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Abstract
Component-based architectures are widely used in embedded systems. For man-
aging complexity and improving quality separation of concerns is one of the most
important principles. For one component, separation of concerns is realized by
defining the overall component functionality by separated protocol behaviors.
One of the main challenges of applying separation of concerns is the later auto-
matic composition of the separated, maybe interdependent concerns which is not
supported by current component-based approaches. Moreover, the complexity of
real-time distributed embedded systems requires to consider safety requirements
for the composition of the separated concerns. We present an approach which ad-
dresses these problems by a well-defined automatic composition of protocol be-
haviors with respect to interdependent concerns. The composition is performed
by taking a proper refinement relation into account so that analysis results of the
separated concerns are preserved which is essential for safety critical systems.
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Chapter 1

Introduction

When developing software for mechatronic real-time systems, such as computer
controlled train systems, cars or air planes, the following three aspects have to be
taken into account.

Mechatronic systems often act in safety critical areas where high financial
damage arises or even life is threatened if the system fails. Consequently, a high
level of quality has to be established. In order to achieve this, correct function-
ality also has to be guaranteed where hard deadlines have to be met by the sys-
tem. Therefore, timing aspects for the behavior of the system have to be consid-
ered during the development. If an airbag control unit in a car, for example, trig-
gers the airbag ignition milliseconds too late, the airbag system is worthless. Fur-
thermore, the integration of self-optimization in mechatronic systems requires to
change the system’s structure at runtime. As a result, runtime reconfigurations of
controllers also have to be regarded in the scope of the behavioral specification of
such systems.

Dealing with these aspects generally results in a complex development process
which compromises the required quality of the system. This quality is even more
endangered by the fact that the development process has to include all three disci-
plines of mechatronics, mechanical, electrical and software engineering [SW07].

To handle this complexity and thus improve quality, while still considering
the aspects mentioned above, the following techniques have evolved in the field
of software engineering.

To deal with safety concerns, one possibility is to formalize both require-
ments and the system’s behavioral model, in order to formally proof the fulfill-
ment of those requirements for the system specification. This technique, com-
monly known as model checking [GV08], has become the technique of choice
in the field of formal verification and has also successfully been transferred to
real-time systems [ACD90, HNSY92] including tool support [Yov97, BDL04].
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2 CHAPTER 1. INTRODUCTION

Regarding the development process, the principle of separation of concerns
is one of the first explicitly named techniques to encounter complexity when de-
veloping computer programs [Dij76]. The basic idea behind it is to set the focus
on one aspect at a time, and examine the dependencies between different aspects
later. This idea of separation goes along with the practice of component-based
software development [Szy98]. Here, a software component is used to encapsu-
late independent related functionality of the system, while providing dependent
functionality to other components through well defined interfaces. The basic idea
of both techniques is to decompose the system into manageable parts first, and
later recompose these parts into one coherent system.

To make use of these techniques during the development of reconfigurable,
mechatronic systems, the Collaborative Research Centre 614 – “Self-optimizing
Concepts and Structures in Mechanical Engineering” (CRC 614)1 is developing
a modeling language named MECHATRONIC UML [BGT05] based on the Uni-
fied Modeling Language (UML) [OMG09]. Apart from applying model-based
software development techniques where possible, MECHATRONIC UML strictly
follows the separation of concerns paradigm. This is realized by separating the
system specification into components with explicitly defined communication in-
terfaces and using real-time coordination patterns to specify the inter-component
communication. This way system developers are able to design separate parts of
the system independently from each other by having different views on the sys-
tem specification [NKF94, GV06]. Furthermore, partitioning the complex system
specification into several small parts makes it possible to use compositional model
checking techniques [GTB+03]. These techniques are unavoidable as traditional
model checking approaches are not feasible for complex systems due to the state
explosion problem leading to scalability problems [ABB+98].

The price of being able to specify separate views on the system independently
from each other is the additional effort which has to be spent when combining
these views to an overall system view. The composition has to include both the
architectural and the behavioral part of the system specification. While the ar-
chitectural composition is most often straight forward, the behavioral composi-
tion, commonly referred to by the term behavioral synthesis, is a complex task on
which a lot of research effort has been spent in different fields of software engi-
neering (see chapter 5 for related work). During this process of combining sepa-
rate behavioral specifications, dependencies between those have to be integrated
into the system specification while model checking results of the separate parts
have to be preserved. For self-optimizing mechatronic systems, additionally, the
system reconfigurations have to be included in the synthesis process, as those are
also part of the behavioral specification of a component.

1http://www.sfb614.de
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In this paper we present a synthesis approach for independent real-time be-
havioral specifications with overlapping requirements. This means, that depen-
dencies between the individual behavioral specifications are modeled explicitly
on top of those specifications, in a way that preserves the independent models.
As the approach is expressed in the context of MECHATRONIC UML, we are also
able to include reconfiguration behavior. Furthermore, the approach guarantees
that model checking results of the separate behavioral specifications are preserved
as long as there are no contradictions amongst the specifications. This means that
the externally visible behavior of each behavioral model is not influenced by the
synthesis procedure.

We give a more detailed overview of the synthesis approach in section 1.2.
The type of systems dealt with in this paper will be exemplified by a small case
study in the next section. The described system will serve as a running example
throughout the whole paper.

1.1 Case Study

The research initiative Neue Bahntechnik Paderborn (NBP – New Rail Technol-
ogy Paderborn)2 is developing a rail-based transportation system at the Univer-
sity of Paderborn since 1997. The system requires most modern techniques of
mechatronics – mechanical engineering, electrical engineering and software en-
gineering. The basis of the system are driverless vehicles, called RailCabs (Fig-
ure 1.1), which travel on demand without a fixed schedule and are able to carry
either passengers or goods. The system and especially the techniques for devel-
oping mechatronic systems are studied with intense effort by the Collaborative
Research Centre 614 – “Self-optimizing Concepts and Structures in Mechanical
Engineering” (CRC 614).

Compared to conventional railway systems, RailCabs have two main advan-
tages, which will be of special interest throughout this paper. The first one is the
ability to travel in automatic convoy operation mode. In this mode, RailCabs are
able to build convoys dynamically, without physical contact between each other.
Operating this way increases traffic flow and minimizes energy consumption be-
cause of slipstream traveling, where the air resistance is reduced to a minimum.
The second advantage is the active track guidance system. With this, each Rail-
Cab is able to steer its wheels to adapt to the actual track trace and condition. This
increases driving comfort, decreases wear out and makes passive switches possi-
ble because RailCabs can then decide to change their direction on a track, even in
convoy operation.

2http://www.railcab.de
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Figure 1.1: Two RailCabs Driving in Convoy

For the active track guidance system, the RailCab needs track information in
advance, in order to be able to steer its wheels correctly. To receive this track in-
formation, the RailCab can either communicate with an external entity or measure
the track itself using its internal track sensors. In this example, the external entity
is represented by so-called base stations. When receiving the track information in
advance via a base station, the RailCab can achieve the best comfort but also has
to establish and uphold a connection to a base station which might not always be
possible. Using its internal track sensors instead, the RailCab is independent, but
can only adapt to those track characteristics it is able to process in the short period
of time between receiving the signal input of the sensor and the wheel actually
being on that piece of track. In both cases the RailCab must provide the ability of
reconfiguration, as it possibly has to reconfigure its suspension mode, activity of
track sensors and radio activity for the base station communication, correspond-
ing to whether a base station is available or not. A simple example of four Rail-
Cabs RC1 to RC4 and four base stations BS1 to BS4 is shown in figure 1.2 where
each RailCab is connected to the nearest base station.

For traveling with automatic convoy operation, a RailCab needs information
about other RailCabs driving nearby, which constitute potential convoy partners.
In this example, this information is obtained from the base station the RailCab
is connected to. Once a convoy partner is found, the (in driving direction) rear
RailCab contacts the front RailCab and proposes to initiate a convoy. The front
RailCab is able to accept or reject the convoy, depending on its schedule or other
factors. If the front RailCab accepts the convoy, it has to do so within a certain
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Figure 1.2: RailCabs and Base Stations on a Track

time interval and communicate this to the rear RailCab. This can then again start
the convoy operation by driving into the slipstream of the front RailCab and by
reconfiguring its speed control unit from a velocity based mode to a distance based
mode. This reconfiguration is necessary because driving at the exact same velocity
is very difficult and only slight differences in the velocity of two RailCabs driving
in a convoy may cause collisions within seconds. Therefore, the rear RailCab has
to measure the distance to the front RailCab and adjust its velocity according to
that value. As a collision can lead to high financial damage or even life threatening
situations, the convoy operation contains safety critical aspects with hard real-time
requirements. In figure 1.2 RailCabs RC1 and RC2 operate in convoy, where RC1
is the front and RC2 the rear RailCab.

This example is further refined in Chapter 2 where the basic concepts of
MECHATRONIC UML are explained. In the next section we introduce the ob-
jectives of this paper.

1.2 Objectives and Basic Approach
In MECHATRONIC UML separation of concerns is realized by applying compo-
nent based development [Szy98] and in accordance with that by rigorously sep-
arating inter-component from intra-component behavior. Following this concept,
the system is decomposed into participating components and real-time coordina-
tion patterns [GTB+03], which define how components interact with each other.

Corresponding to the case study described in the preceding section, we specify
two components BaseStation and RailCab (Figure 1.3) and two coordination pat-
terns Registration and Convoy, which define the before described communication
behavior between RailCabs and base stations.
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In real-time coordination patterns, roles are used to abstract from the actual
components participating in one coordination pattern. This way, it is possible to
specify and verify coordination patterns independently from other coordination
patterns and component definitions and therefore to reduce complexity. In figure
1.3 the participating roles of the Registration pattern are registrar and registree;
the roles of the Convoy pattern are front and rear.

rear                               front

Convoy

registree                               registrar

Registration

 
BaseStation

 
 RailCab

registree                

               registrar

Registration

 
BaseStation

 
 RailCab

             rearfront             

Convoy

Figure 1.3: Combining Separate Specifications in MechantronicUML

To obtain an overall system specification later in the development process,
the separated components and coordination patterns have to be combined again
(Figure 1.3). The problem which inherently arises at this point is that separate
parts of the system were specified as independent from each other when they are
in fact not. This means that during the process of combining the separate parts of
the system, additional dependencies between the particular specifications have to
be integrated. At the same time, the externally visible behavior of the particular
behavioral specifications may not be changed in order to preserve verification
results [GTB+03].

In the overall system view of the RailCab example (Figure 1.3), the RailCab
component takes part in both, the Registration and the Convoy pattern. While
those patterns have been specified independently from each other, a system re-
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quirement states that in convoy operation mode, each participating RailCab has to
be registered to a base station. Accordingly, a dependency between both patterns
exists, when applied by the RailCab component. As a result, the behavior of the
registree role and the behavior of the rear role have to be refined and synchronized
with each other when applied by the RailCab component in order to fulfill the sys-
tem requirements. Still, it has to be regarded that the externally visible behavior
of the RailCab component does not change. If this process of refinement and syn-
chronization is performed manually, it is a time consuming and error-prone pro-
cess. Consequently, this implies the necessity for automation in order to guarantee
the required quality of the developed systems.

In the approach proposed in this paper, we separate the specification of de-
pendencies and the specification of the pattern role behaviors in order to perform
an automatic synthesis for the overall component behavior. After the synthesis
is performed, it is further checked if the synthesized component behavior refines
each of the particular pattern role behaviors properly.

The idea which forms the foundation of our approach was introduced by Giese
and Vilbig in [GV06] for untimed behavioral models. In their approach the syn-
thesis basically consists of three steps: (1) Construct an explicit behavioral model
for the parallel execution of the participating behavioral models, (2) restrict the
behavior described by this model in terms of forbidden state combinations and
(3) verify that the resulting behavioral model still refines each of the input models
properly. Seibel extends this approach in [Sei07] in two ways: (1) He employs
real-time behavioral models as input models and (2) further allows to restrict the
behavior in terms of (timed) event sequences.

In the developed solution, we adapt these ideas to the context of MECHA-
TRONIC UML. This includes (1) the definition of suitable refinement relation, (2)
the employment of a suitable and also more efficient abstraction of the timed be-
havioral models which is needed to perform the refinement check and (3) the in-
tegration of reconfiguration behavior. The result is a fully automatic synthesis al-
gorithm where dependencies between separate behavioral specifications are spec-
ified explicitly by so-called composition rules (cf. [TOHS99]). Accordingly, the
input for the algorithm are composition rules and separate behavioral specifica-
tions (Figure 1.4). If the synthesis is possible without violating the externally vis-
ible behavior of any of the input specifications, the output is one parallelly com-
posed behavioral model which combines all of the input specifications as well as
the composition rules. If the synthesis is not possible, the algorithm returns a
conflict description indicating the reason for the impossibility.

With this algorithm system developers are able to attach composition rules to
components of their views to specify dependencies to other views. These compo-
sition rules are later factored in automatically during the composition of the full
system specification by the synthesis algorithm if none of the behavioral specifica-
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Figure 1.4: Activity Diagram Illustrating the Basic Synthesis Approach

tions is violated. If a behavioral specification is violated, the developer can use the
conflict description to find the part of the specification which causes the violation
in order to resolve the conflict. By giving the dependencies explicitly by means of
composition rules, a detailed conflict description can be obtained referring to the
conflicting composition rules. This way, the manual interaction during the com-
position of the views is reduced to the essential parts: (1) specifying dependencies
as composition rules, (2) analyzing conflict descriptions and (3) resolving these
conflicts. The second and the third action however, are only necessary if a conflict
actually exists between the input specifications.

1.3 Structure

this paper is structured as follows. In the next chapter we introduce those concepts
of MECHATRONIC UML which are relevant for this paper. In addition to that, we
also introduce the underlying timed automaton model which forms the basis of
all the real-time behavioral specifications of MECHATRONIC UML used in this
paper. As the proposed synthesis procedure preserves the relevant behavior of the
coordination roles by means of verification results, we also describe the specifi-
cation language which is used for real-time model checking in MECHATRONIC

UML.
In chapter 3 we describe the synthesis approach. For this, we start with the

definition of the composition rule formalism. After that we show how an explicit
model for the parallel execution of the individual pattern behaviors is constructed
and how the composition rules are applied to this model. Finally, we define which
properties of the role behaviors have to be preserved in order to preserve the rel-
evant behavior of the coordination roles. In this context we also describe a semi-
automatic procedure which guarantees that the relevant behavior is preserved by
the synthesized behavioral model.
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In chapter 4 we present results of the evaluation activities which were per-
formed during the work on this paper. This includes the evaluation of the pro-
posed refinement relation as well as the evaluation of the model applied for for-
mal reasoning on the model for the parallel execution of the role behaviors.

In the last two chapters we describe related approaches (chapter 5) and finally
conclude the proposed concepts also referring to future work (chapter 6).
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Chapter 2

Fundamental Concepts

As already presented in the introduction, MECHATRONIC UML forms an appro-
priate approach for the model-based development of reconfigurable, mechatronic
systems. In this chapter, we present the basic concepts of MECHATRONIC UML,
while focusing on those parts of the language which are relevant for this paper.

The modeling techniques of MECHATRONIC UML can be divided into model-
ing of structure (section 2.2.2) and modeling of behavior (section 2.2.1), of which
the latter also includes the modeling of system reconfigurations (section 2.2.3).

The synthesis procedure proposed in this paper computes the overall behavior
of a component participating in two or more real-time coordination patterns with
respect to specified composition rules (see section 1.2). In accordance with this,
we focus on the behavioral models of MECHATRONIC UML and their underlying
concepts in the following.

In MECHATRONIC UML, real-time behavior is specified using realtime stat-
echarts [GB03] whose semantics is based on timed automata [AD90, HNSY92].
Derived from this, we define the core of the synthesis procedure on timed au-
tomata (see chapter 3) and therefore begin this chapter by defining the syntax and
semantics of timed automata.

2.1 Timed Automata

Timed automata, first introduced by Alur and Dill in [AD90] and later varied by
Henzinger et al. in [HNSY92], have evolved to the behavioral model of choice for
formal reasoning of real-time systems. They extend the common automaton for-
malism by the notion of time, such that it is possible to specify system behaviors
with respect to timing constraints. With these timing constraints we can express,
for example, how long a system is allowed to rest in a certain state or in which
time intervals it is allowed to switch between two system states.

11
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During the last two decades several variants of timed automata have been pro-
posed (see [AM04] for an overview). The two variants most discussed in litera-
ture are the originally proposed timed büchi automata [AD90] and the later pro-
posed timed safety automata [HNSY92]. Derived from basic automata theory,
both variants use nodes, called locations, and edges, called transitions, to reason
about system states and transitions between those states. In order to relate the be-
havior of the automaton to the notion of time, each automaton can define one or
more clocks. These clocks are referred to at transitions and in locations in order
to make the execution of those transitions and the resting in locations dependent
on certain values of those clocks.

The main difference between timed büchi automata and timed safety automata
is the way progress conditions are expressed.

As one may assume by the name, timed büchi automata use accepting loca-
tions derived from büchi automata [Bü62]. If a location of the automaton is an ac-
cepting location it has to be visited continually over and over again. Transferring
this to the notion of time, this also means that a system can rest in such a location
forever. In the timed büchi automaton for the simple convoy coordination behav-
ior (Figure 2.1) accepting locations are noConvoy and convoy, but not process-
ing. Accordingly, the system can rest in locations noConvoy and convoy forever
or visit them infinitely often over and over again. The location processing on the
other hand can only be left as long as the value of clock c is smaller than 1000
time units. This is indirectly specified using so-called time guards at transitions
rejectConvoy and startConvoy.

Timed safety automata, however, do not have accepting locations. Instead,
location invariants are attached to locations to specify the allowed time interval
the automaton is allowed to rest in that location. The system therefore has to leave
a location before its invariant is violated. The timed safety automaton for the
simple convoy coordination behavior (Figure 2.2) has exactly the same semantic
as the timed büchi automaton described before. But this time, instead of indirectly
specifying at outgoing transitions that location processing has to be left within
1000 time units, a time invariant is directly attached to the concerned location.

Summarizing this, in timed büchi automata progress conditions are specified
globally over the whole automaton and in timed safety automata they are spec-
ified locally from each location’s perspective. As the latter approach is argued
to be more suitable for real-time specifications [Hen92] (although less expressive
in general [HKWT95]) and is also said to be more intuitive from the modeling
perspective [Pet99, pp. 6–7], timed safety automata are the ones which are ap-
plied in several real-time verification tools like UPPAAL [BDL04] and KRONOS

[Yov97].
As mechatronic real-time systems often act in safety critical areas, for-

mal verification of the behavioral specification of those systems is unavoid-
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convoyProposalrejectConvoy

startConvoy
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noConvoy
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breakConvoy

c<1000

c<1000

c:=0

Figure 2.1: Timed Büchi Automaton

convoyProposalrejectConvoy

startConvoy

processing

noConvoy

convoy

breakConvoy
c<1000

c:=0

Figure 2.2: Timed Safety Automaton

able to guarantee correct functionality of the software running on those systems
(see chapter 1). Accordingly, the ability of real-time model checking has also
been integrated in MECHATRONIC UML’s model for behavioral specifications
[GTB+03, BGHS04], which are realtime statecharts. In order to use existing tools
for this and with the same argument that timed safety automata have been ap-
plied in those tools, realtime statecharts are also based on timed safety automata.
Consequently, the model we apply in this paper is also the one of timed safety
automata and we refer to them by timed automata from here on.

2.1.1 Syntax and Semantics
Informally, a timed automaton consists of finite sets of locations, transitions and
real-valued clocks. Starting in the initial location, it may either rest in a location or
switch between locations using transitions and corresponding event occurrences.
Events are modeled using a synchronous channel concept, where events can either
be thrown using the special symbol “!” or received using the special symbol “?”.
The example automaton in figure 2.3 describes the behavior of the front role of a
convoy coordination (see section 1.1). It has three locations noConvoy, processing
and convoy, where noConvoy is the initial location. If the front role receives a
convoyProposal, it switches to location processing. From there on, it can either
accept the convoy proposal by sending a startConvoy and switching to convoy or
it can reject the convoy switching through the silent transition back to noConvoy.
A silent transition is a transition which is not connected to an event occurrence.
Once the automaton is in convoy, it may arbitrarily decide to break the convoy by
sending a breakConvoy event.

Time is modeled using time guards, clock resets and location invariants. Ini-
tially, all clocks’ values are set to zero. From then on, time can only pass, i.e. all
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startConvoy!

breakConvoy!

c:=0
convoyProposal?

processing convoy

c>999

c<=1000

c<=999
noConvoy

time guard eventclock reset

location invariant

Figure 2.3: Example of a Timed Automaton

clocks’ values increase by the same value, while the automaton rests in a location.
This means that time does not pass, while the automaton is executing a transition.
During the run of an automaton, a clock can be reset to zero again, using a clock
reset connected to a transition. The execution of a transition can be constrained
with respect to one or more clocks using time guards. A time guard defines a time
interval for each clock using equalities and inequalities. If, for a certain clock
valuation, the time guard of a transition evaluates to true, that transition becomes
enabled and the automaton may decide to switch to the target location. It must
not do so immediately, though. Finally, location invariants may be used to de-
scribe progress conditions. A location invariant describes an upper bound for the
clock values in a certain location. This means that the automaton is only allowed
to rest in the constrained location while its invariant evaluates to true or with other
words, the automaton has to leave the location before its invariant is violated.

In the convoy example (Figure 2.3) the one clock c is reset to zero when en-
tering the processing location. As described by the time guard c<=999, the au-
tomaton is able to send a startConvoy only as long as the value of c is smaller or
equal to 999. If the value is greater than 999 (c>999), the automaton is only able
to switch back to noConvoy, taking the corresponding silent transition. It also has
to do so within one time unit, as otherwise the location invariant c<=1000 of the
processing location would be violated.

To define the syntax of a timed automaton formally, we first need to define the
syntax of location invariants and time guards by the notion of clock constraints.
Similar to [BLR05, BDFP00, LMST03], we explicitly distinguish between gen-
eral, diagonal-free and downwards closed clock constraints as defined below.
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Definition 2.1.1 (General Clock Constraint)
For a set C of clocks, the set Φ(C) of general clock constraints is inductively
defined by the grammar

ϕ ::= x ∼ n | x− y ∼ n | ϕ ∧ ϕ | true | false,

where x, y ∈ C, ∼∈ {≤, <,=, >,≥}, n ∈ N.

Accordingly, the most general form of clock constraints does not only allow to
specify time intervals for clocks in terms of equalities and inequalities with respect
to one clock. It also allows to specify constraints on the difference of two clocks
in the form of x− y ∼ n. Furthermore, any conjunction of two clock constraints
is again a clock constraint. The special symbols true and false describe the clock
constraints which are always true or always false without regarding any of the
clocks’ values. General clock constraints will be used as time guards attached to
transitions in timed automata.

Definition 2.1.2 (Diagonal-free Clock Constraint)
For a set C of clocks, the set Φdf (C) ⊂ Φ(C) of diagonal-free clock constraints
is inductively defined by the grammar

ϕ ::= x ∼ n | ϕ ∧ ϕ | true | false,

where x ∈ C, ∼∈ {≤, <,=, >,≥}, n ∈ N.

The set of diagonal-free clock constraints is a proper subset of the set of gen-
eral clock constraints, where equalities and inequalities of the form x − y ∼ n
are not contained. Diagonal-free clock constraints will be of interest in the next
section, where we introduce abstraction methods for timed automata.

Definition 2.1.3 (Downwards Closed Clock Constraint)
For a set C of clocks, the set Φdc(C) ⊂ Φ(C) of downwards closed clock con-
straints is inductively defined by the grammar

ϕ ::= x ∼ n | x− y ∼ n | ϕ ∧ ϕ | true,

where x, y ∈ C, ∼∈ {≤, <}, n ∈ N.

The definition of downwards closed clock constraints allows the diagonal form
of clock constraints but does not allow to define lower bounds for clock values of
the form x ∼ n or x − y ∼ n, where ∼∈ {=, >,≥}. In other words, only upper
bounds for clocks or differences between clocks can be specified. This form of
clock constraints is used for location invariants, as it simplifies the semantic when
location invariants are combined with clock resets. This way, clock resets cannot



16 CHAPTER 2. FUNDAMENTAL CONCEPTS

lead to the impossibility of executing a transition, which would be possible if the
location invariant of the target location did not allow the concerned clock to be
zero. Furthermore, the special value false is not allowed, as a location whose
invariant is always false would be unreachable by definition.

As we now have proper formal definitions for the different forms of clock
constraints we can proceed with the formal definition of the syntax of a timed
automaton.

