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Abstract. The model-driven software development for hard real-time systems
promotes the usage of the platform independent model as major design artifact. It
is used to develop the software logic at a high level of abstraction and enables anal-
ysis like for example model checking of critical model properties. Ideally, starting
with the platform independent model, the platform specific model serves only as
an intermediate artifact which is derived automatically, and will finally result in a
set of threads whose implementations guarantee the behavior, specified in the plat-
form independent model. However, the current MDA approaches and tools for hard
real-time software do not provide this ideal: While some of the MDA approaches
could in principle support this vision, most approaches simply do not support an
appropriate specification of time constraints in the platform independent model
which have to be respected in the platform specific model or in the code. This is
also true for UML models and UML State Machines in particular. Our approach
overcomes those UML specific limitations by firstly proposing a syntactic exten-
sion and semantic definition of UML State Machines which provides enough de-
tails to synthesize an appropriate platform specific model that can be mapped to
code for hard real-time systems automatically. Secondly, a new partitioning algo-
rithm is outlined, which calculates an appropriate mapping onto a platform specific
model by means of real-time threads with their scheduling parameters which can
be straight forward transformed to code for the hard real-time system.

1 Introduction

The current practice when building software components with hard real-time constraints
is characterized by the following step-wise partially manual process: (1)Specification:
The software is specified on a high abstraction level (if at all), then (2)Partitioning: The
software is partitioned into concurrent threads with appropriate periods to make it run
on a real-time operating system (usually without adequate analysis), (3)Implementation:
The software is implemented (often manually, which makes implementation faults very
likely), (4) Analysis: It is verified that the software fulfills all real-time constraints in
its environment (testing as employed in practice is usually not sufficient for complex
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software to guarantee the absence of timing errors). If the real-time constraints do not
hold, partitioning, implementation and analysis have to be repeated. Repeating this cycle
a number of times is usually very costly but often unavoidable.

Consequently, there is an increasing demand to extend model-driven architecture
(MDA) [1, 2] to design software for embedded hard real-time systems. When using MDA
for such systems, the developer would have to specify the so calledPlatform Independent
Model (PIM) which describes the system behavior including the real-time constraints
which must be met. Ideally, a tool would then automatically partition the specification
and map it to thePlatform Specific Model (PSM), based on aPlatform Model (PM)that
provides details about the target platform. The PSM describes the active objects and their
scheduling parameters which are required to implement the system behavior, specified
by the PIM. In the next step, the PSM would be compiled automatically into the platform
specific implementation which guarantees a correct implementation of the PIM’s seman-
tics. The implementation would guarantee the real-time constraints by construction and
thus, no verification of the real-time constraints is required. This would make the above
mentioned manual steps(3) Implementationand(4) Analysisunnecessary. Such guaran-
tees for the derived implementation further permit to analyze other required properties
or to reveal faults or inconsistent real-time constraints using the platform independent
model rather than considering the much more complex code (e.g. by model checking
[3–5]).

One reason, why the indicated iterative manual process is followed in practice instead
of the MDA approach, is that currently, there exists no support to automatically map a
PIM to a PSM that is appropriate for real-time systems. The UML [6] can be considered
as the standard to model complex software systems even in the real-time domain [7–10].
Consequently, we propose in the paper an approach to realize the above outlined vision
with UML, even though UML has not been originally designed to support real-time sys-
tems and a semantically correct implementation for standard UML State Machines is due
to the underlying zero execution time semantics not possible. Although ROOM [11] has
finally found its way into UML 2.0, the required support for real-time behavior modeling
is still not available, as the ROOM concepts focus on architectural design and do not
address the real-time behavior of the operational model at all.

Another thread of development is theUML Profile for Schedulability, Performance,
and Time[8]. The profile defines general resource and time models which are used to
describe the real-time specific attributes of the modeling elements such as scheduling pa-
rameters or quality of service (QoS) characteristics. However, it remains an open question
in the UML profile how all required details are determined. In a scenario where the de-
veloper derives these details from a high-level (platform independent) model and maps
them on technical concepts such as threads and periods manually, we still have the prob-
lem that this mapping results in an iterative manual process of testing and adjusting the
model until the real-time constraints are met. Nevertheless, the profile defines an appro-
priate level of abstraction to be used as PSM. This PSM can be later used for further
model analysis (e.g. scheduling analysis) and code generation.

