a proof for role conform component behavior.
A detailed proof is discussed in [22].

For preserving timed safety properties, we have defined the composition rule
formalism exactly the way that neither any time interval can be widened nor

Component Behavior Synthesis for Critical Systems 67

can additional events be added to the refined behavior. This means that com-
position rules can only restrict the time intervals of existing behavior or can
remove certain state combinations completely. Thus, all timed safety properties
are inherently preserved by the synthesis procedure.

For preserving untimed liveness properties, we have to ensure that each path of
each single role automaton still exists in the refined (parallel composed) compo-
nent automaton. This problem can be split up into analyzing the offered behavior
of each refined component automaton location (cf. protocol conformance in [4]).
This means that we verify that each refined location offers the same sending and
receiving events as each of the corresponding role automaton locations. In the
refined automaton of the RailCab component (Figure 9), for example, we have
to verify for the (noConvoy,unregistered) location that it offers a startConvoy! event
for the rear role automaton and a register! event for the registree role automaton.

The offered behavior, however, is defined such that it does not require the
concerned location to have a direct outgoing transition with the corresponding
event. Instead we also allow for transitions in-between, which are triggered by
events of other role automata. This is possible because, for one particular role, the
behavior of other roles is invisible. In the refined RailCab component automaton
this means that the (noConvoy,unregistered) location also offers a startConvoy! event
through the register! transition which originates from the registree automaton.

In addition to that we analyze timed systems. Therefore, we have to take the
timing information in terms of clock values of the automaton into account. We
cope with this by constructing the zone automaton [18,23] of the refined compo-
nent automaton and verifying the offered behavior of each zone location instead
of the automaton location. For this we also include the timing information of
each original role automaton location in terms of location invariants and time
guards of outgoing transitions in the analysis. The analysis is finally performed
by applying operations on zones (cf. [18,23]) and comparing the offered events of
each zone location with the offered events of each corresponding role automaton
location in the time interval of the zone location.

If each zone location offers the required behavior, we also preserve all un-
timed liveness properties of the role behaviors and, thus, the refined component
behavior is a correct refinement of the parallel composition of the particular role
behaviors5. If this is not the case, one or more of the specified composition rules
violate the externally visible behavior of at least one of the role behaviors. In
this case the developer must either adapt the composition rules or go back to
the specification of the corresponding real-time coordination patterns.

7 Related Work

Work which is related to our approach exists in the field of controller synthesis
as well as in the field of component-based software development.

5 The correct refinement is defined by a weaker form of a (timed) bisimulation equiv-
alence [24,25] which we call observational timed bisimulation.

68 T. Eckardt and S. Henkler

The field of controller synthesis [26,27,28] deals with the problem of synthesiz-
ing a behavioral model for a controller which interacts with some environment.
In a controller, interaction is specified through alternating actions between the
controller and the environment. Consequently, for the behavioral model a spe-
cial type of timed automaton, a timed game automaton [26], is applied. In a
timed game automaton, transitions are partitioned into those controllable by
the controller and those controllable by the environment.

There exist a number of approaches for the controller synthesis of system and
component-level behavior models from system specifications which considers no
time (e.g. [29,30]). Current work in this domain focuses on synthesis approaches
based on modal transition systems (e.g.[31]). The motivation of these approaches
is to capture the possible system or component implementations. In general,
these approaches are also able to restrict the forbidden behavior by properties.

As we presented in [32], we divide the specification in two phases. First, we
specify and analyze the protocol behavior independently from the concrete ap-
plication of a component which results in independent pattern role automata.
These behavior, which we can synthesize by our parameterized synthesis ap-
proach [33,34,32], is multiple applicable by different component implementa-
tions. In a second step, we specify the restrictions for the different component
implementations and synthesize the component behavior by considering these
restrictions and a refinement relation which preserves the formal verification
results of the protocol behavior.