Definition 2.1.4 (Timed Automaton)
A Timed Automaton A is a tuple (L, l0,Σ, C, I, T ) where

• L is the set of locations

• l0 ∈ L is the initial location,

• Σ is the finite set of events where the symbol τ is used for internal events
(silent transitions),

• I : L→ Φdc(C) assigns each location a location invariant as a downwards
closed clock constraint,

• C is the finite set of clocks, and

• T ⊆ L×Σ×Φ(C)×2C×L is the finite set of transitions t = (l, e, g, r, l′) ∈
T with

– l ∈ L the source location,

– e ∈ Σ the related event,

– g ∈ Φ(C) the time guard as a general clock constraint,

– r ⊆ C a set of clocks to be reset, and

– l′ ∈ L the target location.

In accordance with [HNSY92, BY03], we do only allow to model upper
bounds for location invariants. Lower bounds can be expressed by using time
guards at the incoming transitions of a location. Consequently, restricting loca-
tion invariants to downwards closed clock constraints does not change the expres-
siveness of timed automata, but simplifies modeling and semantical analysis, as
this way, a clock reset cannot influence the executability of a transition.

Furthermore, observe that, although disjunctions are not allowed in general
clock constraints, they can be modeled implicitly for time guards of transitions.
This can be achieved by modeling two separate transitions with the same event
occurrence, clock resets and source and target location, but with different time
guards. This way, only one of the time guards has to be fulfilled in order to enable
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the corresponding transition, which is semantically equivalent to one transition
with a disjunction in its time guard.

In order to formally define the semantics of timed automata, we first have to
define the semantics of clock valuations, clock resets and the necessary operations
on clocks.

Definition 2.1.5 (Clock Valuation)
For a set C of clocks, a clock valuation ν ∈ Ψ(C) is a function

ν : C → R+

assigning a non-negative real-value to each clock in C.

Informally, a clock valuation describes a point in time of the automaton by
defining a certain value for each clock of the automaton. This point in time must
not necessarily be unique, though, as clock resets can lead to the same clock as-
signment for different points in time of the automaton (see Definition 2.1.7, clock
reset evaluation). Figure 2.4 illustrates three possible clock valuations ν0, ν1 and
ν2 for C = {x, y}, where ν0(x) = ν0(y) = 0, ν1(x) = ν1(y) = 1, ν2(x) = 2.5
and ν2(y) = 1.

y

x

1

0 1 2 3

ν0 ν1 ν2

2

4

Figure 2.4: Illustration of Clock Valuations for Two Clocks x and y

On the basis of clock valuations, we can now also define operations on clock
valuations in terms of addition and appliance of clock resets.

Definition 2.1.6 (Addition on Clock Valuations)
For a clock valuation ν ∈ Ψ(C) and a non-negative real-value δ ∈ R+, we define
the addition ν + δ by

∀c ∈ C : (ν + δ)(c) = ν(c) + δ.
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Addition on clock valuation is used to describe the flow of time, where each
clocks runs with the same speed, i.e. each clock’s valuation is increased by the
same value. For the clock valuations ν0 and ν1 of figure 2.4, ν1 can be interpreted
as the the clock valuation of ν0 after one time unit, i.e. ν1 = ν0 + 1.

Definition 2.1.7 (Clock Reset Evaluation)
For a clock reset defined as a subset Y ⊆ C, the corresponding clock reset evalu-
ation, denoted ν[Y := 0], is defined by

∀c ∈ C : ν[Y := 0](c) =

{
0, c ∈ Y,
ν(c), c /∈ Y.

According to the above definition, a clock reset evaluation sets all values of
the clocks defined by the clock reset to zero and agrees with ν for the rest of the
clocks. This way, it might appear that different points in time have the same clock
valuation for the clocks of the automaton.

To exemplify this using the illustration of figure 2.4, assume a global clock g
which can never be reset and therefore represents the overall time passed by. This
clock would form a third dimension in the illustration. The initial values of all
clocks are 0.

Now, after one time unit has passed by, the clock values of the regular clocks x
and y are equal to ν1 and the value of the global clock g is equal to 1. Furthermore,
assume that a clock reset ν1[{x, y} := 0] will be performed at that point in time.
Now the regular clocks again have the initial valuation ν0, while the global clock
g, representing the overall time passed by, has the valuation 1. Consequently,
different points in time of the automaton, can have the same clock valuations.

As we have introduced the notion of clock valuations and addition on clock
valuations above, we proceed with the definition of the semantics of the evaluation
of a clock constraint.
Definition 2.1.8 (Clock Constraint Evaluation)
For a clock constraint ϕ ∈ Φ(C) we inductively define its evaluation as a function
ϕ : Ψ(C)→ {true, false} by differentiating between the following cases

ϕ(ν) =



true, iff ϕ is the literal true,
false, iff ϕ is the literal false,
ν(x) ∼ n, iff ϕ is of the form x ∼ n,

ν(x)− ν(y) ∼ n, iff ϕ is of the form x− y ∼ n,

¬ϕ1(ν), iff ϕ is of the form ¬ϕ1,

ϕ1(ν) ∧ ϕ2(ν), iff ϕ is of the form ϕ1 ∧ ϕ2.

where x, y ∈ C, ∼∈ {≤, <,=, >,≥} and n ∈ N.
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Informally, a clock constraint evaluation ϕ(ν) defines for the corresponding
clock constraint ϕ and an arbitrary clock valuation ν, if ν satisfies ϕ or not. By
definition of the general clock constraint (Definition 2.1.1), this may have different
forms which have to be distinguished here. While true, false, the complement
and the join operation follow the conventional rules of Boolean algebra, x ∼ n
and x − y ∼ n have to be evaluated using the corresponding clock valuations
ν(x) and ν(y). As clock constraints are used by guards g and location invariants
I(l) we also use the notations g(ν) and I(l)(ν) to describe their corresponding
evaluations.

We can now proceed with the definition of the semantics of a timed automaton
by mapping it to an infinite discrete transition system.

Definition 2.1.9 (Timed Automaton Semantics)
The semantics of a timed automaton A = (L, l0,Σ, C, I, T ) is defined by map-
ping it to an infinite transition system (also called timed transition system)
SA = (QA, q

0,Σ, Tδ, TΣ) where

• QA ⊆ L × Ψ(C) is the infinite set of timed system states s = (l, ν) with
l ∈ L and ν ∈ Ψ(C) and s ∈ QA iff s is reachable through Tδ or TΣ,

• q0 = (l0, ν0) ∈ QA is the initial state where ∀c ∈ C : ν0(c) = 0 and l0 is
the initial location of A,

• Σ the set of events equal to the set of events of the corresponding timed
automaton,

• Tδ ⊆ QA × R+ × QA is the infinite set of delay transitions tδ = (q, δ, q′),
where

– q = (l, ν) is the source state,

– δ is representing the elapsed time as a non-negative real value,

– q′ = (l, ν + δ) is the target state,

and tδ ∈ Tδ ⇔ ∀ δ′ ∈ R+, 0 ≤ δ′ ≤ δ : I(l)(ν + δ′) = true,

• TΣ ⊆ QA × Σ × QA is the infinite set of event transitions tΣ = (q, e, q′),
where

– q = (l, ν) is the source state,

– e ∈ Σ is the corresponding event,

– q′ = (l′, µ) is the target state,

and tΣ ∈ TΣ iff ∃ t = (l, e, g, r, l′) ∈ T , such that
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– I(l)(ν) = true, and

– g(ν) = true, and

– I(l′)(µ) = true, with µ = ν[r := 0].

In the corresponding transition system of a timed automaton A, timed sys-
tem states have the form (l, ν), which means that a system state is the location
the timed automaton rests in and a possible valuation for the clocks C of the au-
tomaton. Furthermore, two types of transitions exist, namely delay transitions and
event transitions. Delay transitions represent the elapse of time while the automa-
ton rests in a certain location. However, the time elapse may not violate the in-
variant of that location. The event transitions represent location changes on event
occurrences corresponding to the transitions of the automaton. Accordingly, they
have to take the time guards and the clock resets of the corresponding timed au-
tomaton transition into account.

To exemplify the timed automaton semantics defined above, we use again the
example of the convoy coordination behavior (Figure 2.3) and its corresponding
(infinite) timed transition system depicted in figure 2.5. As the set of clocks of the
automaton only consists of the clock c, the possible clock valuations ν also only
consist of one value defining the value of the clock c. Note the notation for clock
values in the figure c=v abbreviates ν(c) = v for some v ∈ R+. Furthermore,
we denote a state of the system consisting of a location loc and a value val for the
clock c with (loc,val).

As the initial location of the automaton is noConvoy, the initial state of the
transition system is (noConvoy,0). Following the delay transitions from that
state in downwards direction, there exists an infinite number of states in the
timed transition system for the following two reasons: (1) the automaton can
rest in this location for an infinite time, as there is no location invariant con-
nected to noConvoy and (2) for two states (noConvoy,v1) and (noConvoy,v2) there
is always a third state (noConvoy,v3) with v1 < v3 < v2, as the clock val-
ues are real-values. In all of these noConvoy states there is an event transition
leading to (processing,0), because the corresponding timed automaton transition
(noConvoy,convoyProposal?,true,{c},processing) has no time guard and resets c.
Following the delay transitions in this state, there also exist infinitely many states
for the location processing, but only up the value ν(c) = 1000. Observe that
for the processing states where ν(c) = v ≤ 999 there exists an event transition
((processing,v),startConvoy!,(convoy,v)), while for the states where ν(c) = v >

999 there exists an event transition ((processing,v),τ ,(noConvoy,v)). Once in con-
voy, the automaton can again rest in that location for an infinite time and from
each state it can switch back to noConvoy with breakConvoy! not changing the
value of the clock c.
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Figure 2.5: Infinite Timed Transition System of the Timed Automaton of the Con-
voy Coordination Behavior (Figure 2.3)

In this section we formally and informally described the syntax and semantics
of timed automata. This also includes the concepts of clocks, clock constraints
and clock valuations. We discovered that an infinite state space emerges from the
fundamental semantics, because of the real-valued clocks. Still, real-valued clocks
correspond most realistically to the notion of time. But obviously, a model with an
infinite state space cannot be used for real-time reasoning or manipulation which
comes along with the synthesis concept we propose in this paper (see section 1.2).
Consequently, we need an interpretation of timed automata, which abstracts from
the infinitely many and infinitely high clock values appearing during the run of a
timed automaton.

2.1.2 Timing Abstractions

To abstract away from the infinite number of clock valuations for locations, which
lead to an infinite state space for timed automata several techniques have been
proposed. We give a short overview of the most often discussed techniques in
the following, also stating advantages and disadvantages of each technique, and
focus on the techniques relevant for the rest of this paper in the remainder of this
section.
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2.1.2.1 Region Automaton

The region automaton (or region graph) introduced by the inventors of timed
(büchi) automata Alur and Dill in [AD90, ACD90, ACD93, AD94] was the first
idea to handle the infinite state space problem for timed automata. They solve the
infinite clock valuations problem by applying the following two techniques: (1)
they define equivalence classes on the basis of the integral and fractional parts of
clock values in order to solve the problem of infinitely many clock values between
two clock values and (2) they introduce global upper bounds for each clock in or-
der so solve the problem of infinitely high clock values. Once a clock value has
exceeded its global upper bound, it is no longer important what the exact value is,
but only that it is above its global upper bound.

A great advantage of the region automaton is that it preserves the continuous
time model of the original timed automaton while obtaining a finite state space,
which can be used for formal reasoning. Nonetheless, the state space still grows
exponentially in the number of clocks and the highest constants appearing in the
guards of the automaton. Altogether, this model is suitable for theoretical analysis
of timed automata but not practical for real-life system specifications.

In the next section we describe a technique of abstraction, which has already
successfully been used in the model checking domain and has also been applied
in the synthesis approach proposed by Seibel in [Sei07].

2.1.2.2 Discretization of Time

Another technique widely discussed for the abstraction of the infinite state space
is discretizing the time domain in timed automata as first proposed in [GPV94].
This technique restricts clock values to the set of natural numbers instead of using
real values, which solves the problem of infinitely many clock values between two
clock values by construction. The problem of having infinitely high clock values
is again solved by using global upper bounds for each clock.

A discretization of time in timed automata legitimately leads to the question if
this influences the semantics and therefore leads to incorrect verification results.
Fortunately, it has been shown by Beyer and Noack that for the class of closed
timed automata1 the discrete time model is location equivalent to the continuous
one, which means that the set of reachable locations in both models is equivalent
[BN01, Bey01, Bey02].

A discrete time model is for example applied in the synthesis approach of
[Sei07]. The number of discretized system states is, however, still of exponential

1Closed timed automata allow clock constraints ϕ of the form ϕ ::= x ≤ c | x ≥ c | ϕ ∧ ϕ
only, where x is a clock and c ∈ N. It is said that the form of clock constraints is only restricted to
simplify the discretization and enable efficient reachability analysis [BN01].
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growth in the number of clocks and the highest constants appearing in the guards
of the automaton. This could be solved by searching for the greatest common
divisor amongst all constants appearing in clock constraints and by dividing all of
the constants by this greatest common divisor. In many examples, though, like the
one of the convoy coordination automaton where the constants are 999 and 1000,
the greatest common divisor is 1 which would not lead to any improvement. The
persistent presence of the state explosion problem is also supported by the fact
that Beyer and Noack use the technique of abstraction in order to reduce the state
space while performing verification algorithms [BN01, Bey01].

In addition to the state explosion problem, it is further argued that a dis-
crete time model is suitable for synchronous but not for asynchronous systems.
For synchronous systems, a single global clock can be assumed, which runs syn-
chronously to all other clocks. This way, time can be discretized to time quanta,
such that all events occur at an exact multiple of a time quantum. For asyn-
chronous systems choosing this time quantum before running the system is dif-
ficult, as events can occur at an arbitrary point in time. This is especially the
case, when regarding systems that interact with the environment such as mecha-
tronic systems. Consequently, the time quantum would have to be chosen arbi-
trarily small in order to achieve the least loss of accuracy. Unfortunately, this
would again blow up the state space, making formal reasoning no longer feasible.
Furthermore, it is also cited a proof in this context, where it has been shown that
the reachability problem cannot be solved correctly using a discrete time model
[ACD93, p. 3], [CGP99, p. 265].

Summarizing this, a discrete time model is only applicable for analysis of syn-
chronous systems, where abstraction can additionally be used to reduce the state
space of the system. It is not applicable for real-time reasoning of asynchronous
systems, where the complete interval of possible clock values has to be taken into
account in order to prove system properties.

Accordingly, we describe another model of abstraction in the next section
which preserves the continuous time domain, like the region automaton, but
merges clock values efficiently to intervals in order to reduce the number of states
and transitions.

2.1.2.3 Zone Automaton

To overcome the state explosion problem still present in the region automaton,
Alur et al. propose the construction of a minimal region graph for timed büchi au-
tomata based on convex unions of regions, called clock zones, in [ACH+92]. Later
this construction was called the zone automaton [AD96]. It was adapted to timed
safety automata [Alu98, Alu99, BY03] and was successfully implemented in the
real-time model checkers UPPAAL and KRONOS [BDL04, Yov97]. The zone
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automaton is currently the most efficient continuous representation of a timed au-
tomaton, as it differentiates only between those time intervals in locations, which
are necessary for a correct timing analysis.

After giving a short introduction on zone automata in the following, we for-
mally and informally describe the syntax and semantics of zone automata in the
remainder of this section. This includes the notion of clock zones and operations
on clock zones which are necessary to construct a zone automaton. We further
distinguish between the zone automaton defined by Alur in [Alu98, Alu99] and
the zone automaton defined by Bengtsson and Yi in [BY03] and give advantages
and disadvantages of both definitions.

Informally, a clock zone describes an infinite set of clock valuations defined as
an interval for the values of each clock. This way, the problem of infinitely many
clock values between two clock values is solved by defining the bounds for these
clock values only. The zone x ≤ 1 ∧ y > 2 for clocks x, y for example, describes
the infinite number of clock values, where 0 ≤ ν(x) ≤ 1 and 2 < ν(y) <=∞. A
set of system states, called zone location in the following, can then be constructed
by combining a timed automaton location with a zone. This way, the problem
of infinitely high clock values is also solved, as a clock value does not have to
be restricted by an upper bound, like the clock y in the zone given above, for
example.

An example of a zone automaton corresponding to the timed automaton of
the convoy coordination behavior (Figure 2.3) is depicted in figure 2.6. This
zone automaton was constructed using the definition of Bengtsson and Yi given in
[BY03]. As this definition also differentiates between delay and event transition
(dashed and solid lines, respectively), it seems more intuitive to us as a prelim-
inary example coming from the fundamental infinite dense-time semantics (see
also Figure 2.5).

Again the initial state of the automaton is noConvoy with c = 0 as the initial
zone. From there on, the delay transition points to the zone location of noConvoy
with true as the zone, which means that there is neither a lower nor an upper
bound for this zone location. Observe at this point, that the infinite number of
system states depicted in figure 2.5 is represented by two zone locations and one
delay transition. From both of these zone locations, the automaton can switch to
processing with c = 0, as the corresponding timed automaton transition resets the
clock c. The time elapse in processing is again represented using a delay transition
leading to processing with c<=1000, corresponding to the location invariant of
processing. Note that this zone location represents all system states, where the
automaton rests in processing and the value of the clock c is 0 ≤ c ≤ 1000.
Accordingly, for the clock values 0 ≤ c ≤ 999 the automaton is able to switch to
convoy, which is represented by the outgoing transition labeled with startConvoy!.
As time cannot elapse during the execution of transitions, the target zone location
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is convoy with c<=999 corresponding to the time guard of the timed automaton
transition. For the clock values 999 < c ≤ 1000 the automaton is able to switch
from processing to noConvoy again, which results in the zone location noConvoy
with 999<c & c<=1000.

noConvoy
(c = 0)

noConvoy
true

processing
(c = 0)

processing
(c <= 1000)

convoy
(c = 0)

noConvoy
(c > 999 & c <= 1000)

convoy
(c <= 999)

convoy
true

noConvoy
(c > 999)

noConvoy
(c <= 999)

convoyProposal?

startConvoy!

breakConvoy!
convoyProposal?

convoyProposal?
convoyProposal?

convoyProposal? startConvoy!

breakConvoy!

breakConvoy!

Figure 2.6: Zone Automaton of the Timed Automaton of the Convoy Coordination
Behavior (Figure 2.3) according to [BY03]

We proceed with the formal definitions of clock zones, zone locations and
operations on clock zones, which are necessary to construct a zone automaton
from a given timed automaton.

Definition 2.1.10 (Clock Zone)
For a set C of clocks, the set Θ(C) of clock zones ϑ is inductively defined by the
grammar

ϑ ::= x ∼ n | x− y ∼ n | ϑ ∧ ϑ | true | false,
where x, y ∈ C, ∼∈ {≤, <,=, >,≥}, n ∈ N.

Although the syntax of a clock zone is equal to the conjunctive clock con-
straint, their semantics differ. For k clocks, both formalisms define a convex set
of clock values in the k-dimensional euclidean space, possibly putting a lower and
an upper bound on a clock or on the difference of two clocks. But while a clock
constraint defines permitted clock valuations, the clock zone defines the solution
set of a clock constraint, which is the maximal set of clock valuations for which
the corresponding clock constraint evaluates to true. Speaking in context of the
timed automaton, a clock constraint is used to describe the permitted clock valu-
ations for a location or the execution of a transition. A clock zone, on the other
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hand, is used to describe a set of clock valuations of a possible execution trace of
a timed automaton. This is done in combination with an automaton location as
defined in the following by the notion of zone locations.

Definition 2.1.11 (Zone Location)
For a timed automaton A = (L, l0,Σ, C, I, T ), a location l ∈ L and a clock zone
ϑ ⊆ Θ(C) we define a zone location s = (l, ϑ) ∈ SΘ with

(l, ϑ) ∈ L×Θ(C) = SΘ

As already seen in the example (Figure 2.6), a zone location is the combination
of a timed automaton location and a clock zone defining a set of clock valuations
for all clocks of the automaton.

In the following, we describe the intersection, the time elapse and the clock re-
set operation for clock zones. These operations are used to compute the successor
of an initial zone location, which is also described below. Originally, the succes-
sor computation is used for reachability analysis on the zone automaton without
creating the complete automaton [Alu99, BY03]. However, as reachability analy-
sis in the worst case has to search the whole state space of a zone automaton, the
reachability algorithm can also be applied to construct the complete zone automa-
ton of an input timed automaton. We use this zone automaton in order to perform
the refinement analysis after composition rules have been applied (see section 1.2
and section 3.3). We proceed with the definitions of the needed operations on
clock zones starting with intersection.

Definition 2.1.12 (Intersection of Clock Zones)
For two clock zones ϑ1 and ϑ2, the intersection of ϑ1 and ϑ2 denoted ϑ1 ∧ ϑ2 is
defined with

ϑ1 ∧ ϑ2 = {ν | ν ∈ ϑ1 ∧ ν ∈ ϑ2}

Accordingly, the intersection of two clock zones is the set of clock valua-
tions which are element of both clock zones. For a clock x and two clock zones
ϑ1 = x ≥ 2 ∧ x < 6 and ϑ2 = x ≥ 4 ∧ x ≤ 8 their intersection is ϑ1 ∧ ϑ2 =
x ≥ 4 ∧ x < 6. In the following we define the time elapse operation.

Definition 2.1.13 (Time Elapse of Clock Zones)
For a clock zone ϑ the time elapse operation (also referred to with up operation)
denoted ϑ⇑ is defined with

ϑ⇑ = {ν + δ | ∀ ν ∈ ϑ, δ ∈ R+}

The time elapse operation semantically describes the elapse of an arbitrary
amount of time for a clock zone. Technically, this means that all upper bounds
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are removed from a clock zone. Given two clocks x, y and a clock zone ϑ1 =
(x = 0 ∧ y = 0), which is actually the single clock valuation ν0 of figure 2.4 with
ν(x) = ν(y) = 0. The time elapse operation on ϑ1 results in ϑ2 = ϑ⇑ = (x− y =
0), which corresponds to the diagonal ray starting in ν0 and going through ν1.

In the following, we proceed with the definition of clock resets on zones,
which is the last operation needed to construct a zone automaton from a given
timed automaton.

Definition 2.1.14 (Clock Resets on Clock Zones)
For a set of clocks C, a clock zone ϑ ∈ Θ(C) and a clock reset Y ⊆ C, the clock
reset operation on a clock zone denoted ϑ[Y := 0] is defined with

ϑ[Y := 0] = {ν[Y := 0] | ∀ ν ∈ ϑ}

The clock reset operation on clock zones, accordingly, performs a clock reset
for the given clocks on all clock valuations of the given clock zone. As an ex-
ample, assume the clock zone ϑ2 = (x − y = 0) created in the example above.
Performing a clock reset r = {x} of the clock x on this zone results in the zone
ϑ3 = ϑ2[r := 0] = (x = 0). In the example of figure 2.4 this set of clock
valuations is described by the ray starting in ν0 and going along the x-axis.

With the above defined operations on clock zones, we are now able to define
the successor functions which form the core of the zone automaton construction
algorithm. As already mentioned above, Bengtsson and Yi [BY03] distinguish
between a delay successor and an event successor of a zone location as defined
below.

Definition 2.1.15 (Delay Successor of a Zone Location)
For a timed automaton A = (L, l0,Σ, C, I, T ), a location l ∈ L and its invariant
I(l) and a corresponding zone location s = (l, ϑ) ∈ SΘ, the delay successor
succδ(s) is computed by the function succδ : SΘ → SΘ with

succδ((l, ϑ)) = (l, ϑ⇑ ∧ I(l))

The delay successor function returns the maximal set of clock valuations for
a location l and a given clock zone ϑ for which there exists a zone location s =
(l, ϑ). This is done by letting time elapse on ϑ and intersecting it with the invariant
I(l). This way, it is guaranteed that the time elapse cannot exceed the invariant of
the corresponding location.

This can be best observed at the zone location (processing,c=0) in the example
of the zone automaton for the convoy timed automaton (Figure 2.6). The target
zone location of the delay transition is computed by the delay successor function.
While the corresponding timed automaton location is the same as in the source
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zone location, the clock zone of the target zone location is c ≤ 1000. The calcu-
lation of the successor zone location is exemplified in the following equation:

succδ((processing, c = 0))

= (processing, (c = 0)⇑ ∧ I(l))

= (processing, true ∧ c ≤ 1000)

= (processing, c ≤ 1000)

Note that for one timed automaton location, there can at most exist one delay
successor. Repeating the delay successor computation on an already computed
successor can only result in the same zone location, as the function computes the
maximal set of clock valuations by definition.