To provide an appropriate PIM, we first propose a syntactic extension of UML State
Machines and a related semantic definition. By enriching the model with deadline infor-
mation (besides others), our extension provides enough details in the PIM to synthesize
a PSM and finally code for hard real-time systems. We provide the PM by a description



of worst case execution times (WCETs) of local side-effects and of the code fragments
that will be used in the automatically generated implementation of the state machine.

For the automatic derivation of the PSM from our extended notion of State Machines,
we developed an algorithm for automatic partitioning and for automatic derivation of
scheduling parameters. The algorithm takes CPU time sharing on a single micro proces-
sor into account. An automatic implementation usually leads to less faults than a manual
implementation. The automatic partitioning respects the deadlines from the PIM and the
WCETs from the PM.

Therefore, the algorithm for automaticPartitioning and Implementationguarantees
that all real-time requirements are met, which makes theAnalysisunnecessary and avoids
the costly iterative process ofPartitioning, ImplementationandAnalysis. If the algorithm
fails to provide a partitioning, the model is not realizable.

The next section presents our approach for platform independent modeling of hard
real-time systems and relates it to standard UML models. Section 3 describes the plat-
form model and the component’s deployment. Section 4 shows in detail how to derive
a platform specific model and finally code. Section 5 discusses current approaches of
specification techniques for embedded systems with hard real-time constraints and their
limitations. Finally, Section 6 draws a conclusion and sketches current and future work.

2 Platform Independent Models
In this section, we first describe how to specify the system’s structure. Then, we discuss
in detail how to specify the behavior of components of embedded real-time systems with
UML and with our approach. Finally, we present our analysis methods.

2.1 Structure Modeling

Embedded real-time systems consist of a complex architecture of components (cf. Figure
5). In [3], we have presented an approach how to specify the architecture and complex
real-time communication between the components by UML component diagrams and
patterns respectively. Our approach further permits to verify the component’s intercon-
nection by means of compositional model checking assuming that each single component
behaves as specified. How the single component’s real-time behavior is specified and how
it is correct implemented automatically is described in the remainder of this paper.

2.2 Behavior Modeling

We use an example from the RailCab research project1 as our running example. The
vision of the RailCab project is a rail system where autonomous operating shuttles ap-
ply the linear drive technology used in the Transrapid, but travel on the existing passive
track system of the standard railway. One particular problem, which has been previously
described in [3], is to reduce the energy consumption due to air resistance by forming
convoys whenever possible. Such convoys are created on-demand and require small dis-
tances between the shuttles in order to achieve significant economies.

Building convoys changes the shuttles’ behavior (e.g. the way of accelerating and
braking). Thus, It must be guaranteed that all involved shuttles of a convoy switch to
convoy mode in an appropriate and predictable amount of time which results in a number
of hard real-time constraints.

1 http://www-nbp.upb.de/en/index.html



After receiving aconvoyProposal message, that denotes a request to build a convoy,
we demand for the communication that the shuttle answers within the timetans with
rejection (messageconvoyProposalRejected) or with acceptance (startConvoy).

In a first attempt to describe this coordination with a UML State Machine, the state
machine would switch to an intermediate state when receivingconvoyProposal. This in-
termediate state would be left via a transition labeled withafter(tans) to switch to aFailure
state if no answer was sent during this time.

The semantics of such a model assumes the transitions to be fired within zero-time,
but this is not realizable in an implementation in real life systems due to three reasons:
(i) Consuming or raising events or executing side-effects consumes time. (ii) An imple-
mentation of a state machine requires a task which periodically checks if transitions are
triggered. As only positive,non-zeroperiods are realizable, this leads to a further de-
lay. (iii) If other processes are executed on the processor, further delays occur due to
scheduling.