Therefore, the main difference to our synthesis approach is that the given
behavioral model of controller synthesis does not take a compositional charac-
ter of this model into account as this is not necessarily given in the underlying
controller behavior. As the compositional character is mandatory for safety crit-
ical systems to be able to handle the complexity especially for the analysis,
these approaches are rather not appropriate. In our approach this is given by
the independent pattern role automata. In the controller synthesis approach,
the compositionality can consequently also not be considered for the specifica-
tion of the properties which have to be synthesized. Altogether, this results in
a different equivalence relation between the original and the synthesized model
which in turn results in different synthesis algorithms. Furthermore, none of
these approaches takes all the relevant characteristics of safety critical systems
into account that are time, safety and bounded liveness properties.

In [4], Giese and Vilbig present a synthesis procedure for the behavior of in-
teracting components. While the basic idea of their approach and our approach
is the same, the main goal of the synthesis differs. Giese and Vilbig propose
to synthesize a maximal consistent component behavior which allows for rep-
resentational non-determinism by the explicit use of τ -transitions representing
internal component behavior. Our goal, on the other hand, is to synthesize a
correct refined component behavior with respect to safety and liveness proper-
ties where the behavior of other ports is treated as internal component behavior.
Furthermore, we employ real-time behavioral models as input specifications in
order to suit the requirements of safety critical systems.

Component Behavior Synthesis for Critical Systems 69

8 Conclusion and Future Work

In this paper we proposed an approach to automatically synthesize the behavior
of components applied in critical systems. Therefore, we propose to specify de-
pendencies between several role behaviors separately by means of composition
rules. Additionally, we defined a procedure to automatically integrate the com-
position rules for a given set of role behaviors. Afterwards it is checked that the
resulting component behavior refines each of the role behaviors properly. We ex-
emplify the approach by extending the Mechatronic UML. A first prototype
and an evaluation of our approach is presented in [32,35]. For future work we
plan to perform an exhaustive evaluation of the approach in the RailCab project
and industrial applications. This way, it could also be evaluated if the proposed
composition rule formalism is sufficient to specify dependencies between several
coordination roles in a multi-cast setting.

References

1. Bosch, J., Szyperski, C.A., Weck, W.: Component-Oriented Programming. In:
Malenfant, J., Moisan, S., Moreira, A.M.D. (eds.) ECOOP 2000 Workshops. LNCS,
vol. 1964, pp. 55–64. Springer, Heidelberg (2000)

2. Dijkstra, E.: A Discipline of Programming. Prentice-Hall Series in Automatic Com-
putation (1976)

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

4. Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Archi-
tecture and Design. Software and System Modeling (SoSyM) 5(2), 136–169 (2006)

5. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: ICSE 1999: Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 107–119. ACM, New York (1999)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, vol. 1. John Wiley & Sons, Chichester (1996)

7. Garlan, D., Perry, D.: (introduction to the) Special Issue on Software Architecture.
IEEE Transactions on Software Engineering 21(4) (April 1995)

8. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

9. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

10. Selic, B.: Real-Time Object-Oriented Modeling (room). In: 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS 1996), Boston, MA, USA, June
10-12, p. 214. IEEE Computer Society, Los Alamitos (1996)

11. Jackson, E.K., Sztipanovits, J.: Using Separation of Concerns for Embedded Sys-
tems Design. In: EMSOFT 2005: Proceedings of the 5th ACM International Con-
ference on Embedded Software, pp. 25–34. ACM, New York (2005)

12. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Composi-
tional Verification of Real-Time UML Designs. In: Proc. of the 9th European Soft-
ware Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-11), September
2003, pp. 38–47 (2003)

70 T. Eckardt and S. Henkler

13. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Ver-
ification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In: Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pp. 179–188. ACM Press, New York (2004)

14. Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report
tr-ri-03-239, Lehrstuhl für Softwaretechnik, Universität Paderborn, Paderborn,
Germany (June 2003)