For calculating the successor zone locations of event transitions of the timed
automaton, we use the event successor function as defined in the following.

Definition 2.1.16 (Event Successor of a Zone Location)
For a timed automaton A = (L, l0,Σ, C, I, T ), a transition t = (l, e, g, r, l′) ∈ T
and a corresponding zone location s = (l, ϑ) ∈ SΘ, the event successor
succΣ(s, t) is computed by the function succΣ : SΘ × T → SΘ with

succΣ((l, ϑ), (l, e, g, r, l′)) = (l′, (ϑ ∧ g)[r := 0] ∧ I(l′))

The event successor function computes for a given zone location (l, ϑ) and a
corresponding timed automaton transition t = (l, e, g, r, l′) the succeeding target
zone location (l′, ϑ′). This is done by (1) intersecting the clock zone ϑ with the
guard g of the transition, (2) applying the clock resets r of t to the resulting zone
and (3) intersecting the resulting zone with the invariant I(l′) of the target location.
This way it is guaranteed, that (1) the transition is actually enabled in some of the
clock valuations of the input zone ϑ and (2) that the invariant of the target location
is not violated. If one of these conditions did not hold, the calculation of the event
successor would lead to (l′, false), which means that from the input zone location
the corresponding timed automaton transition is never enabled.

To give an example using the zone automaton of the convoy coordination be-
havior (Figure 2.6) again, we examine the zone location (processing,c<=1000)
and the silent event transition (processing,τ ,c>999,{},noConvoy) (see also Fig-
ure 2.3). The computation of the target zone is exemplified by the following equa-
tion, where proc and noCon abbreviate the automaton locations processing and
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noConvoy:

succΣ((proc, c ≤ 1000), (proc, τ, c > 999,∅, noCon))

= (noCon, ((c ≤ 1000) ∧ (c > 999))[∅ := 0] ∧ true)
= (noCon, ((c ≤ 1000 ∧ c > 999))[∅ := 0] ∧ true)
= (noCon, (c ≤ 1000 ∧ c > 999) ∧ true)
= (noCon, c ≤ 1000 ∧ c > 999).

Using these definitions of the delay and the event successor of a zone loca-
tion, we are now able to formalize the construction of the zone automaton by the
following definition according to Bengtsson and Yi [BY03].

Definition 2.1.17 (Zone Automaton (Bengtsson & Yi))
For a timed automaton A = (L, l0,Σ, C, I, T ) the corresponding zone automaton
ZA = (SΘ, s

0,Σ, C, Tδ, TΣ) is defined with

• SΘ ⊆ L×Θ(C) is the finite set of zone locations s = (l, ϑ) with l ∈ L and
ϑ ∈ Θ(C), where s ∈ SΘ iff s is reachable through Tδ or TΣ,

• s0 = (l0, ϑ0) ∈ SΘ is the initial zone location where ϑ0 = {ν0} ∧ I(l0),
∀c ∈ C : ν0(c) = 0 and l0 is the initial location of A,

• Σ the set of events equal to the set of events of the corresponding timed
automaton,

• C the set of clock equal to the set of clock of the corresponding timed au-
tomaton,

• Tδ ⊆ SΘ × SΘ is the set of delay transitions tδ = (s, s′), where

– s = (l, ϑ) is the source zone location,

– s′ = succδ(s) = (l, ϑ′) is the target zone location,

and tδ ∈ Tδ ⇔

– s is reachable through Tδ or TΣ, and

– ϑ′ 6= ϑ, and

– ϑ′ 6= false,

• TΣ ⊆ SΘ × Σ × SΘ is the infinite set of event transitions tΣ = (s, e, s′),
where

– s = (l, ϑ) is the source zone location,
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– e ∈ Σ is the corresponding event,

– s′ = succΣ(s, t) = (l′, ϑ′) with t ∈ T is the target zone location,

and tΣ ∈ TΣ ⇔

– s is reachable through Tδ or TΣ, and

– ϑ′ 6= false.

The formal definition of the zone automaton is obviously very similar to the
one of the timed automaton semantics (Definition 2.1.9), as the zone automaton is
an abstraction of the timed automaton semantics. Locations in the zone automaton
are zone locations (Definition 2.1.11) and the initial zone location s0 is the initial
timed automaton location l0 combined with the initial clock zone ϑ0. Note that
ϑ0 already takes the invariant I(l0) into account to guarantee that the initial zone
location is in fact reachable. Furthermore, the definition distinguishes between
delay and event transitions as already described above. Observe that the source
zone location s is defined to be reachable through the transition relations Tδ or TΣ

and that the clock zone ϑ′ of the target zone location s′ may not be false. This
means, zone locations which are in fact not reachable due to timing constraints are
excluded from the zone automaton. An example of a zone automaton according
to Bengtsson and Yi is described in the introduction of this section (Figure 2.6).

The zone automaton, as defined by Bengtsson and Yi, includes delay transi-
tions to explicitly describe the flow of time. In fact, for a simple reachability anal-
ysis where only the potential occurrences of events are of concern, delay transi-
tions do not have to be considered explicitly. Alur proposes a different notion of
the successor function in [Alu98, Alu99], in the following called entrance succes-
sor, which takes the time elapse of a zone location only implicitly into account.
This way, the zone automaton can be reduced both in the size of zone locations
and in the size of transitions.

Before we formally define the entrance successor and the zone automaton ac-
cording to Alur, we informally describe the resulting zone automaton using the
example of the convoy coordination behavior again (Figure 2.7).

The initial zone location is again (noConvoy,(c=0)). But in contrast to the zone
automaton depicted in figure 2.6, there is no explicit delay transition in this au-
tomaton. The amount of time, where the automaton may rest in location noCon-
voy, is simply omitted. Instead, the computation of the outgoing (event) transi-
tions takes this time interval, given as the location invariant, into account. For
each outgoing transition it is calculated if there is some clock valuation reachable
from the source zone location, such that the corresponding transition is enabled.
The time guard of the transition is also regarded in this calculation. As this is true
for the convoyProposal? transition, the clock reset is applied, which results in the
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clock zone (c=0) for the location processing. From there on, following the silent
transition back to noConvoy again, the clock zone of that zone location exempli-
fies the notion entrance successor perfectly. When entering noConvoy through
the transition (processing,τ ,c>999,{},noConvoy), the clock value of c must be
999 < c ≤ 1000, regarding the transition’s time guard (c>999) and the location
invariant of processing (c<=1000). This is exactly reflected in the clock zone of
the zone location (noConvoy,(c>999 & c<=1000)). The rest of the automaton is
constructed analogously.

noConvoy
(c = 0)

noConvoy
true

processing
(c = 0)

noConvoy
(c > 999 & c <= 1000)

convoy
(c <= 999)

convoyProposal?

breakConvoy!

convoyProposal?

convoyProposal? startConvoy!

Figure 2.7: Zone Automaton of the Timed Automaton of the Convoy Coordination
Behavior (Figure 2.3) According to [Alu98, Alu99]

In the remainder of this section we give formal definitions of both the entrance
successor and of the zone automaton in accordance with Alur [Alu98, Alu99].

Definition 2.1.18 (Entrance Successor of a Zone Location)
For a timed automaton A = (L, l0,Σ, C, I, T ), a transition t = (l, e, g, r, l′) ∈
T and a corresponding zone location s = (l, ϑ) ∈ SΘ, the entrance successor
succα(s, t) is computed by the function succα : SΘ × T → SΘ defined with2

succα((l, ϑ), (l, e, g, r, l′)) = (l′, (ϑ⇑ ∧ I(l) ∧ g)[r := 0] ∧ I(l′)).

For a given zone location s = (l, ϑ) and a corresponding outgoing timed au-
tomaton transition t = (l, e, g, r, l′), the entrance successor function computes the
succeeding zone location of s. Semantically, this is the zone location describing
the target timed automaton location with the clock zone right after the execution

2Note that in [Alu98, Alu99] the successor function is actually defined with succ((l, ϑ)) =
(l′, ((ϑ ∧ I(l))⇑ ∧ I(l) ∧ g)[r := 0]) which does not take the invariant of the target location into
account. Obviously, this would lead to zone locations which are in fact not reachable, as the target
location invariant might restrict the execution of the corresponding transition.
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of the transition t. In other words, the target clock zone is the set of clock valua-
tions, where each of these clock valuations is a possible valuation, when the target
location is entered by the transition t.

The timed automaton location of the target zone location is exactly the target
location of t which is l′. The clock zone of the target zone location is computed
in the following steps: (1) a time elapse is applied on ϑ, (2) the resulting zone is
intersected with the invariant I(l), (3) the result of this is intersected with the guard
of the transition t, (4) the clock resets of t are applied and (5) the resulting clock
zone is intersected with the invariant of the target location I(l′). After (1) and (2),
the resulting zone describes the maximal set of clock valuations being valid for the
location l, starting in the zone ϑ. The intersection with the guard g of the transition
t in step (3) guarantees that the transition is actually enabled in at least one of
the clock valuations of (ϑ⇑ ∧ I(l)). Step (4) applies the clock resets and step
(5) guarantees, that the resulting clock zone does not violate the invariant of the
target location I(l′). To illustrate the computation of the entrance successor, we
take the zone location (processing,c=0) and the (silent) timed automaton transition
(processing,τ ,c>999,{},noConvoy) as the input (Figure 2.7 and Figure 2.3). The
computation is exemplified in the following equation, where proc and noCon
again abbreviate the locations processing and noConvoy:

succα((proc, c = 0), (proc, τ, c > 999,∅, noCon))

= (noCon, ((c = 0)⇑ ∧ I(proc) ∧ (c > 999))[∅ := 0] ∧ I(noCon))

= (noCon, (true ∧ c ≤ 1000 ∧ c > 999)[∅ := 0] ∧ true)
= (noCon, (c ≤ 1000 ∧ c > 999)[∅ := 0] ∧ true)
= (noCon, c ≤ 1000 ∧ c > 999 ∧ true)
= (noCon, c ≤ 1000 ∧ c > 999)

On the basis of this definition of the entrance successor, we formalize the
definition of the zone automaton according to Alur in the following.

Definition 2.1.19 (Zone Automaton (Alur))
For a timed automaton A = (L, l0,Σ, C, I, T ) the corresponding zone automaton
ZA = (SΘ, s

0,Σ, C, TΘ) is defined with

• SΘ ⊆ L×Θ(C) is the finite set of zone locations s = (l, ϑ) with l ∈ L and
ϑ ∈ Θ(C), where s ∈ SΘ iff s is reachable through TΘ,

• s0 = (l0, ϑ0) ∈ SΘ is the initial zone location where ϑ0 = {ν0} ∧ I(l0),
∀c ∈ C : ν0(c) = 0 and l0 is the initial location of A,

• Σ the set of events equal to the set of events of the corresponding timed
automaton,
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• C the set of clock equal to the set of clock of the corresponding timed au-
tomaton,

• TΘ ⊆ SΘ × Σ × SΘ is the infinite set of event transitions tΘ = (s, e, s′)
where

– s = (l, ϑ) is the source zone location,

– e ∈ Σ is the corresponding event,

– s′ = succα(s, t) = (l′, ϑ′) with t ∈ T is the target zone location,

and tα ∈ Tα ⇔

– s is reachable through TΘ, and

– ϑ′ 6= false

The definition of the zone automaton on the basis of Alur’s successor function
is in most parts equal to the definition of Bengtsson and Yi. The main difference
is the transition relation, as there is only one type of transition in this automaton.
This transition relation is based on the entrance successor. Note that also in this
definition every source zone location (l, ϑ) of an event transition must be reach-
able in the automaton and the target clock zone may not be equal to false, as this
would again mean, that the target location is not reachable starting in the source
zone location of that transition.

As a consequence of this transition relation, there is at most one successor of a
zone location per outgoing transition of the corresponding timed automaton loca-
tion. This leads to a much smaller state space compared to the zone automaton of
Bengtsson and Yi, which defines additionally a delay successor for each reachable
zone location (see Definition 2.1.17). Consequently, the zone automaton based on
Alur’s entrance successor function can be estimated to be only half of the size of
the zone automaton of Bengtsson and Yi.

Observe that the algorithm to create a zone automaton further applies a proce-
dure called normalization. This procedure ensures that the algorithm which cre-
ates the successors of a zone location actually terminates for all given timed au-
tomata. Although we employ the procedure in the creation of the zone automata,
it is not of direct relevance for this paper, as it is not further used by the proposed
synthesis algorithm. Therefore, we omit the description of the normalization pro-
cedure and refer to [BY03, pp. 95–98] instead.

In this section we described the foundations for the core of the synthesis pro-
cedure which is the timed automaton formalism. In the first part, we described
the most discussed variants, timed büchi and timed safety automata, and justified
our choice of timed safety automata. After that we gave the necessary formal def-
initions for later reasoning on timed automata. As the fundamental semantics of
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timed automata leads to an infinite state space, we described possible abstractions
in the second part of this section. We made our choice for a continuous dense-time
abstraction, namely the zone automaton. We furthermore justified this choice and
described the two variants discussed in literature formally and informally. In the
next section we introduce the requirement specification language timed computa-
tion tree logic (TCTL) as it is employed by MECHATRONIC UML for the formal
verification of the behavioral models by means of model checking.

2.1.3 Timed Computation Tree Logic (TCTL)
As mentioned in the introduction of this paper, our synthesis approach preserves
verification results on the given behavioral models of the pattern roles. More pre-
cisely this means that the requirements for each role are not violated by the appli-
ance of composition rules. In this section we introduce the requirements specifi-
cation language applied for model checking in MECHATRONIC UML. Referring
to different parts of this language, we define in the next chapter which parts of the
language describe the relevant behavior of the pattern roles. In accordance with
that, we also describe which type of verification results have to be preserved by
the synthesis procedure (see section 3.3).

Model Checking, as introduced by Clarke and Emerson in [CE82] and by
Queille and Sifakis in [QS82], is the procedure of verifying formalized require-
ments on a formalized system’s behavioral specification. In the preceding section
we introduced timed automata as a formal model for the behavioral specification
of real-time systems. In this section we introduce a formal language for real-time
system requirements which is used to verify requirements on a given timed au-
tomaton. For a general overview on model checking we refer to [CGP99, GV08].

In MECHATRONIC UML, model checking is performed by transforming the
corresponding models to timed automata and by using these timed automata as
input for the model checker UPPAAL [BGHS04]. Accordingly, the requirements
specification language of UPPAAL is also applied to specify requirements for the
corresponding models in MECHATRONIC UML. This formal language is a subset
of the timed computation tree logic (TCTL), the timed version of the computation
tree logic (CTL). The TCTL variant of UPPAAL is described in the following and
is referred to by U-TCTL. For descriptions of the more general versions TCTL and
CTL we refer to [ACD90, ACD93] (TCTL) and [CGP99, pp. 30–33] (CTL).

Before we formally define the syntax and semantics of U-TCTL, we give a
short introduction and give some examples of the language using the front role
timed automaton of the convoy example (Figure 2.3).

Informally, a U-TCTL formula specifies a property for a timed automaton by
referring to all reachable timed system states of its corresponding timed transition
system (cf. Figure 2.5 and Definition 2.1.9, Timed Automaton Semantics). Dur-
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ing the execution of a timed automaton, all these reachable states can be repre-
sented by an infinite tree, called the computation tree, where the root is the initial
location in which all clocks’ values are zero (Figure 2.8). An example of a prop-
erty expressable in U-TCTL is that there exists a path in the computation tree of
the automaton where a state with location convoy and the value of clock c being
equal to 500 is reachable. In the example tree, this is the second path on the left
hand side.
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noConvoy
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processing
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Figure 2.8: Illustration of the Computation Tree of the Timed Automaton of the
Convoy Protocol (Figure 2.3)

Syntactically, a U-TCTL formula consists of a path quantifier, a temporal op-
erator and a state property. The path quantifier, either ∀ or ∃, specifies if the prop-
erty has to hold on all paths or only on some (but at least one) path of the com-
putation tree. The temporal operator, either � (globally) or ♦ (eventually), spec-
ifies if the property has to hold in all states of the path or if there only has to be
a reachable state, where the property holds. Finally, the state property, consist-
ing of location labels and clock constraints (see Definition 2.1.1, General Clock
Constraint) connected by the Boolean operators ¬,∧,∨ and⇒, specify the prop-
erty which has to hold in the specified states of the computation tree. Using this
syntax, the above state property can be formalized to λ1 specified as:

λ1 = ∃♦ (convoy ∧ c = 500).



36 CHAPTER 2. FUNDAMENTAL CONCEPTS

Note that, unlike to the more general logics TCTL and CTL, nesting of path
quantifiers and temporal operators is not allowed in U-TCTL. Accordingly, the
formula ∀� (processing ⇒ ∀♦(convoy ∨ noConvoy)), which states that for all
states where processing holds, there is a later state where convoy or noConvoy
holds, is not a valid U-TCTL formula. However, a very important property for
real-time systems can only be expressed this way, which is the bounded response
[KC05]. In general, it states that whenever a certain property holds, another prop-
erty holds within a specified time interval.

To overcome this problem, U-TCTL introduces the leads-to operator, denoted
 . This operator is used to specify that the fulfillment of one state property
always leads to the fulfillment of another state property later. When the state
property which has to hold later in time includes a clock constraint, this can be
used to express bounded response properties. Accordingly, it can be specified for
the convoy example that processing always leads to convoy or noConvoy with
c<=1000 through the following U-TCTL λ2:

λ2 = processing  (convoy ∨ noConvoy) ∧ c ≤ 1000.

As we informally introduced the syntax and semantics of U-TCTL formulas
above, we proceed with the formal definition of the syntax and semantics. As the
core of a U-TCTL formula is always a state property, we begin with the syntax of
state properties.

Definition 2.1.20 (State Property)
For a timed automaton A = (L, l0,Σ, C, I, T ) a state property υ ∈ Υ(L,C) is
inductively defined by the grammar

υ ::= l | ϕ | ¬υ | υ ∧ υ | υ ∨ υ | υ ⇒ υ

where l ∈ L and ϕ ∈ Φ(C).

The definition of a state property exactly reflects the above stated concepts.
Each terminal symbol is either a state or a clock constraint (see Definition 2.1.1,
General Clock Constraint). All terminal symbols can be arbitrarily connected
by the Boolean operators ¬,∧,∨ and ⇒. A valid state property example is
(¬processing ∧ c > 1000), which states that the examined state must be dif-
ferent from processing and the value of clock c must be greater than 1000.

Note that this grammar also allows to construct state properties by connecting
two locations with a Boolean meet. This type of properties can never be satisfied
if evaluated on a single automaton. However, when running several automata in
parallel and the different locations are of different automata, these types of formu-
las can specify important properties for the system by referring to combinations
of automaton locations. State properties are embedded in U-TCTL formulas, as
defined in the following.
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Definition 2.1.21 (U-TCTL Formula)
For a timed automaton A = (L, l0,Σ, C, I, T ) a U-TCTL formula λ ∈ Λ(L,C) is
defined by the grammar

λ ::= ∀� υ | ∀♦ υ | ∃� υ | ∃♦ υ | υ1  υ2

where υ, υ1, υ2 ∈ Υ(L,C).

According to this definition and also in accordance with the above given de-
scriptions, a U-TCTL formula consists of a path quantifier (∀ of ∃) and a temporal
operator (� (globally) or ♦ (eventually)) and a state property υ. Furthermore, the
special operator  (always leads to) can be used to specify that one state prop-
erty υ1 always leads to the fulfillment of another state property υ2. Examples of
U-TCTL formulas are given above with λ1 and λ2.

We proceed with the formal definition of the semantics of a U-TCTL for-
mula, which defines in which cases a timed automaton satisfies a certain U-TCTL
formula. To evaluate a U-TCTL formula, it is necessary to examine all reach-
able timed system states as defined by the timed automaton semantics (Definition
2.1.9). Consequently, the following definitions are based on the corresponding
timed transition system of a timed automaton. We begin with the evaluation of a
state property, which defines for a given timed system state if the property holds
or not.

Definition 2.1.22 (State Property Evaluation)
For a timed automaton A = (L, l0,Σ, C, I, T ), its corresponding timed transition
system SA = (QA, q

0,Σ, Tδ, TΣ), a timed system state s = (l, ν) ∈ QA with ν ∈
Ψ(C) and a state property υ ∈ Υ(L,C), the state property evaluation υ((l1, ν1))
is a function υ : QA → {true, false} defined with

υ((l, ν)) =



l = lυ, iff υ is a location lυ,
ϕυ(ν), iff υ is a clock constraint ϕυ,
¬υ1((l, ν)), iff υ is of the form ¬υ1,

υ1((l, ν)) ∧ υ2((l, ν)), iff υ is of the form υ1 ∧ υ2,

υ1((l, ν)) ∨ υ2((l, ν)), iff υ is of the form υ1 ∨ υ2,

υ1((l, ν))⇒ υ2((l, ν)), iff υ is of the form υ1 ⇒ υ2,

where l ∈ L and ϕ ∈ Φ(C).

The central part of the evaluation of a state property, is the evaluation of the
contained locations and clock constraints. The evaluation of a contained location
is true, if the location l of the timed system state is equal to the state lυ of the
formula. The evaluation of a clock constraint corresponds to the clock constraint
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evaluation of a timed automaton (Definition 2.1.8). Each evaluation of a state
property which is constructed using the Boolean operators ¬,∧,∨ or⇒ is evalu-
ated, by evaluating the corresponding sub formulas and applying the conventional
rules of Boolean logic.

The evaluation of a state property is applied in the evaluation of a U-TCTL
formula as defined in the following.

Definition 2.1.23 (U-TCTL Formula Evaluation)
Given a timed automaton A = (L, l0,Σ, C, I, T ), its corresponding timed transi-
tion system SA = (QA, q

0,Σ, Tδ, TΣ) and a U-TCTL formula λ ∈ Λ(L,C). Fur-
thermore, let (π, s) denote an (infinite) sequence of timed system states reachable
from s through Tδ and TΣ. The timed automatonA satisfies the formula λ, denoted
A |= λ, by distinguishing between the following cases:

• A |= ∀� υ ⇔ ∀ (π, s0) ∈ SA,∀ s ∈ π : υ(s) = true,

• A |= ∀♦ υ ⇔ ∀ (π, s0) ∈ SA,∃ s ∈ π : υ(s) = true,

• A |= ∃� υ ⇔ ∃ (π, s0) ∈ SA,∀ s ∈ π : υ(s) = true,

• A |= ∃♦ υ ⇔ ∃ (π, s0) ∈ SA,∃ s ∈ π : υ(s) = true,

• A |= υ1  υ2 ⇔ ∀ (π, s0) ∈ SA, ∀ s ∈ π : (υ1(s) = true) ⇒ ∀ (π′, s) ∈
SA,∃ s′ ∈ (π′, s) : υ2(s′) = true.

For the evaluation of a U-TCTL formula, we distinguish between the different
forms of a formula, as defined in its syntax (Definition 2.1.21, U-TCTL Formula).
For all formulas we have to examine all paths (π, s0) of the timed transition system
SA, where (π, s0) is a path starting in s0 following transitions of Tδ or TΣ. For the
formulas starting with ∀�, all states of all paths have to satisfy the corresponding
state property. For the formulas starting with ∀♦, only one state of all paths has to
satisfy this property. Analogously, the formulas starting with ∃ are evaluated, with
the difference, that only one path (π, s0) has to exist in SA to satisfy the formula.
The evaluation of a formula υ1  υ2 is evaluated in two steps: (1) it is searched
for all paths (π, s0) where there exists a state s for which υ1 holds and (2) it is
verified for these paths, that on all paths starting in this state, there is a state s′,
where υ2 holds.

In the above given descriptions, we formally and informally defined the syntax
and semantics of U-TCTL, the TCTL variant applied by UPPAAL. The synthe-
sis approach proposed in this paper preserves the relevant verification results by
means of verified U-TCTL formulas. It is not possible, however, to preserve all
properties, which can be specified through U-TCTL formulas (see section 3.3).
Consequently, we further distinguish between several sub logics of U-TCTL as
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defined in the remainder of this section. We begin by distinguishing between for-
mulas which only refer to all paths, defined by U-ATCTL, or which only refer to
the existence of paths, defined by U-ETCTL, for a timed automaton.
Definition 2.1.24 (U-ATCTL Formula)
For a timed automaton A = (L, l0,Σ, C, I, T ) a U-ATCTL formula λ ∈ ΛA(L,C)
is defined by the grammar

λ ::= ∀� υ | ∀♦ υ | υ1  υ2

where υ, υ1, υ2 ∈ Υ(L,C).