Fig. 1.UML approach to model the shuttle coordination

One possibility to model time consumption of raising events or executing side-effects
is the use of theafter-construct as shown in Figure 1. In order to respect the worst case
execution timewe for consuming or raising events thehelp-states are introduced. They
are entered when an event is consumed or fired and left afterwe (to simplify the example
we assume that consuming and raising of events consumes the same amount of time).2

Such a description models correctly that the actions consume time (cf. (i) above), but
still consist of transitions that react infinitely fast (cf. (ii)) and do not respect scheduling
delays (cf. (iii)). Further, theafter-construct is used in 2 different ways:after(tans − we)
specifies the point in time when the according transition has to fire (as proposed by the
UML). Contrary to this,after(we) is used to model the progress of time while raising an
event.

The example illustrates, that UML State Machines are not practical for our demands
and that there is need for a realistic model that supports the specification of hard real-time
constraints like WCETs and upper bounds for reaction times.

The abstraction ofzero execution time, employed in UML State Machines, is often
interpreted to meanfast enough. Thus, to specifyhow fastthey have to react, we pro-
pose to specify deadlines for each required side-effect. Thus, in ourReal-Time Statechart
model [12, 13], which is an extension of the UML State Machine model, transitions are

2 Note when regarding Figure 1 that we denote the sending of a messagemsg to targettgt by
tgt.msg. Receiving from receiverrcv is denoted byrcv.msg.



Fig. 2.Real-Time Statechart

not assumed to fireinfinitely fast, which is unrealistic on real physical devices (especially
when considering the execution of the actions attached to the transitions), but it is pos-
sible to specify deadlines for each transition which in turn determine whatfast enough
really is.

These time constants specify a relative point in time defining the minimum time (al-
ways0 in this example, see Figure 2) and the maximum time (d0, tans) until the firing of
the transition has to be finished. These points in time are either absolute in relation to the
point in time when the transition has been triggered (e.g. the transition fromnoConvoy to
answer) or relative to a clock. In the example, the deadlinet5 ∈ [0; tans] of the transition
from answer to convoy is relative to the clockt5. t5 is reset to zero when switching to
stateanswer (indicated by{t5} similar to the notion in timed automata [14, 15]). The
clock is reset at the point in time when the transition is triggered. The deadlines avoid to
use extra or help states (as in Figure 1) and thus enable to construct a less complex model
in terms of the number of states.

Further, we enhance the model –similar to timed automata– by time invariants defin-
ing the point in time when the state has to be left via a transition. The stateanswer is only
valid as longt5 ≤ tans − we holds. To trigger transitions dependent on a specific point
in time, time guards are specified (e.g.0 ≤ t5 ≤ tans − we).

Transitions are triggered when the time guard becomes true, the associated event
is available and a guard, consisting of a boolean expression over different variables or
methods, is also true. We distinguish betweenurgenttransitions (visualized by solid ar-
rows) firing immediately when they are triggered andnon-urgenttransitions (visualized
by dashed arrows). The latter ones may be delayed when the time specifications of the
model still allow a later firing [14]. Urgent transitions are similar to eager transitions in
[16] and non-urgent transitions are similar to delayable or lazy transitions in [16]. They
are used to model different possible alternatives in the communication protocol. This
introduced non-determinism is resolved in Figure 3 showing the whole shuttle behavior.

The after-construct is mapped to a time guard and a time invariant and thus gets a
semantic definition which makes it possible to generate code from this definition. Al-
though the use of multiple clocks requires more effort than using theafter-construct, it
has the advantage that the points in time, when transitions are triggered, cannot only be
defined relative to the point of entrance of the current state, but also relative to the point
of triggering of any previously fired transition or the point of entrance or exit of any



previously entered state, because clock-resets can be associated even to theexit()- and
entry()- methods of the states.

The form of the time guards is limited to∧ti∈C(ai ≤ ti ≤ bi), ai ∈ IN, bi ∈ IN ∪
{∞}, whereC is the set of clocks. The form of time invariants is limited to∧ti∈C(ti ≤
Ti), Ti ∈ IN ∪ {∞}. In our experience, this limitation, i.e. the exclusions of arbitrary
logic expressions and arithmetic operations on different clock times, does not hamper
the modeling of realistic systems and makes it easier for the model developer to build
intuitive models rather than very complicated ones.