15. Alur, R., Dill, D.L.: Automata for Modeling Real-time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

16. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. In: Proceedings of the Seventh Annual Symposium on Logic
in Computer Science (LICS), pp. 394–406. IEEE Computer Society Press, Los
Alamitos (1992)

17. Pettersson, P.: Modelling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice. PhD thesis, Department of Computer Systems,
Uppsala University (February 1999)

18. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

19. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering SE-3(2), 125–143 (1977)

20. Henzinger, T.A.: Sooner is Safer than Later. Information Processing Letters 43(3),
135–141 (1992)

21. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Communi-
cating Systems by Constraint-solving. In: Hogrefe, D., Leue, S. (eds.) Proceedings
of the 7th IFIP WG6.1 International Conference on Formal Description Formal
Techniques, Berne, Switzerland. IFIP Conference Proceedings, vol. 6, pp. 243–258.
Chapman & Hall, Boca Raton (1994)

22. Eckardt, T., Henkler, S.: Synthesis of Reconfiguration Charts. Technical Report
tr-ri-10-314, University of Paderborn, Paderborn, Germany (January 2010)

23. Alur, R.: Timed Automata. In: NATO-ASI 1998 Summer School on Verification of
Digital and Hybrid Systems (1998)

24. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking (January 2000)
25. Tripakis, S., Yovine, S.: Analysis of Timed Systems Using Time-Abstracting Bisim-

ulations. Formal Methods in System Design 18(1), 25–68 (2001)
26. Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete and

Timed Systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

27. Altisen, K., Tripakis, S.: Tools for Controller Synthesis of Timed Systems. In:
Pettersson, P., Yi, W. (eds.) Proceedings of the 2nd Workshop on Real-Time Tools
(RT-TOOLS 2002) (August 2002)

28. Geist, S., Gromov, D., Raisch, J.: Timed Discrete Event Control of Parallel Pro-
duction Lines with Continuous Outputs. Discrete Event Dynamic Systems 18(2),
241–262 (2008)

29. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Mod-
els from Scenario-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)

30. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: ICSE
2000: Proceedings of the 22nd International Conference on Software Engineering,
pp. 314–323. ACM, New York (2000)

Component Behavior Synthesis for Critical Systems 71

31. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of Partial Behavior Models from
Properties and Scenarios. IEEE Transactions on Software Engineering 35, 384–406
(2009)

32. Henkler, S., Greenyer, J., Hirsch, M., Schäfer, W., Alhawash, K., Eckardt, T.,
Heinzemann, C., Löffler, R., Seibel, A., Giese, H.: Synthesis of Timed Behavior
from Scenarios in the Fujaba Real-Time Tool Suite. In: Proceedings of the 31st In-
ternational Conference on Software Engineering (ICSE 2009), Vancouver, Canada,
Washington, DC, USA, May 16-24, pp. 615–618. IEEE Computer Society, Los
Alamitos (2009)

33. Giese, H., Klein, F., Burmester, S.: Pattern Synthesis from Multiple Scenarios for
Parameterized Real-Timed UML Models. In: Leue, S., Systä, T.J. (eds.) Scenar-
ios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 193–211. Springer,
Heidelberg (2005)

34. Giese, H., Henkler, S., Hirsch, M., Klein, F.: Nobody’s Perfect: Interactive Synthesis
from Parametrized Real-Time Scenarios. In: Proc. of the 5th ICSE 2006 Workshop
on Scenarios and State Machines: Models, Algorithms and Tools (SCESM 2006),
Shanghai, China, May 2006, pp. 67–74. ACM Press, New York (2006)

35. Eckardt, T., Henkler, S.: Synthesis of Component Behavior. In: Gorp, P.V. (ed.)
Proceedings of the 7th International Fujaba Days, November 2009, pp. 1–5. Eind-
hoven University of Technology, The Netherlands (2009)

	Component Behavior Synthesis for Critical Systems
	Introduction
	Approach
	Prerequisites
	Composition Rules
	Synthesis Algorithm
	Preserving Role Behavior
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