Definition 2.1.25 (U-ETCTL Formula)
For a timed automatonA = (L, l0,Σ, C, I, T ) a U-ETCTL formula λ ∈ ΛE(L,C)
is defined by the grammar

λ ::= ∃� υ | ∃♦ υ
where υ ∈ Υ(L,C).

The definitions of U-ATCTL and U-ETCTL formulas split the definition of U-
TCTL formulas into formulas only using the ∃ path quantifier and formulas only
using the ∀ path quantifier. With U-ETCTL formulas only those properties can be
specified which only have to hold on at least one path of the automaton. With U-
ATCTL formulas only those properties can be specified which have to hold on all
paths of the automaton. This includes the leads-to operator  corresponding to
its semantic given in the definition of the U-TCTL Formula Evaluation (Definition
2.1.23). The U-TCTL formula λ1 = ∃♦ (convoy ∧ c = 500), for example, is a
valid U-ETCTL formula, but not a valid U-ATCTL formula. The formula λ2 =
processing  (convoy ∨ noConvoy) ∧ c ≤ 1000, on the other hand, is a valid
U-ATCTL formula, but not a valid U-ETCTL formula.

Furthermore, note that the set of possible U-TCTL formulas Λ(L,C) can be
constructed by the union of sets of U-ATCTL formulas and U-ETCTL formulas,
i.e. Λ(L,C) = ΛA(L,C) ∪ ΛE(L,C). The reason for this is that nesting of path
quantifiers is not included in the grammar of U-TCTL. For the same reason, every
U-TCTL formula is either a U-ATCTL or a U-ETCTL formula but never both, i.e.
ΛA(L,C) ∩ ΛE(L,C) = ∅.

In the following, we define U-ECTL as a sub logic of U-TCTL, which does not
allow to use clock constraints in state properties. This is used to specify properties
of existing paths in timed automata while not taking any timing constraints into
account. We begin with the definition of an untimed state property.
Definition 2.1.26 (Untimed State Property)
For a timed automaton A = (L, l0,Σ, C, I, T ) an untimed state property υ ∈
ΥU(L,C) is inductively defined by the grammar

υ ::= l | ¬υ | υ ∧ υ | υ ∨ υ | υ ⇒ υ
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where l ∈ L.

An untimed state property is simply a state property without any clock con-
straint. Consequently, we can only specify properties referring to the locations
of one or more automata (cf. Definition 2.1.20, State Property). Accordingly,
(convoy ∧ c = 500) is not a valid untimed state property, but can be transformed
into a valid one by removing the clock constraint c = 500.

Note that the set of untimed state properties is a proper subset of the set of
state properties, as the clock constraint ϕ is a terminal symbol in the grammar of
state properties, i.e. ΥU(L,C) ⊂ Υ(L,C). The untimed state property is used in
the following definition of U-ECTL formulas.

Definition 2.1.27 (U-ECTL Formula)
For a timed automatonA = (L, l0,Σ, C, I, T ) a U-ECTL formula λ ∈ ΛUE(L,C)
is defined by the grammar

λ ::= ∃� υ | ∃♦ υ

where υ ∈ ΥU(L,C).

A U-ECTL formula is defined to be a formula only referring to untimed state
properties ΥU(L,C). Consequently, only those properties can be specified which
do not refer to any clock values of the clocks of the automaton. Accordingly, the
U-TCTL formula λ1 = ∃♦ (convoy ∧ c = 500) is not a valid U-ECTL formula.
The weaker version ∃♦ convoy , where the clock constraint is removed, is a valid
E-TCTL formula, which states that the location convoy is reachable somewhere
on a paths of the timed automaton.

Observe that the set of U-ECTL formulas is a proper subset of the set of U-
ETCTL formulas, i.e. ΛUE(L,C) ⊂ ΛE(L,C). This is due to the fact that the
embedded untimed state properties are a proper subset of the set of state properties
used in U-ETCTL formulas.

In this section we defined the timed automaton formalism which is the founda-
tion of the behavioral models in MECHATRONIC UML. We further defined an ef-
ficient method to abstract from the infinite state space of timed automata, namely
the zone automaton, which preserves the continuous time property for formal anal-
ysis. Finally, we described the specification language TCTL as it is employed by
the real-time model checker UPPAAL to verify system requirements on a given
timed automaton model. As UPPAAL is employed for real-time model check-
ing in MECHATRONIC UML, TCTL is also the specification language used in
MECHATRONIC UML. In the next section, we introduce the modeling language
MECHATRONIC UML by describing those parts of the language which are rele-
vant for this paper.
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2.2 Modeling Reconfigurating Real-time Systems in
MECHATRONIC UML

In this section we describe the modeling concepts of MECHATRONIC UML which
are relevant for this paper. MECHATRONIC UML forms an appropriate approach
for the model-driven development and verification of mechatronic real-time sys-
tems. This includes the modeling of behavior between different entities using
real-time coordination patterns, as well as modeling the structure of the devel-
oped system using component diagrams based on the Unified Modeling Language
(UML) [OMG09]. We furthermore focus on those parts of the software devel-
opment process where continuous entities also have to be taken into account, for
example feedback controllers developed by control engineers. This has to be re-
garded, as mechatronic systems are part of multiple domains and therefore the
interleaving of different domains in the development process is unavoidable.

We begin by describing the models of MECHATRONIC UML which define the
behavior between different entities which are real-time statecharts used in real-
time coordination patterns (section 2.2.1). After that, we proceed with the models
which define the system structure by means of discrete and continuous compo-
nents (section 2.2.2). At last, reconfigurations of the system structure are defined
through reconfiguration charts, an extension of real-time statecharts, which are
described in the last part of this section (section 2.2.3).

2.2.1 Real-time Coordination Behavior

In MECHATRONIC UML, the real-time communication behavior between differ-
ent entities of the system is defined by real-time statecharts [GB03], which ex-
tend UML state machines by the notion of time. The semantics of real-time stat-
echarts, consequently, is based on timed automata (see section 2.1), which means
that every real-time statechart can be transformed into a semantically equivalent
timed automaton [BGHS04].

For the specification of real-time statecharts each participating entity is re-
ferred to by a role, such that one real-time statechart describes the behavior of
exactly one role (cf. section 1.2). This way, no direct dependencies to the actual
components of the system are created.

The real-time statecharts for the front role and the rear role behavior of two
RailCabs potentially driving in convoy are depicted in figure 2.9 and figure 2.10.
The defined behavior corresponds to the behavior of the timed automaton depicted
in figure 2.3 (see section 2.1.1). The rear role real-time statechart (Figure 2.10)
has two superstates noConvoy and convoy, where the noConvoy superstate in turn
has two supstates default and wait.
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Figure 2.9: Real-time Statechart for the
Front Role Behavior

Figure 2.10: Real-time Statechart for
the Rear Role Behavior

The main difference between the semantics of a timed automaton and a real-
time statechart is that time can pass during the execution of a transition of a real-
time statechart. For this reason, each transition of a real-time statechart may have
a triggering event and a raised event. Syntactically, those are separated by a slash
(“/”), where the triggering event is annotated on the left-hand side of the slash.
In the real-time statechart of the rear role behavior, the transition leading from
default to wait raises a convoyProposal and resets the clock cr.

In real-time statecharts, the communication between statecharts can also be of
asynchronous character, which means that the sending of an event does not block
any further action of the sender until the event is received. The convoyProposal
event sent by the rear role is accordingly received by the front role, possibly at a
later point in time, depending on the underlying communication channel.

The usage of time guards and clock resets in real-time statecharts corresponds
to the usage of those in timed automata and is therefore not further described at
this point.

To complete the example, we further describe the communication behavior
necessary for the registration of a RailCab at a base station (cf. section 1.1). The
coordination behavior is divided into the role registrar representing a base station
and the role registree representing a RailCab (Figure 2.11 and Figure 2.12).

The coordination is initiated by the registree role by sending a register event
to the registrar role. After that, both roles are in the state default of the superstate
registered. Resting in this state is only allowed for at most 2000 ms. In this inter-
val, the registree role sends a requestUpdate to the registrar role, which answers
with a performUpdate within 500 ms. Finally, the registree role is able to unreg-
ister from the registrar, by sending an unregister event to the registrar, which is
provided in any registered state of its real-time statechart.

Real-time statecharts are integrated into the system specification of the sys-
tem through real-time coordination patterns. A real-time coordination pattern is
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Figure 2.11: Real-time Statechart for
the Registrar Role Behavior

Figure 2.12: Real-time Statechart for
the Registree Role Behavior

a structural model, which defines a reusable communication pattern between a
number of roles. The behavior of each role is defined by a real-time statechart.
The real-time coordination patterns for the convoy coordination and for the regis-
tration coordination are depicted in figure 2.13 and figure 2.14 respectively.

Figure 2.13: Convoy Coordination Pat-
tern

Figure 2.14: Registration Coordination
Pattern

In addition to that, also the quality of service (QoS) characteristics of the un-
derlying communication channel is specified in the communication pattern, such
as throughput or maximal delay. In our example, the maximal delay of a message
is specified with 5 ms. Additionally, the QoS channel characteristic reliable is set
to true.

During the specification of a coordination pattern, real-time model checking
(see section 2.1.3) can be applied in order to verify the desired requirements for
a given coordination pattern. It has to be taken into consideration, however, that
due to the current compositional approach of MECHATRONIC UML (see section
1.2) only the universally quantified properties (cf. Definition 2.1.24, U-ATCTL
Formula) will be preserved, if a role is refined in a component specification. Once
a the specification of a real-time coordination pattern is complete, it is stored to a
pattern library for later reuse.
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2.2.2 Component Specification

The structural part of the (software) system specification is defined by compo-
nent diagrams derived from UML. For MECHATRONIC UML components, we
distinguish between discrete components and continuous components. While the
behavior of a discrete component is specified by using real-time statecharts, the
behavior of a continuous component is specified through methodologies of the
control engineering domain [Bur06].

A discrete component can define a number of other components which are
contained in the component definition. The RailCab component depicted in figure
2.15 contains the continuous components VelocityController, DistanceController,
RadioController and SteeringController, where the component references also in-
clude the required inputs and provided outputs denoted by continuous ports (I).3

The VelocityController and the DistanceController are responsible for the ac-
celeration of the RailCab. While the VelocityController computes the desired ac-
celeration for the RailCab, the DistanceController measures the distance to a pre-
ceding RailCab and returns the corresponding desired speed.

The RadioController and the SteeringController, on the other hand, are respon-
sible for the correct steering of the wheels. For this, the SteeringController is able
to use the RadioController in order to retrieve track data of a base station.

 
 

:SteeringController

 
 

:RadioController

 
 

:DistanceController

 
   :VelocityController

RailCab

Figure 2.15: RailCab Component Embedding Four Continuous Components

3For reasons of simplification, we omitted the type of the inputs at continuous ports.
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In order to define the behavior of a discrete component, this implements a
number of roles of one or more real-time coordination patterns. In the current
approach of MECHATRONIC UML, those roles have to be refined and connected
through synchronization statecharts, in order to resolve required dependencies
between the role implementations.

In order to simplify the example, the RailCab component only implements the
rear role of the convoy pattern and the registree role of the registration pattern. The
corresponding real-time statechart, also including the synchronization statechart,
is depicted in figure 2.16.

The synchronization statechart realizes the requirement that the RailCab has to
be registered at a base station in order to build a convoy. This is achieved by refin-
ing the rear role statechart by the additional events buildConvoy and notInConvoy
and by refining the registree role statechart by the additional events doRegister
and doUnregister.

Initially, the synchronization statechart is in state unregistered. As soon as a
near base station becomes available, it triggers the registration process by raising
a doRegister event, which is received by the refined registree role statechart. In
state registered the synchronization statechart rests in state noConvoy for at least
2500 ms, such that the RailCab is able to receive the current track data from the
base station through the update mechanism. Then, it may decide to build a convoy
by sending the buildConvoy event to the rear role statechart. This in turn sends a
convoyProposal to the front role statechart of another RailCab, as soon as it re-
ceives a buildConvoy event from the synchronization statechart. As long as the
synchronization statechart rests in state convoy, it is not able to unregister from
the base station. The reason for this is that the registree role statechart requires
a doUnregister event for this, which is only raised from the synchronization stat-
echart if this is in state noConvoy. Consequently, the RailCab can never be in
state convoy and unregistered at the same time, which realizes the desired system
requirement.

Observe that the specification of the synchronization statechart is a manual,
error prone process, as it also has to be checked if the role statecharts are refined
properly. If the role statecharts are not refined properly, the verification results
produced during the specification of the real-time coordination patterns are not
preserved. In this paper, we propose a procedure for specifying the requirements
on top of the role statecharts and integrate them automatically (see chapter 3).
This way, it can also automatically be verified that the role statecharts are properly
refined for the component behavior, such that the necessary verification results
are preserved. In the next section we show how reconfigurations of continuous
components are considered in the behavioral specifications of MECHATRONIC

UML.
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RearRole

Synchronization

RegistreeRole

when(bsNotAvailable) / doUnregister

notInConvoy /         

convoy

[cs>=2500]
when(convoyUseful) / buildConvoy
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when(bsAvailable) / doRegister

breakConvoy / notInConvoy

[cr<=999]
startConvoy /

default

[cr>999]
/ notInConvoy
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cr<=1000default
{cr}
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{ce}
performUpdate /

{ce}

/ requestUpdate
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unregistered

{ce}
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Figure 2.16: Real-Time Statechart for the RailCab Component
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2.2.3 Reconfiguration Behavior

For the specification of reconfiguration behavior of a MECHATRONIC UML com-
ponent, the configurations of the continuous components of a surrounding compo-
nent are regarded. For the RailCab component (Figure 2.15), for example, it has to
be defined in which states of the component’s real-time statechart, which continu-
ous component is active, as typically for mechatronic systems, not all components
are active at the same time. In MECHATRONIC UML, this is defined by hybrid
reconfiguration charts [GBSO04, BGO06, BGT05, Bur06] or simply reconfigu-
ration charts, which extend real-time statecharts by component configurations.

The reconfiguration chart for RailCab’s rear role behavior is depicted in figure
2.17. It corresponds to the rear role statechart of the convoy coordination pattern
(Figure 2.10), but extends this by the controller configurations. While in state no-
Convoy only the VelocityController is active, in state convoy both the VelocityCon-
troller and the DistanceController are active. This is due to the fact that in con-
voy operation mode the distance to the preceding RailCab has to be taken into
account to calculate the desired acceleration. If the RailCab is not operating in
convoy mode, this is neither necessary nor possible, as a preceding RailCab does
not exist. Consequently, the DistanceController can be deactivated to save system
resources.

 
  DistanceController

 
 

 VelocityController

 
  

VelocityController

breakConvoy /

[cr <= 999]

startConvoy /

default

convoy

wait

cr<=1000default

noConvoy

[cr > 999]

{cr}
/ convoyProposal

Figure 2.17: Reconfiguration Chart for the RailCab’s Rear Role Behavior
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The reconfiguration chart of the registree similarly defines the configurations
for the RadioController and the SteeringController (see Figure 2.18). As in state
unregistered it is not possible to receive any track data from the base station, the
RadioController is only active if the registree role statechart is in state registered.
Here, it feeds the output of the RadioController into one of the inputs of the Steer-
ingController.

 
 

RadioController

 
 

 SteeringController

 
 

  SteeringController

{ce}
performUpdate /

{ce}

/ requestUpdate

/ unregister

registered

waiting

ce<=500

default

ce<=2000
default

unregistered

{ce}
/ register

Figure 2.18: Reconfiguration Chart for the RailCab’s Registree Role Behavior

Observe that the configurations also have to be regarded when several role
statecharts are refined to construct a component behavior. This is necessary due
to the limitation of resources in mechatronic systems. It might for example not be
safe for the system, that the DistanceController is required by two implementing
role statecharts at the same time. Consequently, this conflict has to be resolved
when creating the component behavior. It can also be noticed, however, that the
configuration specifications in reconfiguration charts can be treated as orthogonal
states for the corresponding superstate. Accordingly, restricting combinations of
states and combinations of configurations can be dealt with in the same way for
the construction of the component behavior. For this reason the synthesis proce-
dure proposed in this paper concentrates on state combinations rather than distin-
guishing between states and configurations.
In this chapter we introduced the fundamental concepts of this paper. This in-
cludes the modeling language MECHATRONIC UML as well as the underlying
timed automaton model and the corresponding property specification language
TCTL. As the behavioral models of MECHATRONIC UML can be transformed to
semantically equivalent timed automata models [BGHS04], the remainder of this
paper concentrates on the timed automaton model. In the next chapter we define
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the synthesis procedure, which computes the component behavior for a given set
of role behaviors and specified composition rules.
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Chapter 3

Synthesis of Component Behavior

This chapter forms the main part of this paper. Here, we present the formalisms to
define composition rules (section 3.1) and the synthesis algorithm to automatically
synthesize the behavior of a MECHATRONIC UML component.

The behavioral models of MECHATRONIC UML, by means of real-time stat-
echarts and reconfiguration charts (see section 2.2), are based on the semantics
of timed automata. This means that every real-time statechart and reconfigura-
tion chart can be transformed into a semantically equivalent timed automaton (cf.
section 2.2.1, section 2.2.3 and [BGHS04]). Consequently, we define the com-
plete synthesis procedure on the basis of timed automata. This also includes the
definition of composition rules.

We begin this chapter by defining the formalisms to specify composition rules
(section 3.1). After that, we describe the synthesis procedure, which also includes
the definition of an appropriate refinement relation for the synthesized timed au-
tomaton (section 3.2).

3.1 Composition Rules

Generally speaking, system properties can be specified in terms of safety and live-
ness properties for a given behavioral specification [Lam77, Hen92]. Safety prop-
erties in general state that something bad will never happen during the execu-
tion of a program. Liveness properties in contrast state that something good will
happen eventually. Transferring this to the context of automata synchronizations,
these properties always concern two or more automata. Consequently, a safety
property for synchronization states that something bad will never happen, when
executing the corresponding automata in parallel, while a liveness property for
synchronization expresses that something good will eventually happen during this
parallel execution. When we mention these synchronization properties in the fol-

51
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lowing, we will simply refer to them as safety or liveness properties, unless there
is a possibility of confusion with the general form of these properties.

Transferring these properties to the composition rules proposed in this paper,
we are able to specify both safety and liveness properties. Safety properties can
be specified (1) by means of state composition rules in terms of forbidden state
combinations of the parallel execution and (2) by means of event composition au-
tomata by adding further time constraints to time guards of selected transitions.
Liveness properties in turn can be specified through state composition rules and
event composition automata by adding further time constraints to location invari-
ants of location combinations of the parallel execution (cf. progress conditions of
timed automata, section 2.1).

In order to specify synchronization behavior for a given set of timed automata,
we introduce the syntax and semantics of the composition rule formalisms in this
section. As already mentioned above, composition rules are subdivided into state
composition rules as well as event composition automata.

3.1.1 State Composition Rules

When roles of coordination patterns are assigned to components, certain combi-
nations of states within their behavioral models might be forbidden due to given
system requirements. Consequently, we need a formalism to synchronize the af-
fected timed automata by means of restricted state combinations. This formalism
has to fulfill the following requirements: (1) It needs to be easy to use for system
developers, such that a developer does not need to learn an entirely new language
and (2) it has to be so exact that it can be utilized to automatically remove the
specified state combinations from a parallelly composed timed automaton. This
formalism is described and defined formally in the following by the notion of state
composition rules.

Before we give the formal definition of the syntax of state composition rules,
we exemplify the formalism using the example of the RailCab project (see section
1.1).

Assume an instance of a RailCab component RC1 taking part in both a convoy
and a registration coordination pattern (cf. section 2.2.1). As a consequence, the
corresponding automata of the coordination roles are executed in parallel inside of
the RC1 component. In this section we abstract from coordination patterns being
specified using realtime statecharts and use timed automata instead.1 The timed
automaton for the rear role is depicted in figure 3.1; the timed automaton for the

1Note that every realtime statechart can actually be transformed into a semantically equivalent
timed automaton (see section 2.2.1). We do not consider this transformation in this section, though,
in order to simplify the illustrating examples.
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registree role is depicted in figure 3.2. Both automata correspond to the behaviors
described in the previous chapter (see section 2.2.1).

startConvoy?

breakConvoy?

cr := 0
convoyProposal!

waiting convoy

cr > 999

cr <= 1000

cr < 1000
noConvoy

Figure 3.1: Rear Role Timed Automaton of the Convoy Pattern

performUpdate?

requestUpdate!

unregister!

ce1 := 0

unregister!

register!

unregistered

ce2 <= 500

registered waiting
ce2 := 0

ce2 < 499ce1 := 0

ce1 <= 2000

ce2 >= 499

Figure 3.2: Registree Role Timed Automaton of the Registration Pattern

When running both automata within one component, assume that a system
requirement states that a RailCab has to be registered in order to form a convoy.
Or specified explicitly as a safety property, it shall never happen that a RailCab is
in state convoy and in state unregistered at the same time.

If this requirement had to be realized manually it would be a time consuming
and error prone task for a developer. Both role automata would have to be refined,
such that the earlier verified requirements do not have to be verified again. Fur-
thermore, the developer might not even know if it can be realized at all within the
scope of a refinement which preserves earlier verification results.

We propose the formalism of state composition rules to specify these types
of requirements on top of the independent role automata. The above stated re-
quirement can for example be expressed with the following state composition rule
r1:

r1 = ¬((unregistered, true) ∧ (convoy, true)).
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Syntactically, a state composition rule consists of a set of so-called location
predicates connected by the Boolean relations meet and join, all together sur-
rounded by a negation. A location predicate specifies a location in combination
with a set of clock valuations, while this combination is not permitted in relation
with other location predicates specified in that rule. The clock valuations of a lo-
cation predicate are specified by clock constraints already known from the timed
automata formalism itself. In the state composition rule r1, the location predicates
(unregistered, true) and (convoy, true) are connected with a Boolean meet. The
clock valuations of both location predicates are specified with true, as for all clock
valuations the constellation of state unregistered and convoy is not permitted.

Assume another, weaker form of this requirement, stating that the combina-
tion of locations unregistered and convoy is allowed, but not for more than 50
time units. Note that this requirement actually forms a liveness property for the
system, as it expresses that the combination of locations unregistered and con-
voy is allowed, but must be left within 50 time units. In the formalism of state
composition rules this is specified by the following rule r2:

r2 = ¬((unregistered, true) ∧ (convoy, cr > 50)).

In this state composition rule r3, the combination of states unregistered and
convoy is forbidden for any clock valuation of the clocks of rear, where cr > 50.
In detail, this is expressed using the location predicate (convoy, cr > 50), which
describes all states of the system, where the rear role automaton is in state convoy
and the clock valuation of cr is smaller than 50. Summarizing this, we are able
to add clock constraints to location predicates, such that certain constellations of
system states can be further forbidden for a given valuation of clocks only.

As we have given an example of state composition rules above, we proceed
with the formal definition of the syntax of state composition rules. We use this
formalization for the definition of the synthesis algorithm (section 3.2) in order
to integrate state composition rules automatically in the component’s behavioral
model.

Before we can give a formal definition of the syntax of location predicates
used in state composition rules, we need to define the form of clock constraints
allowed for location predicates. We do this by the type of upwards closed clock
constraints in the following.

Definition 3.1.1 (Upwards Closed Clock Constraint)
For a set C of clocks, the set Φuc(C) ⊂ Φ(C) of upwards closed clock constraints
is inductively defined by the grammar

ϕ ::= x ∼ n | x− y ∼ n | ϕ ∧ ϕ | true,

where x, y ∈ C, ∼∈ {≥, >}, n ∈ N.
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Upwards closed clock constraints only allow to specify clock constraints or
conjunctions of clock constraints which describe lower bounds for a clock or
the difference of two clocks. In the context of state composition rules this
is used to describe the lower bound of the forbidden time interval for a loca-
tion. Upper bounds are not permitted at this point, as their evaluation might re-
sult in a location invariant for a location which is not downwards closed. This
in turn is not permitted for the syntax of timed automata (see section 2.1.1).
To give a small example for this, assume the location convoy having the loca-
tion invariant I(convoy) = cr < 500. Furthermore assume the state compo-
sition rule r2 referring to the location predicate (convoy, cr < 50) instead of
(convoy, cr > 50). As the state composition rule specifies the forbidden time in-
terval, the evaluation of the rule r2 would result in a location invariant of convoy
being I(convoy) = cr ≥ 50 ∧ cr < 500, which is not allowed by the syntax of
timed automata (see Definition 2.1.4).