The semantic definition of Real-Time Statecharts does not have the usual macrostep
and run-to-completion semantics of UML State Machines, because the zero execution
time for intermediate steps is not realistic in our application domain. Many actions have
significant WCETs. Run-To-Completion semantics would not allow an immediate reac-
tion to any newly raised external event. We define our semantics formally, as given in [13]
by a mapping of Real-Time Statecharts to a subset of an extended version of hierarchical
timed automata as defined in [17]. Such a semantics has already been employed success-
fully in a similar domain [18] for the un-timed case. In order to still be able to describe the
required local synchronization between multiple orthogonal states of a single Real-Time
Statechart within a single step, synchronous communication via synchronization-events
and -channels, similar to the mechanism described in [14], is also supported.

Apart from the above mentioned extensions, which are partly adapted from timed
automata, features from UML State Machines like hierarchy, parallelism and history as
well asentry()-, exit()- anddo()-operations for states are, of course, provided further on.
While a specific state is active, itsdo()-operation is executed periodically. The user may
specify a time interval for this period. Actions are not limited to integer assignments (like
in timed automata), but can be complex method calls in the object-oriented model. The
WCETs are respected in the PM (see Section 3).

Figure 3 shows the whole shuttle behavior, consisting of three orthogonal states.3

The upper orthogonal state realizes the described part of the communication protocol.
The lower orthogonal state realizes the opposite part. The orthogonal state in the middle
synchronizes both roles. It initiates the building and the breaking of the convoy. In this
simplified example, convoys consisting of maximal two shuttles are build.

Real-Time Statecharts combine the advantages of UML State Machines and of timed
automata and extend them by additional annotations. These annotations enable to gener-
ate the PSM and finally code for real-time platforms on the one hand and offer constructs
to model complex temporal behavior on the other hand. The main differences to UML
State Machines are, that they (1) support to model the time consumption of transition
execution and (2) have a realistic semantic definition based on timed automata mirroring
appropriately the application domain.

2.3 Model Analysis
Generating a PSM, consisting of active objects and deadlines, that guarantee the real-
time constraints as specified in the model is of course only possible, when the model
does not contain any conflicts between the declarative elements such as time guards and
time invariants. A possible conflict is for example when multiple real-time constraints are
contradicting and thus no behavior exists which fulfills them (time-stopping deadlock).

3 Note that in our CASE toolFujaba(www.fujaba.de) the dashed lines between orthogonal states
are not visualized.



Fig. 3.Behavior of a shuttle component

To exclude such conflicts, the full state space of a Real-Time Statechart model has to
be checked in the general case. Due to the well-defined semantics of Real-Time State-
charts [13], which map their behavior to hierarchical timed automata as employed in the
model checker UPPAAL [19, 14], we first map them to hierarchical timed automata and
then feed them into the vanilla extension of UPPAAL [19] which flattens them in an addi-
tional preprocessing step. Then, this flat timed automata model is checked with UPPAAL
for the absence of time-stopping deadlocks or other required properties expressed with a
restricted temporal logic.

When a time-stopping deadlock has been found, we have to conclude that the final
state of the delivered error trace contains a conflict. Pinpointing the root source of the
problem is a complex problem which remains to be done manually.

While model checking the PIM provides a high cost solution in the general case, we
can do much better for specific failure classes where the complex dependencies which
result from the synchronization between orthogonal states are ignored when the deploy-
ment and thus the platform model is known.

Imagine, as one example for such a static analysis, a state with (a part of) an invariant
ti ≤ Ti, which is the source of a set of leaving transitions which all have a time guard of
the formTi + x ≤ ti, x > 0. It is obvious, that once entered, this state will never be left
again and a time-stopping deadlocks occurs.

Our additional static analysis algorithms employed upfront detect such temporal in-
consistencies at low costs. Due to the incompleteness of the analysis, it is a supplement to
model checking but cannot, of course, replace it to detect all inconsistencies in the gen-
eral case. The pessimistic analysis further indicates whether model checking is required
at all or whether the much simpler static checking for temporal inconsistencies has been
sufficient.