Using the definition of upwards closed clock constraints, we can give a proper
formal definition of the syntax of location predicates in the following.

Definition 3.1.2 (Location Predicate)
For a timed automaton A = (L, l0,Σ, C, I, T ) , a location l ∈ L and an upwards
closed clock constraint ϕ ∈ Φuc(C) the set Γ(A) of location predicates γ = (l, ϕ)
is defined by

Γ(A) = L× Φuc(C).

As already shown in the examples, a location predicate is the combination of
a location and downwards closed clock constraint for a timed automaton A, used
to define a forbidden set of clock valuations ϕ for a timed automaton location l.
If all clock valuations shall be forbidden for a location, this can be expressed by
(l, true), as true ∈∈ Φuc(C). Semantically, this means that the location itself
is not allowed in combination with the other location predicates defined in the
corresponding state composition rule. Examples for state predicates have already
been given above in the state composition rules r1 and r2.

We finally define the syntax of state composition rules in the following, which
combines several location predicates for two different timed automata in the
Boolean relations meet and join and explicitly declares this relation as forbidden
using the negation.

Definition 3.1.3 (State Composition Rule)
For two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 =

(L2, l
0
2,Σ2, C2, I2, T2) the set RS(A1, A2) of state composition rules ρ is defined
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by the grammar

ρ ::= ¬ργ
ργ ::= ργ ∧ ργ | ργ ∨ ργ | γ

where γ ∈ Γ(A1) ∪ Γ(A2).

The first part of the grammar defines that each state composition rule is sur-
rounded by a negation, in order to emphasize the fact that it specifies a forbidden
combination of location predicates for the parallel execution of the given timed
automata. The second part specifies the possibility of using the Boolean operators
meet and join in order to express which combination of location predicates is for-
bidden. Note that for reasons of simplicity, a negated atomic location predicate is
also allowed by the grammar, although this cannot specify a compositional prop-
erty for the input automata. For the same reason, we do not distinguish explicitly
between location predicates of A1 and location predicates of A2. Only using loca-
tion predicates of A1 or A2 also would not lead to the specification of a composi-
tional property for A1 and A2. Examples of state composition rules have already
been given with r1 and r2. A more sophisticated rule, stating that additionally cr
must be smaller or equal to 250, if the rear role automaton is in location waiting
and the registree role automaton is in state unregistered also (waiting, cr > 250),
is specified by the rule r3:

r3 = ¬((unregistered, true) ∧ ((waiting, cr > 250) ∨ (convoy, true))).

In this section we introduced compositional rules, which are used to specify
safety or liveness properties for the composition of two timed automata. We also
gave formal definitions for the syntax of state composition rules. Later, we show
how state composition rules can be applied automatically for the parallel execution
of those automata (section 3.2.2). In the next section we introduce the notion of
event composition automata, which are used to describe compositional properties
for event occurrences or sequences of event occurrences.

3.1.2 Event Composition Automata
With the help of state composition rules we are able to synchronize the behavior
of pattern role automata with respect to specified state combinations. They do
not provide the possibility though, to synchronize the automata on the basis of
events and event sequences. For this, we define event composition automata in
this section.
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We start describing the basic concepts of event composition automata and ex-
emplify them using the example of the convoy and the registration coordination
pattern of the RailCab project again (see previous section).

For the specification of communication behavior for roles of coordination pat-
terns, timed automata are used in order to define the possible timed event se-
quences for each role. For the specification of intra-component synchronization
behavior between these roles, we propose the formalism of event composition au-
tomata. For those, we also apply the syntax of timed automata themselves, as
event composition automata are also used to describe possible event sequences of
the component behavior. In contrast to pattern role automata, event composition
automata do not add any further event occurrences, which means that they do not
consume or provide any signals from the channels of the corresponding role au-
tomata. In other words, event composition automata are only monitoring event
occurrences for a given set of role automata while they do not distinguish be-
tween sending or receiving events. They do, however, allow to add further timing
constraints to the monitored event occurrences, also in terms of location invari-
ants for the locations between the monitored events. This way, safety and liveness
properties for the synchronization of several role automata can be specified.

For the pattern role automata of the rear role and the registree role (Figure 3.1
and Figure 3.2), assume a further system requirement stating that a railcab has to
be registered to a base station for at least 2500 time units before starting a con-
voy. Again, this requirement specifies behavior which involves more than one
role behavior and as a consequence has to be specified as synchronization behav-
ior in order to preserve verification results. Furthermore, observe that this require-
ment cannot be implemented using a state composition rule, as it is based on the
occurrence of the startConvoy? event of the rear role automaton. Accordingly,
we specify the event composition automaton eca1 (Figure 3.3) to implement this
requirement.

The event composition automaton eca1 switches from its initial state ec initial
to ec registered along with the occurrence of the register! event. At the same time
it resets its clock ec c1. Resting in location ec registered, it either switches back
to ec initial on the occurrence of unregister! or it switches to ec registeredConvoy
on the occurrence of startConvoy?. Note that the transition from ec registered
to ec registeredConvoy is annotated with the time guard ec c1 >= 2500, which
implies that the corresponding component has to be in state ec registered for at
least 2500 time units. Thus, this clock constraint together with the clock reset
before implements the above given requirement. Once in ec registeredConvoy,
eca1 changes its location only on the occurrence of the event unregister!, as in this
situation the monitoring has to be started once more from the initial location. In all
other situations, the component changes its state of being registered and therefore
this event composition rule does not have to add any further constraints.
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register!

startConvoy?

unregister!

ec_registered ec_registeredConvoy

unregister!

ec_c1 >= 2500

ec_c1 := 0

ec_initial

Figure 3.3: Event Composition Automaton eca1

We introduced the formalism of event composition automata above by infor-
mally describing the basic concepts and exemplifying them using the convoy ex-
ample. In the following, we give the formal definition of event composition au-
tomata. This is later used to describe how event composition automata can be au-
tomatically integrated into the parallel execution of the corresponding pattern role
automata.

Definition 3.1.4 (Event Composition Automaton)
Let A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) be two timed

automata. An event composition automaton AE ∈ RA(A1, A2) is again a timed
automaton as a tuple (LE, l

0
E,ΣE, CE, IE, TE) , where

• LE is a finite non empty set of locations,

• l0E ⊆ L is the initial location,

• ΣE ⊆ Σ1 ∪ Σ2 is the finite set of events to be observed,

• I : L → Φdc(CE) assigns each location a downwards closed clock con-
straint,

• CE is a finite set of clocks, with CE ∩ (C1 ∪ C2) = ∅

• TE ⊆ LE × ΣE × Φ(CE) × 2CE × LE is a finite set of transitions t =
(l, e, g, r, l′) ∈ TE , with

– l ∈ LE is the source location,

– e ∈ ΣE is the observed event,

– g ∈ Φ(CE) is the time guard,
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– r ⊆ CE is a set of clocks to be reset, and

– l′ ∈ LE is the target location.

For two timed automata A1 and A2, we define the syntax of an event com-
position automaton as a timed automaton (see Definition 2.1.4), which only uses
events from A1 and A2 and whose set of clocks is disjoint to the set of clocks of
A1 and to the set of clocks of A2.

Semantically, an event composition automaton only observes event occur-
rences of the given role automata. Consequently, only those events can be used in
an event composition automaton, as others can never be observed. Additionally,
the set of clocks of the event composition automaton is restricted to be disjoint to
the set of clocks of the role automata. This way, it is guaranteed that the event
composition automaton cannot widen the time intervals of event sequences of the
automata to be synchronized. If the event composition automaton could widen
those time intervals, it might happen that earlier verified deadlines of the role au-
tomata cannot be met anymore. Consequently, verification results could not be
guaranteed to be preserved after performing the synthesis.

Summarizing this, an event composition automaton observes a sequence of
event occurrences and possibly adds further time constraints to the corresponding
transitions and to locations inbetween the observed events.

In this section, we defined the formalism of event composition automata as an
adequate formalisms to explicitly define synchronizations between separate role
automata on the basis event sequences. In the scope of the synthesis procedure
defined in this paper, event composition automata and state composition rules are
used to specify safety and liveness properties for the synchronization of a set of
pattern role automata. In the next section, we show how composition rules can
be automatically applied to the role automata and how it is guaranteed that the
externally visible behavior of the particular role automata is preserved.

3.2 Synthesis Algorithm
As we defined the input for the synthesis algorithm, which are the composition
rules and the pattern role automata in the preceding sections, we can proceed
with the specification of the algorithm itself. For reasons of simplification we
only give examples and definitions for the procedure based on two role automata.
The concept can be easily transfered to an arbitrary number of role automata, by
extending the definitions concerning the two input timed automata to sets of timed
automata.

The synthesis algorithm is divided into four distinct steps (see Figure 3.4),
which will be described in detail in the following sections. First, the parallel com-



60 CHAPTER 3. SYNTHESIS OF COMPONENT BEHAVIOR

position of the role automata is computed (section 3.2.1), which forms an explicit
model for the parallel execution of the pattern role automata. On this parallelly
composed timed automaton the composition rules are applied, by removing the
forbidden system states specified by the state composition rules (section 3.2.2)
and by including the specified event composition automata in the parallelly com-
posed automaton (section 3.2.3). In the last step, it is verified that the externally
visible behavior of the particular role automata is preserved, as the changes made
on the parallelly composed automaton by means of the appliance of composition
rules might lead to violations of properties of the original role behaviors (section
3.3).

Check Role
Conformance

Apply State
Composition Rules

Apply Event 
Composition Automata

 
[not role conform]        

[role conform]         

Compute Parallel
Composition

act Synthesize Component Timed Automaton

Synthesized 
Component Behavior

Conflict Description

Timed Automata

Event Composition
Automata

State Composition
Rules

Figure 3.4: Synthesis Algorithm for Timed Automata

3.2.1 Parallel Composition
The parallel composition of the pattern role automata forms an explicit model for
the parallel execution of these automata. This parallel composition is employed to
apply the composition rules by means of state composition rules and event com-
position automata. The synchronization behavior specified by these composition
rules is defined for the parallel execution of the concerned role automata. Hence,
the explicit construction of the model is necessary in order to apply the compo-
sition rules afterwards. After accomplishing the synthesis procedure, this model
can be applied for further analysis of intra-component properties but also for code
generating purposes.

The parallel composition applied in this paper is derived from the parallel
composition operator of the process algebra Calculus of Communicating Systems
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(CCS) [Mil89]. This has already been transfered to timed automata by the notion
of networks of timed automata in [YPD94, Pet99]. The theory of networks of
timed automata has also successfully been implemented in the real-time model
checker UPPAAL [BDL04].

The central idea of networks of timed automata is to construct a product au-
tomaton of the given automata, which allows both synchronization and interleav-
ing of events. However, the pattern role automata applied to one MECHATRONIC

UML component are defined such that they are independent from each other, in
order to allow compositional model checking. Consequently, we do not need to
consider synchronizations in the parallel composition defined here.

Before we formally define the parallel composition, we exemplify it by using
the convoy and registration coordination pattern again. In order to reduce the state
space in the illustration, we use the simplified versions of the rear role and the
registree role automaton depicted in figure 3.5 and figure 3.6 (cf. Figure 3.1 and
Figure 3.2).

breakConvoy?

cr := 0
startConvoy!

convoy

cr >= 200

cr <= 1000

noConvoy

Figure 3.5: Simplified Rear Role
Timed Automaton

unregister! lifetick!

register!
unregistered registered

ce := 0

ce := 0

ce <= 2000

Figure 3.6: Simplified Registree Role
Timed Automaton

The number of locations of both automata is reduced to two. The simplified
rear role automaton can now immediately start the convoy by sending a startCon-
voy!. It can at most rest in convoy for 1000 time units but must stay in this location
for at least 200 time units. In the simplified version of the registree role automa-
ton, the data reception mechanism is replaced by a simple lifetick which has to be
called at least every 2000 time units.

The parallel composition of the simplified rear role and the simplified registree
role automaton is the product automaton depicted in figure 3.7. In this product au-
tomaton, each location of the rear role automaton is combined with each location
of the registree role automaton. Accordingly, the location invariant of the com-
posed location is the conjunction of each corresponding single invariant. The set
of incoming and outgoing transitions of a composed location is the union of the
incoming and outgoing transitions of each corresponding single location. This
way, an interleaving of events is achieved, as an event of the rear role automaton
and an event of the registree role automaton can never occur at the same transi-
tion. A parallel execution of two distinct events is still possible, though, as the
transitions are executed in zero-time and time does not have to pass in locations.
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register!

startConvoy!

breakConvoy?
lifetick!

unregister!

lifetick!

cr := 0

unregister! register!

startConvoy!

breakConvoy?

(noConvoy,unregistered)

ce <= 2000 cr <= 1000 && ce <= 2000

(noConvoy,registered)

(convoy,unregistered)

(convoy,registered)

ce := 0ce := 0

ce := 0

cr := 0

cr <= 1000

cr >= 200

ce := 0
cr >= 200

Figure 3.7: Parallely Composed Timed Automaton

A possible path in this automaton might for example be register! from (no-
Convoy,unregistered) to (noConvoy,registered) followed by startConvoy! from
(noConvoy,registered) to (convoy,registered), while all clocks’ values rest at zero.
Semantically, this means that register! and startConvoy! occur at the same time.
Altogether, this automaton describes exactly the behavior of the parallel execution
of both role automata being started at the same time.

We proceed with the formal definition of the parallel composition. This is in
its general form again a timed automaton, which will later be used to define the
appliance of composition rules.

Definition 3.2.1 (Parallel Composition)
Let A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) be two timed

automata with C1∩C2 = ∅ and Σ1∩Σ2 = ∅. We define the parallel composition
A1 ‖ A2 as a product automaton AP = (LP , l

0
P ,ΣP , CP , IP , TP ), where

• LP = L1 × L2,

• l0P = (l01, l
0
2),

• ΣP = Σ1 ∪ Σ2,

• IP : LP → Φ(C1) ∪ Φ(C2) with IP ((l1, l2)) = I1(l1) ∧ I2(l2),

• CP = C1 ∪ C2,

• TP ⊆ LP × ΣP × Φ(CP )× 2CP × LP , with

– ((l1, l2), e1, g1, r1, (l1
′, l2)) ∈ TP ⇔ (l1, e1, g1, r1, l1

′) ∈ T1, and



3.2. SYNTHESIS ALGORITHM 63

– ((l1, l2), e2, g2, r2, (l1, l2
′)) ∈ TP ⇔ (l2, e2, g2, r2, l2

′) ∈ T2.

This definition of parallel composition defines exactly the above exemplified
concepts of the parallel execution of the two non-synchronizing automata A1 and
A2. The set of locations is constructed by the cross product of the set of locations
of each automaton. Accordingly, the initial location l0P is the combination of
the two single initial locations l01 and l02. As the automaton describes exactly the
behaviors of both input automata, the set of events ΣP is also exactly the union of
all events Σ1 ofA1 and Σ2 ofA2. The set of clocks CP is constructed analogously.
For the invariant of the composed location I((l1, l2)) the invariants of the single
locations I(l1) and I(l2) are connected by a Boolean meet, as both invariants have
to be considered in each state of the parallel execution. The set of transitions
TP exactly reflects the interleaving character of event occurrences of the parallel
execution of both single automata. Either the transition corresponds to a transition
of A1 or to a transition of A2. If the corresponding transition is in T1, the location
of A1 changes from l1 to l1′ in the composed location; if it is in T2 the location
of A2 changes from l2 to l2′ in the composed location. Note once more, that in
contrast to networks of timed automata [YPD94] or the parallel composition of
CCS [Mil89], we do not allow the synchronization of events, as the pattern role
automata of MECHATRONIC UML have to be independent.

Above, we defined an explicit model for the parallel execution of the pattern
role automata. Hence, we can apply state composition rules and event composition
automata to this model as described in the following two sections.

3.2.2 Applying State Composition Rules
In the preceding section, we defined the parallel composition of pattern role au-
tomata as an explicit model for the parallel execution of those. State composi-
tion rules, as defined in section 3.1.1, specify both safety and liveness properties
for this parallel execution. Accordingly, the parallelly composed timed automaton
has to be modified according to the specified state composition rules. This way, an
explicit model for the parallel execution of role automata is obtained, which also
considers the specified safety and liveness properties of state composition rules.

Before we formally define how state composition rules are evaluated and ap-
plied to a parallelly composed timed automaton, we exemplify this by describing
the appliance of the composition rules r1 and r2 (see section 3.1.1, pp. 52–56) to
the parallelly composed automaton constructed in the preceding section (Figure
3.7).

We first examine r1 = ¬ ((unregistered, true) ∧ (convoy, true)) , which
specifies that for any clock valuation the combination of locations unregistered
and convoy is not permitted for the parallel execution. Consequently, we search
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the locations of the parallelly composed automaton, and remove all locations from
this automaton, which refer to the single locations unregistered and convoy. As
the example presented here is constructed only of the two timed automata of the
rear role and the registree role, the only location to be removed is the location
(convoy,unregistered). The resulting automaton is depicted in figure 3.8.

unregister! register!

lifetick!lifetick!

cr := 0
startConvoy!

breakConvoy?

(noConvoy,unregistered)

ce <= 2000

(convoy,registered)(noConvoy,registered)

ce := 0

ce := 0
ce := 0

cr <= 1000 && ce <= 2000

cr >= 200

Figure 3.8: State Composition Rule r1 Applied

Assume that in the general case it might be too restrictive not to allow the con-
stellation of the locations unregistered and convoy at all, as specified by r1. Ac-
cordingly, we apply the rule r2 = ¬((unregistered, true) ∧ (convoy, cr > 50))
instead, as described in the following. This rule states that unregistered and con-
voy is allowed, but not for clock valuations, where cr > 50. Following, we search
the locations again for the location (convoy,unregistered), but this we time do not
remove this location. Instead, we negate the clock constraint cr > 50 and add this
to the location invariant of (convoy,unregistered), resulting in the new location in-
variant cr ≤ 1000 ∧ cr ≤ 50, which is equal to cr ≤ 50. The resulting parallelly
composed automaton is depicted in figure 3.9. Here, the location invariant of the
top right location (convoy,unregistered) changed from cr <= 1000 to cr <= 50 (cf.
Figure 3.7).

Revisiting the appliance of the rule r1, it is actually evaluated in the same way.
The negation of the clock constraint true results in false and cr ≤ 1000 ∧ false
also results in false for the location invariant of (convoy,unregistered). Obviously,
a location with false as its invariant can never be reached. Consequently, the
composed location is simply removed from the automaton, including its incoming
and outgoing transitions.

We briefly described how state composition rules are evaluated and applied to
a parallelly composed timed automaton, using the convoy and registration pattern
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register!

startConvoy!

breakConvoy?
lifetick!

unregister!

lifetick!

cr := 0

unregister! register!

startConvoy!

breakConvoy?

(noConvoy,unregistered)

ce <= 2000 cr <= 1000 && ce <= 2000

(noConvoy,registered)

(convoy,unregistered)

(convoy,registered)

ce := 0ce := 0

ce := 0

cr := 0

cr <= 50

cr >= 200

ce := 0
cr >= 200

Figure 3.9: State Composition Rule r2 Applied

example. We proceed giving the exact definitions of the evaluation of a state
composition rule in the following.

For a given parallelly composed location l and a given state composition rule
r, the first step is to evaluate the location predicates of r in order to find out if the
location invariant of the location l is affected by the rule r. This is defined by the
location predicate evaluation below.

Definition 3.2.2 (Location Predicate Evaluation)
Given two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1), A2 =

(L2, l
0
2,Σ2, C2, I2, T2), their parallelly composition AP = A1 ‖ A2 =

(LP , l
0
P ,ΣP , CP , IP , TP ), a corresponding parallel composed location lp =

(l1, l2), and a location predicate γ = (l, ϕ) with l ∈ L1 ∪ L2 and ϕ ∈
Φuc(C1) ∪ Φuc(C2) the location predicate evaluation is a function γ : LP →
Φuc(CP ) ∪ {false} defined with

γ(lp) =

{
ϕ, iff (l = l1) ∨ (l = l2),

false, else.

The location predicate evaluation returns the forbidden clock valuations in
form of a clock constraint for a parallelly composed location (l1, l2) and a given
location predicate (l, ϕ). If one of the locations referred to in the composed lo-
cation is equal l, the forbidden set of clock valuations is exactly described by ϕ.
If none of those locations is equal to l, permitting the clock valuations described
by ϕ is not applicable, and therefore the set of forbidden clock valuations is de-
scribed by false. This means that for the location (l1, l2) no clock valuation is
restricted by the location predicate (l, ϕ).
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We exemplify this for the location predicate γ1 = (convoy, cr > 50) and the
locations (noConvoy, unregistered) and (convoy, registered) in the following
equations:

γ1((noConvoy, unregistered)) = false,

γ1((convoy, registered)) = cr > 50.

The state predicate evaluation is used as part of each state composition rule
evaluation in order to return the permitted set of clock valuations for each com-
posed location (l1, l2). The state composition rule evaluation is defined as follows.
Definition 3.2.3 (State Composition Rule Evaluation)
Given two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1), A2 =

(L2, l
0
2,Σ2, C2, I2, T2), their parallel composition AP = A1 ‖ A2 =

(LP , l
0
P ,ΣP , CP , IP , TP ), a corresponding parallelly composed location lp =

(l1, l2), and a state composition rule ρ ∈ RS(A1, A2) the state composition rule
evaluation is a function ρ : LP → Φdc(CP ) ∪ {false} defined with

ρ(lp) =


¬ρ1(lp), iff ρ is of the form ¬ρ1,

ρ1(lp) ∧ ρ2(lp), iff ργ is of the form ρ1 ∧ ρ2,

ρ1(lp) ∨ ρ2(lp), iff ργ is of the form ρ1 ∨ ρ2,

γ(lp), iff ργ is the literal γ.

where γ ∈ Γ(A1) ∪ Γ(A2).

Each state composition rule consists of the negation of location predicates or
conjunctions and disjunctions of location predicates. Accordingly, all these forms
have to be considered within the evaluation of a state composition rule.

The negated form of a state composition rule is simply evaluated by negat-
ing the result of the unnegated rule by the rules of Boolean algebra. Note that
the negation of an upwards closed clock constraint is obtained by inverting the
relational operators “>” to ≤ and “≥” to “<”. The conjunctive and disjunctive
forms of state composition rules are in turn evaluated by applying the correspond-
ing Boolean operators on the evaluations of those rules. Finally, the evaluation
of an atomic location predicate is evaluated by means of the location predicate
evaluation as defined above (Definition 3.2.2).

The evaluation of the state composition rule r1 is exemplified for the composed
location (convoy, unregistered) in the following equation:

r1((convoy, unregistered))

= ¬((unregistered, true) ∧ (convoy, true))

= ¬(true ∧ true)
= ¬true
= false.
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As already described above, the evaluation of r1((convoy, unregistered)) re-
sults in false. In conjunction with the invariant I((convoy, unregistered))
this is again equal to false, which results in the removal of the location
(convoy, unregistered) from the parallelly composed timed automaton.

To exemplify the case where the evaluation results in a new invariant for
the corresponding location, we also give the evaluation of r2 for the location
(convoy, unregistered) in the following:

r2((convoy, unregistered))

= ¬((unregistered, true) ∧ (convoy, cr > 50))

= ¬(true ∧ cr > 50)

= ¬(cr > 50)

= cr ≤ 50.

In conjunction with the invariant I((convoy, unregistered)) = cr ≤ 1000 this
results in the new invariant I ′((convoy, unregistered)) = cr ≤ 50 (see also
Figure 3.9).

On the basis of the definitions of the location predicate evaluation and the state
composition rule evaluation we proceed with the definition of the state composi-
tion conform timed automaton, which is the resulting automaton after a given set
of state composition rules have been applied.

Definition 3.2.4 (State Composition Conformance)
Let AP = A1 ‖ A2 = (LP , l

0
P ,ΣP , CP , IP , TP ) be the parallel composition of

the timed automata A1 and A2. Further let RS
1 ⊆ RS(A1, A2) be a set of state

composition rules specified over A1 and A2. The state composition conform, par-
allelly composed timed automaton ASC = (LSC , l

0
SC ,ΣSC , CSC , ISC , TSC) is de-

fined with

• LSC = LP \ LR, where LR = {lp | lp ∈ LP and ∀ ρ1, . . . , ρn ∈ RS
1 :

I(lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp) = false},

• l0SC = l0P ⇔ l0P ∈ LSC ,

• ΣSC = ΣP ,

• ISC : LSC → Φ(CSC) with ISC(lp) = IP (lp) ∧ ρ1(lp) ∧ . . . ∧
ρn(lp),∀ ρ1, . . . , ρn ∈ RS

1 ,

• CSC = CP ,

• TSC ⊆ LSC ×ΣSC ×Φ(CSC)× 2CSC ×LSC , with (lp, e, g, r, lp
′) ∈ TSC ⇔

(lp, e, g, r, lp
′) ∈ TP ∧ lp, lp′ ∈ LSC .
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For a given set of state composition rules RS
1 , the state composition conform

timed automaton is defined as the timed automaton where each of the composition
rules ρ ∈ RS

1 has been applied to each of the locations lP ∈ LP .
The set of state composition conform locations LSC is the original set of lo-

cations LP , without those locations in LR which are restricted by the state com-
position rules. The restricted locations LR are those, whose invariant IP (lp) in
conjunction with each of the state composition rule evaluations ρn(lp) is false.

The initial location l0SC of the state composition conform is the same as the
one of the parallelly composed timed automaton, as long as it is not removed by
the appliance of the state composition rules. The set of events and the set of clocks
stays the same.

The invariant of each location ISC(lp) is defined as the conjunction of the orig-
inal invariant IP (lp) with each of the state composition rules’ evaluations ρn(lp).
Note at this point, that the invariant does not change for state composition rules
that are not applicable for the current location. The reason for this is that the
evaluation in this case simply results in the clock constraint true (see Definition
3.2.2), which is the identity element for conjunction in Boolean algebra.

The set of transitions TSC of the state composition conform timed automaton
is the set of transitions TP of the parallel composition without those transitions
which are incoming or outgoing transitions of restricted locations.

We described and formally defined how state composition rules are applied
to a parallelly composed timed automaton in order to obtain a state composition
conform timed automaton. In the next section we show how event composition
automata are applied to a parallelly composed timed automaton.

3.2.3 Applying Event Composition Automata

We described how synchronization properties specified by state composition rules
are applied to the parallel composition of pattern role automata in the preceding
section. Event composition automata specify additional synchronization behavior
for this parallel composition by means of a special type of timed automata (see
section 3.1.2). Accordingly, event composition automata also have to be applied
to the explicit model of the parallel execution of the pattern role automata, which
is the parallelly composed timed automaton (see section 3.2.1). This forms the
third step in the synthesis algorithm, which implies that state composition rules
(if specified) have already been applied to the parallel composition. Consequently,
in this section we describe how event composition automata are applied to a par-
allelly composed, state composition conform timed automaton.

We proceed with the basic concepts of the event composition automata appli-
ance, followed by an exemplification using again the parallel composition of the
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simplified rear role and registree role automaton. Finally, we give the formal def-
inition of an event composition conform timed automaton in the last part of this
section.

Similar to the parallel composition used for the parallel execution of the role
automata (see section 3.2.1), applying event composition automata can also be
compared to the parallel composition operator of the process algebra Calculus of
Communicating Systems (CCS) [Mil89] or the networks of timed automata for-
malism defined in [YPD94]. The fundamental difference is that for the event
composition automaton appliance only synchronization of events is taken into ac-
count, as event composition automata do not define any new event occurrences
for the parallel execution. Consequently, the result is a product automaton where
the locations of the parallel composition are multiplied with the locations of the
event composition automaton. Furthermore, the transitions of the event composi-
tion automaton are synchronized with the transitions of the parallel composition,
although they do not take the channel concept into account. This means that a
synchronization between a parallelly composed transition and an event composi-
tion automaton transition does not change the event, as the event composition au-
tomaton only observes the event occurrences of the parallel execution. This type
of synchronization can also be denoted as silent, as it does not change the exter-
nal behavior of the parallel composition. Observe that this also forms a notice-
able difference from the synchronizations described by the parallel composition
of CCS and the concept described in networks of timed automata.

What the appliance can change is (1) the set of clock resets of synchronized
transitions, (2) the time guards of synchronized transitions, and (3) the location
invariants of corresponding parallelly composed locations. All of this is only pos-
sible in the scope of the set of clocks of the event composition automaton, which
has to be disjoint to the set of clocks of the parallelly composed timed automa-
ton. This way, it is achieved that the additional constraints do not widen the time
intervals specified within the parallel composition, which then again guarantees
that earlier verified deadlines are still met after applying the event composition
automata. The addition of further time constraints is described in detail below.

For the exemplification of the event composition automaton appliance we use
the modified version eca2 (Figure 3.10) of the event composition automata eca1

(Figure 3.3) which is described in section 3.1.2 (pp. 56–59). This automaton is
modified, such that it corresponds to parallel composition of the simplified ver-
sions of the rear role and the registree role automaton (cf. Figure 3.7). The only
modification is the bottom transition’s event which is changed from startConvoy?
to startConvoy! in accordance with the simplified rear role automaton (Figure
3.5).

We apply the event composition automaton eca2 to the parallel composition of
the simplified rear role and registree role automaton, where the state composition
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register!

startConvoy!

unregister!

ec_registered ec_registeredConvoy

unregister!

ec_c1 >= 2500

ec_c1 := 0

ec_initial

Figure 3.10: Modified Version eca2 of the Event Composition Automaton eca1

(cf. Figure 3.3)

rule r1 has already been applied (Figure 3.8). This results in the timed automaton
depicted in figure 3.11. Note that every location of this automaton refers to both
the locations of the role automata as well as the locations of the event composi-
tion automaton eca2. Furthermore, observe that only those locations which are
reachable through synchronized transitions starting in the initial composed loca-
tion (noConvoy, unregistered, ecinitial) are part of the automaton. The loca-
tion (noConvoy, unregistered, ecregistered) for example can never be reached
from the initial location and therefore it is not included.

Informally, the construction can be described as follows. Starting in the initial
location (noConvoy, unregistered, ecinitial), for each outgoing transition of the
parallelly composed location, the event composition automaton also changes its
location, if there is a transition in the event composition automaton, which refers
to exactly the same event occurrence. In this case, the time guard and clock re-
sets of the event composition automaton transition are integrated into the syn-
chronizing transition of the parallel composition. This is for example the case for
the register! transitions from (noConvoy,unregistered) to (noConvoy,registered)
in the parallelly composed timed automaton and from ec initial to ec registered
in the event composition automaton, where the clock reset ec c1 is added to the
transition. Following the same concept, the time guard ec c1 >= 2500 is added
to the startConvoy! transition from (noConvoy,registered,ec registered) to (con-
voy,registered,ec registeredConvoy). Although not present in the example, loca-
tion invariants can be added through conjunctions as it has been already described
for state composition rules.

Furthermore, observe that the event composition automaton location,
which is referred to by a composed location, only changes from the
source to the target location of a transition, if the event composition au-
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tomaton location has in fact an outgoing transition referring to the same
event occurrence. This can be exemplified examining the breakConvoy?
transition from location (convoy,registered,ec registeredConvoy) to (noCon-
voy,registered,ec registeredConvoy). Here, the event composition automaton lo-
cation does not change as ec registeredConvoy has no outgoing transition for the
event breakConvoy?.

breakConvoy?

lifetick!
lifetick!startConvoy!

lifetick!

unregister!
cr := 0

unregister!
register!

startConvoy!

(noConvoy,unregistered,ec_initial)

ce <= 2000

ce <= 2000

(noConvoy,registered,ec_registeredConvoy

(convoy,registered,ec_registeredConvoy)(noConvoy,registered,ec_registered)

ce := 0,
ec_c1 := 0

ce := 0

ce := 0

ce := 0

cr <= 1000 && ce <= 2000

ec_c1 >= 2500

cr := 0

cr >= 200

Figure 3.11: Event Composition Rule eca2 Applied to the Timed Automaton De-
picted in Figure 3.8

The informal description given above exemplifies the concept of adding time
constraints to transitions and location invariants. This is done by means of silent
synchronizations between the parallelly composed timed automaton and the event
composition automaton. We proceed with the formal definition of the event com-
position conform timed automaton, which is the state composition conform, par-
allelly composed timed automaton to which an event composition automaton has
been applied.

Definition 3.2.5 (Event Composition Conformance)
Let ASC = (LSC , l

0
SC ,ΣSC , CSC , ISC , TSC) be a state composition conform, par-

allelly composed timed automaton originating from the timed automata A1 =
(L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) with C1 ∩ C2 = ∅ and

Σ1 ∩Σ2 = ∅. Furthermore, let AE = (LE, l
0
E,ΣE, CE, IE, TE) ∈ RA(A1, A2) be

an event composition automaton for A1 and A2. We define the event composition
conform and state composition conform, parallelly composed timed automaton
AEC = (LEC , l

0
EC ,ΣEC , CEC , IEC , TEC) with
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• LEC ⊆ L1 × L2 × LE , with (l1, l2, le) ∈ LEC iff (l1, l2) ∈ LSC and
ISC((l1, l2)) ∧ IE(le) 6= false) and (l1, l2, le) is reachable trough TEC ,

• l0EC = (l01, l
0
2, l

0
e), iff (l01, l

0
2, l

0
e) ∈ LEC ,

• ΣEC = Σ1 ∪ Σ2,

• IEC : LEC → Φ(C1) ∪ Φ(C2) ∪ Φ(CE) with IEC((l1, l2, le)) =
ISC((l1, l2)) ∧ IE(le),

• CEC = C1 ∪ C2 ∪ CE ,

• TEC ⊆ LEC × ΣEC × Φ(CEC)× 2CEC × LEC , with

– ((l1, l2, le), e1, g1, r1, (l1
′, l2, le)) ∈ TEC ⇔

((l1, l2), e1, g1, r1, (l1
′, l2)) ∈ TSC ∧

∀ le′ ∈ LE : (le, e1, ge, re, le
′) /∈ TE ,

– ((l1, l2, le), e2, g2, r2, (l1, l2
′, le)) ∈ TEC ⇔

((l1, l2), e2, g2, r2, (l1, l2
′)) ∈ TSC ∧

∀ le′ ∈ LE : (le, e2, ge, re, le
′) /∈ TE ,

– ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1′, l2, le′)) ∈ TEC ⇔
((l1, l2), e1, g1, r1, (l1

′, l2)) ∈ TSC ∧ (le, e1, ge, re, le
′) ∈ TE ,

– ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1, l2′, le′)) ∈ TEC ⇔
((l1, l2), e2, g2, r2, (l1, l2

′) ∈ TSC ∧ (le, e2, ge, re, le
′) ∈ TE .

The event composition conform automaton forms the explicit model for the
parallel execution of the pattern role automata, while also respecting the specified
state composition rules and event composition automaton.

The locations of the event composition conform automatonLEC are a subset of
the cross product L1×L2×LE , including only those locations which are (1) state
composition conform, (2) whose invariant IEC((l1, l2, le)) = ISC((l1, l2))∧ IE(le)
is not equal to false, and (3) which is in fact reachable trough the transitions TEC
of this automaton.

Equal to the definition of state composition conformance (Definition 3.2.4),
the invariant of each event composition conform location (l1, l2, le) is constructed
by the conjunction of the invariant of the state composition conform location
ISC(l1, l2) and the invariant of the event composition automaton location IE(le).

The definition of the set of transitions TEC of AEC differentiates between four
cases. The first two cases describe the transitions which are not synchronized
between ASC and AE . Here it is further distinguished that it is either a transition
where A1 changes its location or where A2 changes it location. In both cases there
is no corresponding transition in TE which could be synchronized. The last two
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cases describe the transitions which are synchronized betweenASC andAE . Here,
it is also further distinguished if A1 changes its location or A2.

Composed transitions which refer to a transition te ∈ TE of the event compo-
sition automaton but not to a transition tsc ∈ TSC of the state composition con-
form automaton are not considered, as te can in this case not be synchronized with
a transition of the state composition conform automaton. Note that these kind of
transitions might actually exist, although the event composition automaton is de-
fined to only listen to those events, which are either in A1 or in A2. Some event
occurrences might be removed by the state composition conformance, though.
This cannot be taken into account for the specification of event composition au-
tomata, as this takes place earlier than the state composition rule appliance from a
developer’s point of view.

For reasons of simplification, we refer to a state composition conform and
event composition conform, parallelly composed timed automaton simply as com-
position conform.

Up to this point, we presented how composition rules by means of state com-
position rules and event composition automata are specified and automatically ap-
plied to the explicit model for the parallel execution of the pattern role automata,
which is their parallel composition. The appliance of composition rules restricts
the timing behavior of the parallel composition, by adding time constraints and re-
moving state combinations. Consequently, it might happen that some relevant be-
havior is completely removed, if a remaining time interval equals zero, or if a sin-
gle state of on role is completely removed. As a result, properties of the particular
role automata, which have been verified in advance, are not necessarily preserved
anymore after the appliance of those rules. How this can be detected is resented in
the following section introducing the notion of observational timed bisimulation
and role conformance.

3.3 Preserving Role Behavior
After composition rules have been applied to the parallelly composed timed au-
tomaton, it is not ensured anymore that the visible behavior of each of the par-
ticular role automata is still preserved. Assume for example, the appliance of an
additional state composition rule r4 = ¬((registered, true) ∧ (convoy, cr >
100)) to the composed timed automaton given in figure 3.11. This results
in a new location invariant (cr<=100 && ce<=2000) for the location (con-
voy,registered,ec registeredConvoy). As a consequence, the outgoing breakCon-
voy? transition can never be enabled, as its time guard cr>=200 can never evalu-
ate to true. Accordingly, the relevant behavior of the convoy role is not anymore
included in the composition conform automaton. Furthermore, note that this is
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not always trivial to see when specifying composition rules, as some relevant be-
havior is removed not before two or more rules are applied. The rule r4 applied on
the original parallel composition (see Figure 3.7), for example, would not remove
the executability of the breakConvoy? transition, as the automaton could switch
to (unregistered,convoy) to execute the breakConvoy? transition.

In this section we deal with this problem by (1) defining a suitable equivalence
relation which has to hold between the original parallel composition and the com-
position conform timed automaton (section 3.3.1) and (2) describing a procedure
which checks if the equivalence relation holds (section 3.3.2) and further modifies
the composition conform automaton in order to try to establish the equivalence
relation if it does not hold (section 3.3.3).

3.3.1 Observational Timed Bisimulation

To discover violations against the original role behavior, we have to find a suitable
equivalence relation which has to hold between the composition conform timed
automaton and each of the role automata. As the behavior of the parallel com-
position of these role automata is equivalent to the behaviors of all role automata
running in parallel (see section 3.2.1), we can also use this parallel composition
for the equivalence check, instead of each single role automaton. Furthermore,
we have to examine the semantical representations of both automata, such that
we are able to make statements about the time intervals of the paths in both au-
tomata. Consequently, we have to define the equivalence relation on the basis of
the timed transition systems (see Definition 2.1.9, Timed Automaton Semantics)
of both automata.

In order to find a suitable equivalence relation, we first have to state which
properties specified by U-TCTL formulas (see section 2.1.3) have to be preserved
by the synthesis procedure. Obviously, preserving all types of U-TCTL formulas
would lead to the fact, that we could hardly add any synchronization behavior in
terms of composition rules. To exemplify this, observe that the U-TCTL formula
∃♦ (convoy∧cr < 2500) exactly specifies those (timed) paths of the composition
conform timed automaton in figure 3.11, which have been removed by the appli-
ance of the composition rules r1 and eca2. If this formula should also evaluate to
true after the synthesis procedure, we would not have been able to apply the given
composition rules. In order to find the types of U-TCTL formulas, which specify
relevant behavior, we assume the following characteristics of real-time systems,
expressable by U-TCTL formulas. In the following, υ, υ1 and υ2 denote state
properties of desired situations while υ̂ denotes a state property of an undesired
situation:
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1. It may be the case that nothing happens: ∃� (¬υ ∧ ¬υ̂).
For the type of real-time systems that interact with an environment (also
referred to as reactive systems), those systems only react to an occurrence of
some event initiated in the environment. If no event occurs, it might happen
that the system simply does not react, not in a good way and not in a bad
way. The rear role automaton, for example, might forever stay in noConvoy,
if no opportunity to build a convoy appears. Assuming that convoy is a
desired and (processing ∧ c > 1000) is an undesired state property, this
can be formalized to ∃� (¬convoy ∧ ¬(processing ∧ c > 1000)).

2. In may be the case that eventually something good happens: ∃♦ υ.
This characteristic corresponds to the specification of a liveness property
(see section 3.1). As for reactive systems it is possible that nothing happens
(see 1.), it can only be specified, that something good will in some cases
eventually happen. The rear role automaton for example will in some cases
eventually be in state processing, where the value of clock c is equal to 500:
∃♦ (processing ∧ c = 500).

3. The occurrence of one good thing always leads to the occurrence of another
good thing: υ1  υ2.
This characteristic corresponds to the bounded response property (see sec-
tion 2.1.3, p. 36), as a special type of a safety property. Observe that it does
not state that one good thing (υ1) happens at all (in accordance with 1.). If
something good happens, however, it is always followed by another good
thing (υ2). The formula processing  ((convoy∨noConvoy)∧c ≤ 1000),
for example, specifies that once in state processing, the rear role automaton
will always switch to state convoy or noConvoy within 1000 time units.

4. It is always the case that something bad never happens: ∀� υ̂.
If something bad (υ̂) never happens in a system, this system is safe. Accord-
ingly, this characteristic corresponds to the specification of a safety prop-
erty. Such a safety property for the rear role automaton would be that it can
never happen that the automaton is in state convoy, and the value of clock c
is greater that 1000: ∀� (processing ∧ c > 1000).

Taking all these characteristics of (reactive) real-time systems into account,
it is straight forward to see that, dealing with safety critical systems, all types
of formulas which specify safety properties are of vital importance. If any of
these formulas is not preserved by the synthesis procedure, this might lead to
high financial damage or even life threatening situations during the runtime of
the system. The types of formulas defining safety properties are described in the
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third and in the fourth characteristic and are further covered by the sub-language
U-ATCTL of U-TCTL (see Definition 2.1.24, U-ATCTL Formula).

Unfortunately, a system that does not act in any way is a safe system, as it does
not violate any U-ATCTL formula. The reason for this is that the path where the
system does nothing, as described by the first characteristic, has to be included in
any U-ATCTL formula. If this was not the case, every system would have to act
in some way, even without a triggering event from the environment. To exemplify
that preserving U-ATCTL is not sufficient in order to preserve the relevant behav-
ior, assume a composition conform automaton to be the single location (noCon-
voy,unregistered). In this automaton, the system may only rest forever in this sin-
gle location. As this is a valid path of the original parallelly composed timed au-
tomaton (Figure 3.7), all U-ATCTL formulas satisfied by the original automaton
are also satisfied by this single location automaton. But obviously, the relevant
behavior of both role automata is no longer included in this automaton. Conse-
quently, preserving all properties which can be specified by U-ATCTL properties
is not enough to preserve the relevant behavior.

As a result, we also have to guarantee that each timed automaton transition
sequence is preserved in at least some of the possible time intervals specified
by the original parallel composition of the role automata. This can be realized by
additionally preserving all U-ECTL formulas (see Definition 2.1.27), which do not
refer to any clock constraints. This way, it cannot only be preserved that if the rear
role automaton is in processing it will always switch to state convoy or noConvoy
within 1000 time units (processing  ((convoy ∨ noConvoy) ∧ c ≤ 1000));
it can also be preserved that the location processing is in fact reachable in the
composition conform automaton (∃♦ processing).

At this point, we additionally have to take into account that real-time coor-
dination patterns specify communication protocols, where each role has another
role as its counter part and a (buffered) communication channel inbetween. Con-
sequently, we have to distinguish between sending and receiving events. Sending
events, which means putting the signal onto a communication channel, can take
place at any time within the original time interval. This is possible because the
sender can assume that the recipient listens on the channel until the end of the
complete time interval, as this is specified by the original role behavior. For re-
ceiving events, however, it has to be preserved that the recipient listens at least
at the end of the original time interval on the channel. This is necessary, as the
recipient does not know at which point in time, within the bounds of the original
interval, the sender puts the event on the channel. If the recipient stops listening
earlier, it might happen that a signal is lost in the channel and the communicating
role automata are in an inconsistent state.

Having the above described requirements in mind, we study the most general
timed equivalence relations in the following, in order to find a suitable equivalence
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relation which fulfills our requirements. The first relation we examine is the timed
simulation relation, as defined in the following (cf. [WL97]).

Definition 3.3.1 (Timed Simulation)
Given two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 =

(L2, l
0
2,Σ2, C2, I2, T2), with C1 ⊆ C2, Σ2 ⊆ Σ1. Furthermore, let SA1 =

(QA1 , q
0
1,Σ1, Tδ1 , TΣ1) and SA2 = (QA2 , q

0
2,Σ2, Tδ2 , TΣ2) be their corresponding

timed transition systems. A1 simulates A2, denoted A2 ≤ A1 iff a timed simula-
tion relation Ω ⊆ QA2×QA1 exists, with (q0

2, q
0
1) ∈ Ω and ∀ ((l2, ν2), (l1, ν1)) ∈ Ω

the following properties hold:

1. ∀ ((l2, ν2), e, (l′2, ν
′
2)) ∈ TΣ2 ∃ ((l1, ν1), e, (l′1, ν

′
1)) ∈ TΣ1 ∧

∀c ∈ C1 : ν ′2(c) = ν ′1(c) :
((l′2, ν

′
2), (l′1, ν

′
1)) ∈ Ω,

2. ∀ ((l2, ν2), (l2, ν2 + δ)) ∈ Tδ2 ∃ ((l1, ν1), (l1, ν1 + δ)) ∈ Tδ1 , δ ∈ R+ :
((l′2, ν2 + δ), (l′1, ν1 + δ)) ∈ Ω.

Additionally, the following property has to hold for A2: ∀ s2 ∈
QA2 (∃ (s2, e, s

′
2) ∈ TΣ2 ∨ ∃ (s2, s

′
2) ∈ Tδ2).

As the elemental property, the timed simulation equivalence requires both
initial timed system states of SA1 and SA2 to be in the equivalence relation.
On this basis, the following two properties are required to hold for all pairs
((l2, ν2), (l1, ν1)) in the relation: (1) For all outgoing event transitions of (l2, ν2) in
the concrete transition system SA2 there exists an equivalent outgoing event tran-
sition of (l1, ν1) in the more abstract timed transition system SA1 with the same
event and the same clock valuations concerning the clocks of A1, such that both
target states again form a tuple in the relation Ω; (2) for all outgoing delay tran-
sitions of (l2, ν2) there also exists an outgoing delay transition in (l1, ν1) with the
same delay δ, such that both target states are also a tuple in the relation. Further-
more, each state of SA2 has to have either an outgoing delay or an outgoing event
transition, which means that there is no time stopping deadlock in A2.

Consequently, all transitions in the timed transition system of SA2 have to be
in SA1 . Additionally, no time stopping deadlocks may be introduced and there-
fore the timed simulation preserves all U-ATCTL formulas.2 Furthermore, ob-
serve that a timed simulation always exists between the original parallelly com-
posed timed automaton and the composition conform version of this automaton

2For a proof for the untimed versions of simulation and ACTL, we refer to [CGP99, pp. 176–
177]. This is directly transferable to timed simulation, as long as no time stopping deadlock is
introduced. For the relation between CTL and TCTL model checking we refer to [TY01, pp. 55–
56].
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by construction, as long as there is no time stopping deadlock introduced by the
appliance of the composition rules. The reason for this is that the composition
rules can never add neither a delay transition nor an event transition to the un-
derlying timed transition system, as this is explicitly restricted by the syntax and
semantics of composition rules.

Unfortunately, we have already shown above that preserving all U-ATCTL for-
mulas does not preserve all relevant behavior of the pattern role automata. Conse-
quently, we examine a stricter equivalence relation in the following by means of
the timed bisimulation equivalence (cf. [TY01]).