3 Platform Models & Deployment
In order to generate the PSM, WCETs are required for all actions (side-effects,entry(),
exit(), anddo()- operations) and for the elementary instructions that build the code frag-
ments realizing the Real-Time Statechart behavior (e.g. checking guards, raising events,
etc.).

3.1 Deployment
As the WCETs are platform-dependent, we first deploy our components (whose behav-
ior is each specified by a Real-Time Statechart) by a UML deployment diagram. In such
a deployment diagram, we assign the component instances of our systems to dedicated
nodes and the cross node links to available network connections in form of busses or di-
rect communication links. Given such an assignment, we can further look into the specific
characteristics of the different nodes as described in the platform model.

3.2 Platform Models
In the platform model, the relevant characteristics such as CPU type, operating system,
etc. are described. Therefore, available techniques to determine these single WCET val-
ues as described in [20] can be employed. They allow to annotate these values to the
platform specific view of the behavioral elements such as methods and elementary in-
structions. The WCETs of the code fragments of a Real-Time Statechart can then be
determined by summing up the execution times of the elementary instructions and more
complex methods.

3.3 Model Analysis
To analyze the resulting model with platform specific annotations, we extend our timed
automata model for model checking as well as our static analysis technique such that it
also reflects the WCET behavior of the side effects of the transitions.

A temporal inconsistency can, for example, occur, if a time guard, a time invariant,
and a WCET are in contradiction. One case is given by a time guard which can trigger
a transition at a point in time, when the execution of the action will not be possible,
because the time invariant of the target state may have been exceeded after execution of
the action. Consider, for example, a transition with a time guardt0 ≤ 10 and an action
with a WCET of 4 leading to a state with the invariantt0 ≤ 12. If this transition is
triggered, for example att0 = 10, the target state is entered in the worst case att0 = 14,
which violates the time invariant.

Such problems can be detected using model checking. In addition our static analysis
algorithms can be upfront detect some of these temporal inconsistencies at low costs as
in the case of the PIM analysis.

4 Synthesizing Platform Specific Models & Code
After modeling and analyzing the PIM with components and Real-Time Statecharts and
specifying the platform specific WCET information in the PM and the deployment, we
have to map the components and links to active objects and to network and communica-
tion links to come up with the final platform specific model. In our case the PSM can be
described by the UML Profile for Schedulability, Performance, and Time [8], as it allows
the specification of priorities, periods, and deadlines for active objects. We use it as plat-
form specificmodel, as these values, which we derive automatically from the platform
independentmodel, are different for different platforms.



When building real-time systems, cost saving requires to minimize hardware costs.
Consequently, the number of processors and their power is restricted. Thus our mapping
algorithm is designed for single processor systems, whereby all branches of the orthog-
onal states are mapped to one single processor. In case the system consists of multiple
components, deployed on different processors, every component executes on exactly one
processor. Thus, the mapping algorithm can then be applied, too.

One periodic thread ensures that the Real-Time Statechart reactsfast enoughto meet
all time restrictions. The thread’s period defineshow fastthe Real-Time Statechart reacts.
Its determination, that considers the specified attributes (deadlines, etc.) as well as the
externally determined WCETs, builds the main part of Section 4.1.

As every Real-Time Statechart is implemented as exactly one active object which
will be implemented as periodic thread (and possibly multiple aperiodic threads), the
number of concurrently running threads can become large when plenty of Real-Time
Statecharts are executed on the same processor. If this is the case (e.g., for UML models
with a large number of active objects or components), we propose to combine multiple
Real-Time Statecharts into a single one using orthogonal states to optimize the result of
the partitioning. Using such a grouping, an unacceptable overhead due to a large number
of threads is avoided and we still resolve the partitioning and scheduling problem by
employing the proposed code generation algorithm.

4.1 Partitioning
As mentioned above, a Real-Time Statechart is mapped to at least one periodic thread,
checking for triggered transitions in every period – the so calledmain thread. This thread
checks all transitions which can be triggered from the beginning of its last period until
and during the duration of the current period. The checking has to be started that early,
because the check in the last period may have just missed a transition which could have
been triggered. It was missed because the check happened just before the event occurred
or its time guard was evaluated to true.