Definition 3.3.2 (Timed Bisimulation)
Given two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 =

(L2, l
0
2,Σ2, C2, I2, T2), with C1 ⊆ C2, Σ2 ⊆ Σ1. Furthermore, let SA1 =

(QA1 , q
0
1,Σ1, Tδ1 , TΣ1) and SA2 = (QA2 , q

0
2,Σ2, Tδ2 , TΣ2) be their correspond-

ing timed transition systems. A1 and A2 are bisimulation equivalent, denoted
A2
∼= A1 iff a timed bisimulation relation Ω ⊆ QA2×QA1 exists, with (q0

2, q
0
1) ∈ Ω

and ∀ ((l2, ν2), (l1, ν1) ∈ Ω the following properties hold:

1. ∀ ((l2, ν2), e, (l′2, ν
′
2)) ∈ TΣ2 ∃ ((l1, ν1), e, (l′1, ν

′
1)) ∈ TΣ1 ∧

∀c ∈ C1 : ν ′2(c) = ν ′1(c) :
((l′2, ν

′
2), (l′1, ν

′
1)) ∈ Ω,

2. ∀ ((l2, ν2), (l2, ν2 + δ)) ∈ Tδ2 ∃ ((l1, ν1), (l1, ν1 + δ)) ∈ Tδ1 , δ ∈ R+ :
((l′2, ν2 + δ), (l′1, ν1 + δ)) ∈ Ω,

3. ∀ ((l1, ν1), e, (l′1, ν
′
1)) ∈ TΣ1 ∃ ((l2, ν2), e, (l′2, ν

′
2)) ∈ TΣ2 ∧

∀c ∈ C1 : ν ′1(c) = ν ′2(c) :
((l′2, ν

′
2), (l′1, ν

′
1)) ∈ Ω,

4. ∀ ((l1, ν1), (l1, ν1 + δ)) ∈ Tδ1 ∃ ((l2, ν2), (l2, ν2 + δ)) ∈ Tδ2 , δ ∈ R+ :
((l′2, ν2 + δ), (l′1, ν1 + δ)) ∈ Ω.

Additionally, the following property has to hold for A2: ∀ s2 ∈
QA2 (∃ (s2, e, s

′
2) ∈ TΣ2 ∨ ∃ (s2, s

′
2) ∈ Tδ2).

The timed bisimulation is in such way stricter, that it requires the properties of
simulation to hold in both directions. This means that for each outgoing transition
of a state (l2, ν2) there has to exist an equivalent outgoing transition in (l1, ν1) and
for each outgoing transition of (l1, ν1) there has to exist an outgoing transition in
(l2, ν2). As a result, all paths (starting in the initial timed system states) that are
in SA1 are also in SA2 and vice versa. Correspondingly, the timed bisimulation
preserves all properties, which can be specified through U-TCTL formulas.3

3For a proof for the more general logic TCTL we refer to [TY01, pp. 53–56].



3.3. PRESERVING ROLE BEHAVIOR 79

Unfortunately, preserving all paths of the parallel composition of the pattern
role automata is too strict, as we would not be able to add any synchronization
behavior. What we actually want to obtain is an equivalence relation between
simulation and bisimulation. This implies that the needed equivalence relation
completely includes the notion of simulation. For the other direction, we do not
need to preserve that all paths of the more abstract automaton are included in the
more concrete automaton, but only one path for each possible event. This way
we can obtain an equivalence relation, which preserves U-ATCTL and U-ECTL
as desired.

To achieve this, we weaken the bisimulation relation by applying a different
transition relation, as for example applied in [TY01] for the delay bisimulation.
Our new transitive transition relation realizes the following two concepts: (1)
It abstracts from delay transitions inbetween two states and (2) it abstracts from
internal behavior from each role automaton’s perspective.

Abstracting from delay transitions inbetween two states is a well known con-
cept to weaken a simulation relation and has been proposed more than once
[WL97, TY01, Sei07]. Informally, this means that a transitive transition rela-
tion (s, e, s′) exists between the two states s and s′, if the event transition is an
outgoing transition of one of the delay successors of s.

Abstracting from internal behavior has also been applied in the area of behav-
ioral synthesis [GV06, Sei07]. Though, in other approaches, the internal behavior
needs to be modeled explicitly in terms of so-called τ -transitions. In our approach
we apply this concept as described in the following. From each role automaton’s
perspective, all events of other role automata can be seen as internal behavior of
the component. Transferring this concept to the transitive transition relation, this
means that a transitive transition (s, e, s′) exists between the two states s and s′, if
the event transition is an outgoing transition of a state, which is reachable exclu-
sively trough event transitions with events e′, where all events e′ are of a different
automaton than the event e.

Summarizing all these concepts results in the definition of the transitive tran-
sition relation given in the following.

Definition 3.3.3 (Transitive Transition Relation (Timed Transition System))
Given a timed transition system SA = (QA, q

0,Σ, Tδ, TΣ) of a parallelly com-
posed timed automaton A = (L, l0,Σ, C, I, T ) composed from timed automata
A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2). The transitive tran-

sition relation Tτ (SA) ⊆ QA × TΣ ×QA is defined with

Tτ (SA) = {(s, e, s′) | (s, e, s′) ∈ Tτ1(SA) ∨ (s, e, s′) ∈ Tτ2(SA)}
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where Tτ1(SA) ⊆ QA × TΣ ×QA, Tτ2(SA) ⊆ QA × TΣ ×QA are defined with

Tτ1(SA) = {(s, e1, s
′) | ∃ e1 ∈ Σ1 :

(s, e1, s
′) ∈ TΘ ∨

(∃ e2 ∈ Σ2 : (s, e2, s
′′) ∈ TΘ ∧ (s′′, e1, s

′) ∈ Tτ1) ∨
(∃ (s, s′′) ∈ Tδ ∧ (s′′, e1, s

′) ∈ Tτ1)}
Tτ2(SA) = {(s, e2, s

′) | ∃ e2 ∈ Σ2 :

(s, e2, s
′) ∈ TΘ ∨

(∃ e1 ∈ Σ1 : (s, e1, s
′′) ∈ TΘ ∧ (s′′, e2, s

′) ∈ Tτ2) ∨
(∃ (s, s′′) ∈ Tδ ∧ (s′′, e2, s

′) ∈ Tτ2)}

The transitive transition relation as defined above takes the parallel composi-
tion of two timed automata into account. Furthermore, it is defined on the basis
of the timed transition system of the parallelly composed timed automaton. All
transitions which are in the set of transitive transitions Tτ (SA) are either in the set
Tτ1(SA) or in the set Tτ2(SA) of transitive transitions. The set Tτ1(SA) contains all
transitive transitions where events are exclusively of A1. Accordingly, the set is
constructed by allowing delay transitions and transitions with events of A2 inbe-
tween the source and the target state. The set Tτ1(SA) is constructed analogously
for the events of A2.

As an example, we examine the outgoing startConvoy! transition of the lo-
cation (noConvoy,unregistered) in the original parallel composition of the rear
role and the registree role automaton (Figure 3.7). Observe that it is not
present anymore in the composition conform version of this automaton (Fig-
ure 3.11). Instead, the composition conform automaton has to perform regis-
ter! and at least one lifetick!, before a startConvoy! can be executed. Con-
sequently, there is no outgoing startConvoy! event transition in the state
((noConvoy, unregistered, ec initial), cr = ce = ec c1 = 0) of the corre-
sponding timed transition system. There is an outgoing transitive transition for the
event startConvoy!, however, leading to ((convoy, registered, ec initial), cr =
ec c1 = 2500 ∧ ce = 500), as all transitions inbetween are either delay transition
or event transitions with events from the registree role automaton.

Summarizing this, the transitive transition relation realizes that, for a given
timed automaton transition t of the parallel composition, the more concrete au-
tomaton can now either rest some time in a certain location or execute events
of another automaton first, before executing the transition t. It does not consider,
however, that an event might have been executed already at an earlier point in time,
as required for sending events. This possibility is realized solely by the equiva-
lence relation which is defined below. This equivalence relation, which we call
observational timed bisimulation, realizes exactly all the above stated concepts as
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(1) it completely includes timed simulation, (2) it applies the transitive transition
relation for the direction from the more abstract to the concrete automaton and (3)
it also distinguishes between sending and receiving events for this direction.

Definition 3.3.4 (Observational Timed Bisimulation)
Given two timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 =

(L2, l
0
2,Σ2, C2, I2, T2), with C1 ⊆ C2, Σ2 ⊆ Σ1. Furthermore, let SA1 =

(QA1 , q
0
1,Σ1, Tδ1 , TΣ1) and SA2 = (QA2 , q

0
2,Σ2, Tδ2 , TΣ2) be their corresponding

timed transition systems. A1 and A2 are observational bisimulation equivalent,
denotedA2 � A1 iff an observational timed bisimulation relation Ω ⊆ QA2×QA1

exists, with (q0
2, q

0
1) ∈ Ω and ∀ ((l2, ν2), (l1, ν1)) ∈ Ω the following properties

hold:

1. ∀ ((l2, ν2), e, (l′2, ν
′
2)) ∈ TΣ2 ∃ ((l1, ν1), e, (l′1, ν

′
1)) ∈ TΣ1 ∧

∀c ∈ C1 : ν ′2(c) = ν ′1(c) :
((l′2, ν

′
2), (l′1, ν

′
1)) ∈ Ω,

2. ∀ ((l2, ν2), (l2, ν2 + δ)) ∈ Tδ2 ∃ ((l1, ν1), (l1, ν1 + δ)) ∈ Tδ1 , δ ∈ R+ :
((l′2, ν2 + δ), (l′1, ν1 + δ)) ∈ Ω,

3. ∀ ((l1, ν1), e?, (l′1, ν
′
1)) ∈ TΣ1 ∃ ((l2, ν2), e?, (l′2, ν

′
2)) ∈ Tτ (SA2) ∧

((ν1 6= ν ′1)⇒ (∀c ∈ C1, ν
′
1(c) = 0 : ν ′2(c) = 0)) :

((l′1, ν
′
1), (l′2, ν

′
2)) ∈ Ω,

4. ∀ ((l1, ν1), e!, (l′1, ν
′
1)) ∈ TΣ1 ( ∃ ((l2, ν2), e!, (l′2, ν

′
2)) ∈ Tτ (SA2) ∨

∃ ((l1, ν1−), e!, (l′1, ν
′
1−)) ∈ TΣ1 ∃ ((l′′2 , ν

′′
2 ), e!, (l′2, ν

′
2)) ∈ Tτ (SA2),

∀c ∈ C1 : ν1−(c) < ν1(c) ) ∧
((ν1 6= ν ′1)⇒ (∀c ∈ C1, ν

′
1(c) = 0 : ν ′2(c) = 0)) :

((l′2, ν
′
2), (l′1, ν

′
1)) ∈ Ω

Additionally, the following property has to hold for A2: ∀ s2 ∈
QA2 (∃ (s2, e, s

′
2) ∈ TΣ2 ∨ ∃ (s2, s

′
2) ∈ Tδ2).

The first two properties for states ((l2, ν2), (l1, ν1)) of the relation correspond
to the definition of timed simulation.

The third property realizes that for each event transition of the more abstract
automaton with a receiving event, there exists a transitive event transition in the
more concrete automaton. This implies that there also has to be a corresponding
receiving event transition in the concrete system for the last possible point in time.
If this was not the case, this property would be violated. To exemplify this, as-
sume a transition t1 = ((l1, ν1), e?, (l′1, ν

′
1)) ∈ TΣ1 where the clock valuation ν1

represents the last possible point in time. For this transition t1 there also has to ex-
ist a corresponding transition t2 in Tτ (SA2), and as all delay transitions of SA2 also
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have to be in SA1 (due to the second property), the transition t2 has to be provided
at the same point in time. Consequently, with this property we guarantee that no
event is lost in a communication channel for the reason that A2 stops listening to
the channel too early.

The fourth property is defined similarly, but additionally it is considered that
there might already exist an event transition in SA1 earlier in time, for which there
exists a transitive transition in SA2 . In this case, the target states of the earlier
transitive transition ((l′′2 , ν

′′
2 ), e!, (l′2, ν

′
2)) of SA2 has to be in the simulation relation

together with (l′1, ν
′
1).

Furthermore, observe that for the third and the fourth property, the clock resets
are also regarded by comparing the clock valuations ν1 and ν ′1 of the transition
((l1, ν1), e, (l′1, ν

′
1)) with each other. If they differ, all the clocks which are equal

to zero in ν ′1 also have to be equal to zero in ν ′2 in ((l2, ν2), e, (l′2, ν
′
2)) ∈ Tτ (SA2),

to ensure that no clock reset is lost in the concrete time automaton.
With the observational timed bisimulation defined above, we have a suitable

equivalence relation, which, if established, preserves the relevant behavior in
terms of U-ATCTL and U-ECTL formulas. This equivalence relation is not in-
herently established after the appliance of composition rules, however, as we have
already shown above. What we have also shown, however, is that the simula-
tion part of the relation is established by construction, as long as no time stop-
ping deadlock is introduced. In the remainder of this section, we show how the
zone automaton can be utilized to verify that for all paths of the original parallel
composition, there exists at least one untimed, observational path in the composi-
tion conform automaton. By observational we mean that this path takes into ac-
count that the behavior of other roles can be regarded as internal component be-
havior. This way, we achieve that all U-ECTL formulas, which have been valid
for each single role automaton, are still valid on the parallelly composed, compo-
sition conform automaton. We call this property role conformance. Note that a
role conform, composition conform timed automaton is not necessarily also ob-
servational timed bisimilar to its original parallel composition, as there might ex-
ist time stopping deadlocks in the role conform automaton. This has to be checked
additionally.

3.3.2 Role Conformance
As timed automata semantics generally implies an infinite state space (see section
2.1.1), we need an adequate discrete abstraction of the timed automaton model in
order to perform any formal analysis on it. The zone automaton representation
of Alur (see section 2.1.2.3) is currently the best available approach to this prob-
lem, as it combines an efficient method to reduce the state space while preserving
all relevant timing properties. In addition to that, Alur’s approach exactly fits our
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needs as it abstracts from the actual time interval where a timed automaton tran-
sition is enabled, but instead, only models if a transition is enabled at all starting
in a certain zone location.

The procedure of checking for role conformance is divided itself into two dif-
ferent steps (Figure 3.12): (1) The zone automaton for the state and event compo-
sition conform product automaton is constructed; (2) the language of this zone au-
tomaton is checked against the language of the parallel composition of the single
role automata. Both procedures will be described in detail in the following two
sections.

Analyze Language of the 
Parallelly Composed Zone Automaton 
with respect to Individual Pattern Roles

Construct 
Zone Automaton

 
[else]

[Parallelly Composed Timed Automaton
 refines all individual Pattern Roles]         

act Check Role Conformance

Pattern Role 
Timed Automata

Parallelly Composed 
Timed Automaton

[Composition Rules applied]

Synthesized 
Component Behavior

Conflict Description

Figure 3.12: Algorithm to Verify Role Conformance

Before we formally define the procedure of verifying role conformance, we
exemplify it by using the composition conform timed automaton constructed in
the preceding sections. The first step in the procedure is to construct the zone
automaton, in order to obtain a model of all reachable transitions with respect
to their timing behavior. An extract of the zone automaton constructed from the
composition conform automaton of the rear role, the registree role and composi-
tion rules r1 and eca2 (Figure 3.11) is depicted in figure 3.13. We only show an
extract of this zone automaton as the complete version has 186 zone locations and
396 transitions and therefore cannot be utilized to illustrate the procedure. The ex-
tract contains the initial zone location ((noConvoy,unregistered,ec initial),cr==ce
& ce==ec c1 & ec c1==0) as well as 1 direct and 9 indirect successors. The path
register!, lifetick!, lifetick!, startConvoy!, lifetick!, breakConvoy?, unregister!, for
example, represents a cycle visiting each location of the automaton at least once.4

4We refrain from describing the complete extract, as it can be understood by following the
possible timed paths of the original timed automaton (Figure 3.11).
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noConvoy,unregistered,ec_initial
(cr==ce & ce==ec_c1 & ec_c1==0)

noConvoy,registered,ec_registered
(ce==ec_c1 & ec_c1==0)

register!,true,{ce,ec_c1}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=cr & ce==ec_c1)

unregister!,true,{}

noConvoy,registered,ec_registered
(ce==0 & ec_c1<=2000 & ec_c1<=cr)

lifetick!,true,{ce}register!,true,{ce,ec_c1}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=ec_c1 & ec_c1<=cr & ec_c1-ce<=2000)

unregister!,true,{}

noConvoy,registered,ec_registered
(ce==0 & ec_c1<=cr)

lifetick!,true,{ce}startConvoy!,(ec_c1>=2500),{cr}

register!,true,{ce,ec_c1}

lifetick!,true,{ce}

convoy,registered,ec_registeredConvoy
(2500<=ec_c1 & cr==0 & ce<=2000)

startConvoy!,(ec_c1>=2500),{cr}

noConvoy,unregistered,ec_initial
(ce<=2000 & ce<=ec_c1 & ec_c1<=cr)

unregister!,true,{}

convoy,registered,ec_registeredConvoy
(cr<=1000 & cr-ec_c1<=-2500 & ce==0) lifetick!,true,{ce}

noConvoy,registered,ec_registeredConvoy
(200<=cr & cr<=1000 & cr-ec_c1<=-2500 & ce<=cr)

breakConvoy?,(cr>=200),{}

lifetick!,true,{ce}

noConvoy,registered,ec_registeredConvoy
(200<=cr & cr<=1000 & cr<=ce & cr-ec_c1<=-2500 & ce<=2000)

breakConvoy?,(cr>=200),{}

lifetick!,true,{ce}

startConvoy!,true,{cr}

unregister!,true,{}lifetick!,true,{ce}

startConvoy!,true,{cr}

unregister!,true,{}

register!,true,{ce,ec_c1}

Figure 3.13: Extract of the Zone Automaton of the Composition Conform Timed
Automaton of the Convoy Example (Figure 3.11)
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In a role conform, composition conform timed automaton, each path of the
original parallel composition of the role automata is still present with respect
to time delay and internal behavior. To find out if this is the case in a given
zone automaton, we have to check if each zone location still offers all events
of the corresponding timed automaton location. For the zone location ((noCon-
voy,unregistered,ec initial),cr==ce & ce==ec c1 & ec c1==0), for example, we
have to check if it offers a register! and a startConvoy! event, as those are the
events of the outgoing transitions of the location (noConvoy,unregistered) in the
original parallel composition (see Figure 3.11). The notion of offering behavior
has to take the concept of the transitive transition relation into account (see Defini-
tion 3.3.3, Transitive Transition Relation (Timed Transition System)). While tran-
sitive delay transitions are inherently considered by the construction of the zone
automaton (see section 2.1.2.3), transitive transitions regarding behavior of other
roles (internal behavior) have to be considered explicitly. This means, that for an
event of the rear role automaton, there can be arbitrarily many event transitions of
the registree role automaton inbetween.

To exemplify this procedure, we examine the root zone location ((noCon-
voy,unregistered,ec initial),cr==ce & ce==ec c1 & ec c1==0) if it offers the events
register! and startConvoy!. As register! is directly offered by the zone location,
we only have to search for a startConvoy! event. For this, we are only allowed to
follow transitions annotated with events of the registree role automaton, as start-
Convoy! is an event of the rear role automaton. This transition can be found even
twice, once on the path register!, lifetick!, startConvoy! and once on the path reg-
ister!, lifetick!, lifetick!, . . . , startConvoy!. Consequently, the root zone location of-
fers the same events as the corresponding timed automaton location; we call such
a location consistent.

The above described is sufficient for sending events, but not for receiving
events. For those, we additionally have to check if the latest point in time
of the original transition is preserved by this location. We exemplify this by
examining the outgoing breakConvoy? transition of the zone location ((con-
voy,registered,ec registeredConvoy), 2500<=ec c1 & cr==0 & ce<=2000). The
time interval in which the breakConvoy? transition is enabled is calculated by (cf.
section 2.1.2.3): (1) letting time elapse on the zone of the source zone location,
(2) intersecting the resulting zone of step 1 with the invariant of the correspond-
ing (composition conform) timed automaton location and (3) intersecting the re-
sulting zone of step 2 with the time guard of the (composition conform) timed
automaton transition.5 This time interval has to be compared to the time interval
it should have in order to be enabled to be enabled regarding the location invari-

5The procedure is actually very similar to computing the successor zone, as only clock resets
are not applied.
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ant and the time guard of the original parallelly composed timed automaton. The
original time interval is computed the same way, but using the original location
invariant and time guard. When comparing both of these time intervals, it must be
considered that the composition conform time interval is allowed to start later in
time. This means that only the upper bounds have to be compared. Consequently,
we apply a so-called weakest delay precondition operation (or simply down op-
eration) on both intervals, which basically removes all lower bounds. Now, the
clock zones should be equal. To test this, we subtract the composition conform
zone from the original zone. If the result is an empty zone, both intervals are
equal and the regarded transition of the zone automaton represents the offered be-
havior of the breakConvoy? event. If the result is a non-empty zone, we have to
search for a different transition, following transitions with events of the registree
role automaton, as described above. If no such transition can be found, this zone
location is labeled as inconsistent. For the example we omit this calculation as
neither the location invariant of (convoy,registered,ec registeredConvoy) differs
from the location invariant of (convoy,registered) nor was the time guard of the
breakConvoy? transition changed by any of the composition rules.

The overall procedure checks every zone location of the zone automaton for
consistency, while removing the inconsistent locations and corresponding incom-
ing and outgoing transitions. After any of the zone locations have been removed,
all other zone locations have to be checked again, as their offered behavior might
have changed due to the removal of transitions. If at any time all zone locations are
consistent and the initial zone location has not been removed, the obtained timed
automaton is role conform. Note that due to the removal of zone locations the role
conform timed automaton does not correspond to the zone automaton anymore,
as some timed paths which lead into deadlocks have been removed. This can be
fixed by adding further time guards to transitions. This procedure is described in
detail in the next section (section 3.3.3).

We proceed with the formalization of the procedure. As we have described
above, we have to distinguish between offering of sending events and offering
of receiving events, as the receiving events have to take the upper bounds of the
original time interval into account. Furthermore, we distinguish between the of-
fered behavior of a timed automaton location of the parallel composition of the
role automata and the offered behavior of a zone location of the zone automaton
of the composition conform timed automaton. We start with the definitions for
the offered behavior of a timed automaton location, which computes the offered
behavior for a timed automaton location, starting in a given zone.

Definition 3.3.5 (Offered Sending Behavior (Timed Automaton Location))
For a timed automaton A = (L, l0,Σ, C, I, T ) the offered behavior of an au-
tomaton location l ∈ L and a clock zone ϑ ∈ Ψ(C) is defined by the function
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offers : L×Ψ(C)→ 2Σ with

offers!(l, ϑ) = {e!|∃ (l, e!, g, r, l′) ∈ T : (ϑ⇑ ∧ I(l) ∧ g) 6= false)}.

The offered sending behavior for a given timed automaton location l and a
clock zone ϑ is a set of events which contains all the sending events, which are
reachable from location l starting in the zone ϑ. Those are basically all events
annotated at outgoing transitions of the location l. But additionally it has to be
checked, if the transition is enabled at all, starting in the given zone. Consequently,
we have to (1) let time elapse on the input zone ϑ, (2) intersect it with the invariant
of the location l and (3) intersect it with the guard of the transition. This way, we
find out whether or not the corresponding event of an outgoing transition is offered
for the given zone ϑ.

To exemplify this, we examine the location ((convoy,unregistered),cr<=50) of
the state composition conform automaton depicted in figure 3.9. Furthermore, we
assume that the outgoing breakConvoy? transition was labeled with a breakCon-
voy! instead. The input zone is given with (cr = 0∧ ce ≥ 0). The computation to
find out if the breakConvoy! event is offered is exemplified in the following:

(cr = 0 ∧ ce ≥ 0)⇑ ∧ (cr ≤ 50) ∧ (cr ≥ 200)

= (cr ≤ ce) ∧ (cr ≤ 50) ∧ (cr ≥ 200)

= (cr ≤ ce ∧ cr ≤ 50) ∧ (cr ≥ 200)

= false.

As the result is false, the only offered event of the location
((convoy,unregistered),cr<=50) would be register!, i.e.:

offers!((convoy, unregistered), cr ≤ 50), (cr = 0 ∧ ce ≥ 0)) = {register!}.
We proceed with the definition of the offered receiving behavior of a timed

automaton location. As we have already described above, the offered receiving
behavior has to take the upper bounds of the original interval into account, while
it has to abstract from lower bounds. Consequently, we need an operation on
clock zones, which removes the lower bounds, similar to the time elapse opera-
tion (see Definition 2.1.13), which removes the upper bounds. We call this the
weakest delay precondition or down operation (cf. [BY03, p. 106]) as defined in
the following.
Definition 3.3.6 (Weakest Delay Precondition on Clock Zones)
For a clock zone ϑ ∈ Θ(C) the weakest delay precondition (also referred to as
down operation) denoted ϑ⇓ is defined with

ϑ⇓ = {ν | ∀ ν ′ ∈ ϑ,∀ c ∈ C, ∀ δ ∈ R+ :

(∀ c ∈ C : δ ≤ ν ′(c))⇒ ν(c) = ν ′(c)− δ}.
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The weakest delay precondition or down operation on a clock zone basically
removes all lower bounds in that zone. However, constraints on clock differences
also have to be considered. Consequently, all possible values δ are subtracted from
each valuation of the clock zone, as long as no valuation becomes negative. This
means that for a certain clock valuation ν ′ all clocks’ values have to be greater or
equal to zero after the subtraction of delta. The down operation is applied when
calculating the offered receiving behavior as follows.