A transition is triggered, if the following four conditions hold: (1) The transition is
defined for the current state, (2) the event has occurred in the time interval between the
beginning of the last period (of the main thread) and the current point in time (Note that an
event, that cannot be consumed immediately, is queued), (3) the time guard is evaluated
to true during or after the event happens, (4) the guard is evaluated to true during or after
the event happens. The worst case time needed for the whole check (depending on the
current state) is denoted bywtrig(s), wheres is the current state.

After determining all triggered transitions and the points in time when they became
activated, the first triggered transition is fired. Then clocks are reset and actions are exe-
cuted.

If the action has such a short WCET, such that there is still enough execution time
left within the period, it will be executed by the main thread. As it is possible to specify
complex actions, their WCETs often do not fit into the main thread. If they are executed
within the main thread nevertheless, its execution time would become greater than its
period and deadline. Apart from this problem, the main thread would not be able to
check and – if needed – fire other transitions for the time the action is executed, although
this is required in the case of orthogonal states. Due to these problems, the firing of such
transitions is rolled out into a new started aperiodic thread, running concurrently to the
main thread. Thus, orthogonal states are not implemented by multiple concurrent running



periodic threads, but by exactly one periodic thread and multiple concurrent running
aperiodic threads. Among other things, this facilitates the efficient implementation of
synchronization.

The still remaining problem is to determine the main thread’s period. On the one
hand, it needs to be short enough, such that the recognition of triggered transitions hap-
pens early enough to guarantee that the actions are executed before their deadlines ex-
pire. On the other hand, it should be as long as possible to execute as many transitions
as possible within the main thread and thus to minimize resource utilization, because an
additional aperiodic thread consumes time and memory. Respecting these conditions, the
annotations and restrictions in the Statechart specification as well as the timeswtrig(s),
wstart andwend give limits for the duration time of one period.wstart andwend denote
the duration for starting and terminating an aperiodic thread. We determine the period
for a target system, scheduled by a priority scheduler [21]. When deriving equations to
determine the period from the specification, several cases need to be distinguished.
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Fig. 4.Determining the period

Figure 4a shows the first case whenwtrig(s) and the action to be executed (WCET
is denoted withwa) fits into the periodic thread. The execution has to guarantee that the
action is executed before its deadline expires, i.e. the period is short enough to execute
the action before the deadlined. The worst case in terms of a delay between triggering a
transition and executing its corresponding action is the following: The main thread begins
execution at timet – the beginning of a first period and just misses a transition which is
triggered. As we apply priority scheduling, that transition is only checked again and fired
at the end of the execution of the next period (t + p until t + 2p) such that it just fits
into this period (p denotes the duration time of one period). Thend ≥ 2p must hold in
order to be sure that the action is executed before the deadline expires. Respecting the so
calledutilization factorν ∈ (0; 1], defining that a Real-Time Statechart shall not gain
more thanν percentage of the processor load, obviouslywtrig(s) + wa ≤ pν must hold
for cases where the processor load is shared.

This results in the inequalityp1
min := (wtrig(s) + wa)/ν ≤ p ≤ d

2 =: p1
max deter-

mining minimum and maximum values forp in case of executing an action within the
main thread (case 1).

A more complex situation occurs whenwtrig(s) + wa ≤ pν does not hold and the
action needs to be rolled out to an aperiodic thread, like shown in Figure 4b. Although the
start of the aperiodic thread shortens the necessary execution time of the periodic main
thread towtrig(s) + wstart, we still compute an upper bound which minimizes rollouts.
In any case, the computation time within every period, the main thread gets, ispν. Even,
when this time is not enough to execute the action, the periodic thread is started at least
pν time units before the end of it’s period, cf. Figure 4b. In this case, the computation
time is not used completely by the periodic thread. The remaining time is already used



by the started aperiodic thread. Consider the (trivial) caseν = 1: The delay between
triggering the transition and executing the action is given byp + wtrig + wstart. Then,
the action is executed and the aperiodic thread terminates. Thus the delay, the execution
and the termination have to fit into the deadline:d ≥ p + wtrig + wstart + wa + wend ⇔
p ≤ d− wtrig − wstart − wa − wend.

While the aperiodic thread is executing, the periodic one still runs (with a shorter
execution timew′

g) and preempts the aperiodic one once within a period. A detailed
analysis (which is given in [22]), respecting these preemptions andν ∈ (0, 1] leads to
the inequality 1, that uses the substitutionsα = (νwa +νwend +wtrig +wstart)/ν2, β =
w′

trig/ν, ϕ = wa − wtrig − wstart/ν.

p ≤ d− α− β

⌈
νp− ϕ

p + β

⌉
(1)

Applying a numerical algorithm leads to the solutions in the formp ≤ p2
max. Con-

sidering the necessary execution timewtrig(s) + wstart ≤ νp leads to another inequality
p2
min := (wtrig(s) + wstart)/ν ≤ p ≤ p2

max determining minimum and maximum values
for p in case of executing an action, that is rolled out (case 2).

The period has to fit either the first or the second inequality. As a Statechart usually
consists of multiple transitions, a period is chosen, that fits at least one equation forevery
transition. For the case that a state is entered and a leaving transition becomes triggered
immediately, two more inequalities arise, because besides the action thedo-operation
needs to be executed, too. Further, the period has to fit either the third or the forth equa-
tion, too. Analyzing the specified Real-Time Statechart leads to a system of inequalities
consisting of four times as much inequalities as transitions occur in the Statechart. Thus,
choosing the period is a combinatorial problem, that is solved automatically by a numer-
ical method. If multiple solutions exist, the period for the main thread will be the longest
one possible. After determining the period, it is fixed which actions need to be rolled out
to aperiodic threads.

4.2 Platform Specific Model
Figure 5 depicts the structural view of the PIM and the according generated PSM. The
Shuttle component is transformed to the active classMainThread, realizing the periodic
main thread and to the classShuttle, realizing the logic of the component. The deter-
mined period, which is equal to its deadline, is annotated as proposed by the Profile for
Performance, Schedulability, and Time. The priority is determined according to the dead-
line monotonic approach [21]: The thread with the shortest deadline, achieves the highest
priority. Note that the deadlines of the aperiodic threads, that execute long side-effects
are specified in the PIM.

4.3 Model Analysis
When implementing applications for embedded real-time systems, resource restrictions
need to be taken into account. Memory and computation time are usually the restricted
resources in embedded systems. As the structure of our models is static and thus there is
no need for dynamic instantiation, the required memory can be derived straight forward
and is fixed after partitioning. To check if sufficient computational power is available,
especially when multiple Real-Time Statecharts or other processes have to be executed on
one microprocessor, scheduling analysis is performed. Note that even when the sum of all



Fig. 5.PIM and PSM of the shuttle system

processes’ utilization factors is less or equal 100%, schedulability cannot be guaranteed
without adequate analysis [21].

In order to speed up scheduling analysis, we first use Liu and Layland test [23] to
make a rough estimate and apply Lehoczky’s, Sha’s, and Ding’s analysis algorithm [24]
only if needed. If the set ofall threads is not schedulable, we exploit the knowledge about
the possible concurrently executed threads which can be derived from the structure of
the Real-Time Statechart. For example, aperiodic threads, initiated by firing transitions,
that are executed sequentially, will never be executed concurrently. All combinations of
threads, that can possibly run concurrently are determined and it is sufficient to check the
schedulability for all these combinations.

4.4 Code Generation

Using the automatically generated PSM, the mapping to a real-time target platform, sup-
porting priority scheduling, is straight-forward. Currently, we support the generation of
Real-Time Java [25] and C++ for an appropriate real-time operating system. In this gen-
eration step, active objects are mapped to real-time threads. The result of this mapping
can be imported into our CASE Tool Fujaba by its reengineering capabilities.

5 Related Work
Currently available approaches for the specification and implementation of hard real-

time systems have the following disadvantages: Either, they offer the required higher
level modeling concepts, but provide no partitioning and code generation concepts which
ensure the specified hard real-time behavior of the model, or they support code generation
which guarantees timing behavior, but are already platform specific models.

In [9], Rational Rose models are extended with information needed for scheduling
and partitioning in form of periods and action WCETs. This information is then used to
distribute the components automatically to multiple processors and to guarantee schedu-
lability. This approach is, however, rather limited as synchronization within the compo-
nents (usually described by Statecharts) is not supported.

Hierarchical timed automata [17], which are a hierarchial extensions of timed au-
tomata [14, 15], provide most of the powerful modeling concepts of Statecharts. A map-
ping to multiple parallel running flat timed automata permits to verify the model by using
the model checker UPPAAL [14]. In [26], locations of a flat UPPAAL automaton are as-
sociated with tasks inclusive WCETs and deadlines. This extension enriches the model
with the information required for code generation and a prototype synthesizing C-Code
has been implemented. As the code generation approach is restricted to flat automata,



it does not take the additional syntactical constructs of hierarchical timed automata into
account. The code generation scheme is not really sufficient for hard real-time systems,
as it does not take into account the delays that occur when transitions are fired, arguing
that these delays are small compared with the WCETs.

Modecharts[27] are another high-level form of state transition systems for the speci-
fication of real-time systems. Actions are executed only while residing in states and not
when firing transitions. The model respects that actions require time and thus they are
associated with deadlines or –if needed– with periods. Timing constraints like deadlines
and trigger conditions are specified just relative to the current state’s (mode’s) point of
entry and not relative to preceding states. [28] describes code generation for the target
language ESTEREL, but the generated implementation regards only the timing intervals,
triggering the transitions and not the deadlines or periods.

SAE AADL (Society for Automotive Engineers Architecture Analysis & Design
Language) [29], successor of MetaH,4 specifies a system on the PSM level. A SAE
AADL model consists of multiple Threads, annotated by a priority and a frequency and
can therefore be mapped to code automatically. Tool support for modeling is currently
restricted to text based editors.

The application framework VERTAF [30] and the automata model presented in [31]
specify the required real-time constraints and thus enable an automatic implementation.
These approaches are not applicable for complex systems, as their models are rather
restricted: [31] applies just a flat automata model, [30] specifies active object on the
implementation level.

Currently available CASE tools Rhapsody, Rational Rose/RT, Statemate, Telelogic-
Tau, and Artisan Real-time Studio Professional for UML State Machines can only gen-
erate code from the logical behavior, while an appropriate mapping onto threads and
scheduling parameters in form of the synthesis of a platform specific model remains
to be determined in a manual process. To the best of our knowledge all existing UML
CASE tools also fail to close the gap between high level models and the automatic im-
plementation of hard real-time systems.5 In contrast, the presented approach supports the
automatic synthesis of the PSM from a given PIM and PM.

6 Conclusion and Future Work
Our approach, consisting of components and Real-Time Statecharts, permits to spec-
ify complex real-time systems following UML notations and the MDA approach at the
PIM level. This platform independent description can then be mapped automatically to
a platform specific model, provided that a target platform description in form of annota-
tions describing real physical behavior (WCETs) are given. The PSM describes real-time
threads, which are of general nature and not bound to a specific programming language
or RTOS environment. Thus, an implementation can be realized in any programming lan-
guage that provides real-time priority scheduling. Different analysis methods are applied
on the different levels to achieve correct models.

4 www.htc.honeywell.com/metah
5 We refer to [7] for a judgment that Rhapsody (www.ilogix.com) and Rose/RT (http://www-

306.ibm.com/software/rational/) only support soft real-time system development. We fur-
ther evaluated Artisan Real-time Studio Professional (www.artisansw.com), Statemate
(www.ilogix.com), Rational Rose/RT, and Telelogic Tau G2 Developer (www.telelogic.com)
on our own.



Right now, the open-source UML CASE tool Fujaba supports modeling with UML
components and Real-Time Statecharts including model checking and code generation
for Real-Time Java and C++ from UML components and Real-Time Statecharts. We
are currently extending Fujaba to explicit visualize the generated PSMs and to permit
manual adjustments like adding other threads to the system’s nodes. In this context, we
prove if the standard UML Profile for Schedulability, Performance, and Time is sufficient
or if extensions like for example the HIDOORS Profile [32, 33] are required. Automatic
grouping of Real-Time Statecharts and modular code generation for deployment-time
grouping is planned future work.
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