Definition 3.3.7 (Offered Receiving Behavior (Timed Automaton Location))
For a timed automaton A = (L, l0,Σ, C, I, T ) the offered behavior of an au-
tomaton location l ∈ L and a clock zone ϑ ∈ Ψ(C) is defined by the function
offers : L×Ψ(C)→ 2Σ with

offers?(l, ϑ) = {(e?, ϑe) | ∃ (l, e?, g, r, l′) ∈ T, ϑe = (ϑ⇑ ∧ I(l) ∧ g)⇓ :

ϑe 6= false)}.

In contrast to the offered sending behavior, the offered receiving behavior is a
set of pairs of an event e? and a clock zone ϑe. Again, the input for the offers?

function is a timed automaton location l and a clock zone ϑ. The procedure to
calculate if the corresponding transition of the event is enabled at all is equivalent
to the one of offered sending behavior. Though in this procedure, the resulting
time interval is used to represent the zone, where the event e? is enabled. There-
fore, the lower bounds are removed by applying the down operation. This has al-
ready been performed at this point, as the lower bounds are not relevant for the
later comparison with the interval of the corresponding event of the composition
conform automaton.

As an example, we examine the location ((convoy,registered),cr<=1000 &&
ce <=2000) and its outgoing breakConvoy? transition of the automaton in figure
3.9. The calculation of the corresponding clock zone ϑe is exemplified in the
following, where the input zone is (cr ≤ 50 ∧ ce = 0):

ϑbreakConvoy?

= ((cr ≤ 50 ∧ ce = 0)⇑ ∧ (cr ≤ 1000 ∧ ce ≤ 2000) ∧ (cr ≥ 200))⇓

= ((cr − ce ≤ 50 ∧ ce ≤ cr) ∧ (cr ≤ 1000 ∧ ce ≤ 2000) ∧ (cr ≥ 200))⇓

= ((cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000) ∧ (cr ≥ 200))⇓

= (cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000 ∧ cr ≥ 200)⇓

= cr − ce ≤ 50 ∧ ce ≤ cr ∧ cr ≤ 1000.

Observe the removal of the lower bound ce ≥ 200 by the appliance of the
down operation. As has already been described above, this is removed to make
the zone comparable only regarding the upper bounds and the bounds on clock
differences.
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Above, we have defined the computation of the offered behavior of a timed
automaton location with respect to a given clock zone. In the following we define
the offered behavior of a zone location originating from a composition conform,
parallelly composed timed automaton. As we have already defined for the obser-
vational timed bisimulation (Definition 3.3.4), we have to take into account that
for a certain event, events of other roles can be seen as internal behavior of the
corresponding component. Consequently, we have to define a transitive transition
relation also for the zone automaton, in order to compute the offered behavior of
a zone location.
Definition 3.3.8 (Transitive Transition Relation (Zone Automaton))
For a zone automaton ZA = (SΘ, s

0,Σ, C, TΘ) constructed from a composition
conform timed automaton A = (L, l0,Σ, C, I, T ) which again is composed from
timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) the

set of transitive transitions Tτ is defined with

Tτ = {((s, e, s′), spre) | ((s, e, s′), spre) ∈ Tτ1 ∨ ((s, e, s′), spre) ∈ Tτ2}

where

Tτ1 = {((s, e1, s
′), spre) | ∃ e1 ∈ Σ1 : (s, e1, s

′) ∈ TΘ, spre = s ∨
(∃ e2 ∈ Σ2 : (s, e2, s

′′) ∈ TΘ, spre = s′′ ∧
∃ e1 ∈ Σ1 : ((s′′, e1, s

′), spre) ∈ Tτ1)}
Tτ2 = {((s, e2, s

′), spre) | ∃ e2 ∈ Σ2 : (s, e2, s
′) ∈ TΘ, spre = s ∨

(∃ e1 ∈ Σ1 : (s, e1, s
′′) ∈ TΘ, spre = s′′ ∧

∃ e2 ∈ Σ2 : ((s′′, e2, s
′), spre) ∈ Tτ2)}.

The transitive transition relation for a zone automaton differs from the transi-
tive transition relation for a timed transition system (Definition 3.3.3) in two main
points: (1) The delay transitivity is not considered explicitly, as it is implicitly
considered by the construction of the zone automaton (see section 2.1.2.3) and (2)
the zone location spre, which directly offers a transition with the corresponding
event, is annotated at each transitive transition, as it is needed for the compari-
son of the time intervals of the receiving event. We call this zone location last
predecessor of a transitive transition relation. All other parts of the definition are
equal to the definition for the timed transition system, except that this definition is
defined on the basis of a zone automaton.

We exemplify the transitive transition relation by examining the zone location
((noConvoy,unregistered,ec initial),cr==ce & ce==ec c1 & ec c1==0) of the zone
automaton extract of figure 3.13. Assume that Tτ−s1−registree represents the set
of transitive transitions for the registree role automaton and that Tτ−s1−rear repre-
sents those for the rear role timed automaton, while only the outgoing transitive
transitions of the root zone location are regarded.
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As the first and only outgoing transition of the initial zone location is annotated
with register!, the only (transitive) transition regarding the registree role events is
this register! transition, i.e. that

Tτ−s1−registree = {((s1, register!, s2), s1)},

with

s1 = ((noConvoy, unregistered, ec initial), cr = ce = ec c1 = 0) and
s2 = ((noConvoy, registered, ec registered), ce = ec c1 = 0).

For the events of the rear role automaton, we have to look for the startConvoy!
transitions following the paths register!, lifetick!, startConvoy! and register!, lifet-
ick!, lifetick!, startConvoy!. Consequently, the set Tτ−rear contains two transitive
transition tuples, i.e. that

Tτ−s1−rear = {((s1, startConvoy!, s5), s3), ((s1, startConvoy!, s6), s4)}

where

s3 = ((noConvoy, registered, ec registered),

ce = 0 ∧ ec c1 ≤ 2000 ∧ ec c1 ≤ cr),

s4 = ((noConvoy, registered, ec registered), ce = 0 ∧ ec c1 ≤ cr) and
s6 = ((convoy, registered, ec registeredConvoy),

ec c1 ≥ 2500 ∧ cr = 0 ∧ ce ≤ 2000).

and s5 is not depicted. Accordingly, the set of all outgoing transitive transitions
Tτ−s1 of s1 is the union of the sets Tτ−s1−rear and Tτ−s1−registree, i.e. that Tτ−s1 =
Tτ−s1−registree ∪ Tτ−s1−rear.

The transitive transition relation is applied in the calculation of the offered
behavior of a zone location. This offered behavior is defined in the following,
starting with the definition of the offered sending behavior.

Definition 3.3.9 (Offered Sending Behavior (Zone Location))
For a zone automaton ZA = (SΘ, s

0,Σ, C, TΘ) constructed from a composition
conform timed automaton A = (L, l0,Σ, C, I, T ) which again is composed from
timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) the

offered behavior of an zone location (l, ϑ) is defined by the function offers :
L×Ψ(C)→ 2Σ with

offers!(s) = {e! | ((s, e!, s′), spre) ∈ Tτ}.
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The offered sending behavior of a zone location returns the set of sending
events offered by the input zone location s. Those events are all the events which
are reachable trough transitive transitions starting in s. As for sending events, the
time interval in which the event is enabled is not of relevance, the zone location
spre of each transitive transition tuple is simply not further regarded in this def-
inition. The set of offered sending events for the initial zone location ((noCon-
voy,unregistered,ec initial),cr==ce & ce==ec c1 & ec c1==0) of the example zone
automaton in figure 3.13 has been computed in the previous example of the transi-
tive transition relation and accordingly is {register!, startConvoy!}. We proceed
with the definition of offered receiving behavior of a zone location.

Definition 3.3.10 (Offered Receiving Behavior (Zone Location))
For a zone automaton ZA = (SΘ, s

0,Σ, C, TΘ) constructed from a composition
conform timed automaton A = (L, l0,Σ, C, I, T ) which again is composed from
timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1) and A2 = (L2, l

0
2,Σ2, C2, I2, T2) the

offered behavior of an zone location (l, ϑ) is defined by the function offers :
L×Ψ(C)→ 2Σ with

offers?(s) = {(e?, ϑe) | ∃ ((s, e?, s′), (l, ϑ)) ∈ Tτ ,∃ (l, e?, g, r, l′) ∈ T,
ϑe = (ϑ⇑ ∧ I(l) ∧ g)⇓ : ϑe 6= false}.

Similar to the offered receiving behavior of a timed automaton location (Def-
inition 3.3.7), the offered receiving behavior of a zone location consists of tuples
of receiving events e? and corresponding clock zones ϑe. These clock zones again
represent the time interval in which the event is offered. For this time interval,
the last predecessor of the transitive transition relation is taken into account. This
is necessary, as the clock zone possibly changes along the transitions and loca-
tions inbetween. Therefore, the clock zone right before the actual transition of-
fering e? is needed to compute the actual time interval for the event. The time
interval is computed as already described for the offered receiving behavior of a
timed automaton location (see Definition 3.3.7). Note also that the location in-
variant of the last predecessor and the time guard of the corresponding outgoing
transition is used, as those define the correct upper bounds for the time interval.
Again, the down operation is applied to remove the lower bounds. We omit the
exemplification, as it is already described in detail at the beginning of this section.

To verify that a zone location originating from the composition conform timed
automaton is consistent, we have to analyze if the set of offered events is equal to
the set of offered events of the original parallel composition of the role automata.
In detail, this includes to analyze the offered sending and receiving events. For
the sending events, it is sufficient to solely verify that the sets of reachable events
are equal. For receiving events, the time intervals in which the corresponding
transitions are enabled additionally have to be compared. As the lower bounds
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have been removed from both of these time intervals, the comparison is performed
by subtracting one clock zone from the other. This operation of subtraction on
clock zones is defined in the following.

Definition 3.3.11 (Subtraction on Clock Zones)
For two clock zones ϑ1, ϑ2 ∈ Θ(C) the subtraction ϑ2 − ϑ1 is defined with

ϑ2 − ϑ1 = {ν | ν ∈ ϑ2 ∧ ν /∈ ϑ1}.

The subtraction on clock zones is defined equally to subtraction on sets, as a
clock zone is nothing else than a set of clock valuations (see Definition 2.1.10,
p. 25). Accordingly, when subtracting a clock zone ϑ1 from a clock zone ϑ2, we
simply remove all clock valuations which are in ϑ1 and ϑ2 from ϑ2 and return
the modified ϑ2. If the resulting clock zone is empty, ϑ1 and ϑ2 are equal. This
property is taken advantage from, when comparing two clock zones for equality,
in order to find out if one transition offers a receiving event until the end of the
complete original time interval of the role automaton.

We proceed with the final definition of role conformance on the basis of a
composition conform timed automaton and the original parallel composition of
the role automata.

Definition 3.3.12 (Role Conformance)
Let A = (L, l0,Σ, C, I, T ) be a composition conform, parallelly composed
timed automaton originating from timed automata A1 = (L1, l

0
1,Σ1, C1, I1, T1)

and A2 = (L2, l
0
2,Σ2, C2, I2, T2) and the event composition automaton AEC =

(LEC , l
0
EC ,ΣEC , CEC , IEC , TEC). Further let ZA = (SΘ, s

0,Σ, C, TΘ) be the cor-
responding zone automaton and letAP = (LP , l

0
P ,ΣP , CP , IP , TP ) be the parallel

composition A1 ‖ A2. We define A to be role conform iff

∃ Z ′A = (S ′Θ ⊆ SΘ, s
0,Σ, C, T ′Θ ⊆ TΘ)

and

∀ ((l1, l2, le), ϑ) ∈ S ′Θ :

offers!(((l1, l2, le), ϑ)) = offers!((l1, l2), ϑ) ∧
offers?(((l1, l2, le), ϑ)) ⊇ offers?((l1, l2), ϑ),

where (l1, l2) ∈ LP and
(e?, ϑe) ∈ offers?(((l1, l2, le), ϑ)) = (ep?, ϑep) ∈ offers?((l1, l2), ϑ)⇔
e? = ep? ∧ ϑep − ϑe = false.

A composition conform timed automaton A is also role conform to the paral-
lel composition AP = A1 ‖ A2 of the original role automata A1 and A2, if there
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exists a corresponding zone automaton Z ′A, with possibly less zone locations and
corresponding transitions, where each zone location is consistent. This means that
each zone location ((l1, l2, le), ϑ) ∈ Z ′A offers the same behavior as its correspond-
ing timed automaton location (l1, l2) ∈ AP starting in the zone ϑ. Furthermore, a
zone location offers the same behavior if the sets of sending events are equal and
if the set of receiving events of the zone location contains all tuples (e?, ϑe) of
the original timed automaton location. Note that it might contain more tuples, as
there might exist offered receiving events, where the time interval is smaller than
the original one.

We only presented an extract of the example zone automaton of the compo-
sition conform timed automaton constructed in the preceding sections. Conse-
quently, we complete the example by affirming that all zone locations of this
zone automaton are in fact consistent and therefore the corresponding compo-
sition conform timed automaton is also role conform. Additionally, we employed
the model checker UPPAAL to verify that the automaton does not contain any
time-stopping deadlocks. Consequently, the example automaton is also observa-
tional timed bisimulation equivalent to the parallel composition of the original
role automata.

However, this does not always have to be the case. Furthermore, the defini-
tion of role conformance only requires a zone automaton Z ′A to be existent, not
that the original zone automaton ZA, which corresponds to the composition con-
form timed automaton produced by the synthesis algorithm, is equal to Z ′A. Con-
sequently, those zone locations of the original zone automaton ZA which are not
consistent have to be removed, in order to avoid situations where the timed au-
tomaton executes transitions which lead foreseeable into deadlocks. How this can
be achieved is presented in the next section.

3.3.3 Preserving Deadlock Freedom
For a role conform, composition conform timed automaton A it is not ensured
that some paths exist, where not all behavior of the corresponding role automata
is refined properly. Though, as the composition conform automaton is also role
conform, we know that a zone automaton Z ′A exists which has two relevant prop-
erties: (1) it is equal to the zone automaton ZA of the composition conform timed
automaton except that is has less zone locations and (2) its corresponding timed
automaton refines the behavior of the individual role automata on all paths of the
zone automaton. Consequently, to ensure that no transition of the role conform
time automaton leads into a deadlock situation, we have to transform the zone au-
tomaton, where some zone locations have been removed, into a timed automaton.

To exemplify the procedure, we modify the simple rear role automaton and the
simple registree role automaton (see Figure 3.5 and Figure 3.6, p. 61) as depicted
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in figure 3.14 and figure 3.15. Both automata can now rest at most one time unit
in each location. Furthermore, observe that they also have to rest at least one time
unit in location convoy and registered respectively. When they switch back to
their initial location, their corresponding clock is reset.

breakConvoy?

cr := 0

cr := 0

startConvoy!
noConvoy convoy

cr >= 1

cr <= 1 cr <= 1

Figure 3.14: Modified Simple Rear
Role Timed Automaton

unregister!

ce := 0

ce := 0

register!
unregistered registered

ce >= 1

ce <= 1 ce <= 1

Figure 3.15: Modified Simple Reg-
istree Role Timed Automaton

We now construct the parallel composition of these automata and apply the
state composition rule r1 = ¬((unregistered, true) ∧ (convoy, true)). As we
do not apply any event composition automaton, the resulting automaton (Figure
3.16) is composition conform.

unregister! register!

cr := 0

cr := 0
ce := 0

startConvoy!

breakConvoy?

(noConvoy,unregistered)

cr <= 1 & ce <= 1

(convoy,registered)(noConvoy,registered)

ce := 0

ce >= 1

cr >= 1

cr <= 1 & ce <= 1

cr <= 1 & ce <= 1

Figure 3.16: Composition Conform Timed Automaton of the Modified Simple
Rear Role and Simple Registree Role Automata (Figure 3.14 and Figure 3.15)

In order to test for role conformance, we now create the corresponding zone
automaton using the procedure described in section 2.1.2.3. The resulting zone
automaton is depicted in figure 3.17.

Observe that every zone location of this zone automaton is consistent, except
the location ((convoy,registered),cr-ce==-1 & ce==1), which has no outgoing tran-
sitions. If we remove this location, we obtain a zone automaton where every zone
location offers the required events of the original role automata. Therefore, the
composition conform timed automaton is also role conform. Though, it contains
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noConvoy,unregistered
(cr==ce & ce==0)

noConvoy,registered
(cr<=1 & ce==0)

register!,true,{ce}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

convoy,registered
(cr==0 & ce<=1)

startConvoy!,true,{cr}

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

register!,true,{ce}

noConvoy,registered
(cr-ce==-1 & ce==1)

breakConvoy?,(cr>=1),{cr}

unregister!,(ce>=1),{ce}

convoy,registered
(cr-ce==-1 & ce==1)

startConvoy!,true,{cr}

convoy,registered
(cr==ce & ce==0)

startConvoy!,true,{cr}

breakConvoy?,(cr>=1),{cr}

Figure 3.17: Zone Automaton for the Composition Conform Timed Automaton
of figure 3.15
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paths which do not offer the required events of the individual role automata cor-
rectly. These are all paths which lead to location ((convoy,registered),cr-ce==-1
& ce==1) through the startConvoy transition. Therefore, we have to remove this
(timed) transition from the timed automaton, in order to obtain a timed automa-
ton, where no execution of a transition leads into a deadlock. This removal is
described by the following definition of a zone automaton transition removal.

Definition 3.3.13 (Zone Automaton Transition Removal)
For a zone automaton ZA = (SΘ, s

0,Σ, C, TΘ) constructed from a composition
conform timed automaton A = (L, l0,Σ, C, I, T ), a timed automaton transition
t = (l, e, g, r, l′) ∈ T , a source zone location s = (l, ϑ) ∈ SΘ and a zone automa-
ton transition tΘ = (s, e, s′), the transition tΘ is removed from the timed automa-
ton A, and therefore also from the zone automaton ZA by replacing the guard g of
transition t with the guard gr defined with

gr = g ∧ (true− (ϑ⇑ ∧ I(l))).

In order to remove this zone automaton transition from the corresponding
timed automaton, we have to replace the time guard of the transition t by a mod-
ified time guard gr. This time guard intersects the original time guard g with the
interval which is not restricted. This interval is computed by subtracting the re-
stricted interval of the source zone location from the universal set of clock valua-
tions true. The result is guard gr which includes the clock valuations of the orig-
inal guard g and removes those clock valuations of the guard which enable the
transition in the concerned zone location l.

For the guard of the startConvoy! transition of the composition conform timed
automaton, the computation results in the new guard of the transition depicted
in figure 3.18. Observe that the guard contains a disjunction, which is actually
not allowed by the definition of a general clock constraint (see Definition 2.1.1,
p. 14, General Clock Constraint). This can be resolved by splitting the transitions
into two transitions with same event and clock resets, but obtaining their time
guards from the different constraints of the original disjunctive time guard. In the
example, we omitted this procedure to simplify the illustration.

The zone automaton for the modified version of the role conform automaton
is depicted in figure 3.19. Obviously, every path of this zone automaton correctly
refines the behavior of the individual role automata. Correspondingly, we suc-
cessfully removed the transition leading into a deadlock from the corresponding
timed automaton.

It is possible, though, that there exist time stopping deadlocks in any of the
zone locations which is not visible by only analyzing the outgoing transitions
of all zone locations. Consequently, we have to utilize the model checker UP-
PAAL to search for time stopping deadlocks. Unfortunately, UPPAAL even finds
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unregister! register!

cr := 0

cr := 0
ce := 0 startConvoy!

breakConvoy?

(noConvoy,unregistered)

cr <= 1 & ce <= 1

(convoy,registered)(noConvoy,registered)

ce := 0

(ce-cr < 1) | (ce > 1 & cr-ce <= -1)

cr >= 1

cr <= 1 & ce <= 1

ce >= 1

cr <= 1 & ce <= 1

Figure 3.18: Modified Timed Automaton of the Role Conform Timed Automaton
of Figure 3.16

noConvoy,unregistered
(cr==ce & ce==0)

noConvoy,registered
(cr<=1 & ce==0)

register!,true,{ce}

noConvoy,unregistered
(cr==1 & cr-ce==1 & ce==0)

unregister!,(ce>=1),{ce}

convoy,registered
(cr==0 & ce<=1)

startConvoy!,(ce-cr<1)|(1<ce & cr-ce<=-1),{cr}

noConvoy,registered
(cr==1 & cr-ce==1 & ce==0)

register!,true,{ce}

noConvoy,registered
(cr-ce==-1 & ce==1)

breakConvoy?,(cr>=1),{cr}

unregister!,(ce>=1),{ce}

convoy,registered
(cr==ce & ce==0)

startConvoy!,(ce-cr<1)|(1<ce & cr-ce<=-1),{cr}

breakConvoy?,(cr>=1),{cr}

Figure 3.19: Resulting Zone Automaton from the Modified Timed Automaton of
Figure 3.18



98 CHAPTER 3. SYNTHESIS OF COMPONENT BEHAVIOR

a deadlock which is described by the following path (cf. Figure 3.18): register! at
ce = cr = 0, startConvoy! at ce = cr > 0, deadlock at ce > 0 ∧ cr = 0. This is a
deadlock because the time guard of the only outgoing transition of location (con-
voy,registered) requires to rest in the location for at least one time unit, but this is
not possible due to the location invariant and the value of ce being greater than
zero. Furthermore, this deadlock cannot be removed by simply further restricting
time guards of location invariants. As a consequence, we reason that such dead-
locks still have to be removed manually by the developer. During this process,
the developer may not widen any time intervals, as this would violate the simula-
tion relation between the original parallel composition and the composition con-
form timed automaton. After the removal, the resulting timed automaton has to
be checked once more for role conformance. If it passes this test, the resulting
automaton is observational timed bisimulation equivalent to each of the role au-
tomata and therefore forms a component behavior which is a correct refinement
of each of the single role behaviors.

In this chapter we presented the overall synthesis approach as the main contribu-
tion of this paper. This includes the definition of composition rules, the construc-
tion of an explicit behavioral model for the parallel execution of the individual
role automata and finally the appliance of the composition rules. As this might
result in the violation of before verified behavior of the role automata, we also
proposed a method to check for a correct refinement by the notion of role con-
formance. The defined notion of role conformance together with the defined re-
finement relation of observational timed bisimulation guarantees that not only the
universally quantified properties are preserved but also the untimed existentially
quantified properties. To establish the refinement relation in the resulting timed
automaton, however, time-stopping deadlocks have to be discovered and removed
manually, if they have not already been removed automatically.



Chapter 4

Evaluation

In this chapter, we present implementation results. These presented implementa-
tions were developed in the scope of this paper in order to evaluate the proposed
concepts. The implementation took place in a two phase process, as described in
the following.

In the first phase, the proposed refinement relation (observational timed
bisimulation and role conformance) was implemented. This was carried out by
(1) integrating the existing synthesis implementation of Seibel [Sei07] into Fu-
jaba4Eclipse, the Eclipse version of the Fujaba Real-time Tool Suite1 and (2)
modifying the included refinement relation. This has also been part of an ICSE
Research Tool Demonstration [HGH+09].

Due to the discrete time semantic applied by Seibel, his implementation suf-
fers a state explosion problem already for very small values used for the upper
bounds of clocks (see section 2.1.2.2). In the second phase therefore, the appli-
ance of a continuous time model (see section 2.1.2.3, Zone Automaton) was eval-
uated by prototypical implementing the zone automaton for the considered exam-
ples. Both of these phases will be described in detail in the following two sec-
tions.

4.1 Refinement Relation

In order to evaluate the applicability of the refinement relation proposed in this pa-
per, it has been implemented using the prototypical synthesis implementation de-
veloped by Seibel [Sei07]. For this reason, the first step was to integrate Seibel’s
implementation into the research prototype of the development environment of
MECHATRONIC UML, which is Fujaba4Eclipse. In this section we will shortly

1http://www.fujaba.de
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introduce those parts of Fujaba4Eclipse which are relevant for this paper. Af-
ter that, we describe the evaluated example stemming from the case study used
throughout this paper (see section 1.1) along with the descriptions of extensions
made on Fujaba4Eclipse.

As described in the introduction (chapter 1), MECHATRONIC UML supports
the model driven development of mechatronic systems by applying component-
based software development in combination with real-time coordination patterns.
Consequently, this is also reflected in Fujaba4Eclipse. The screenshot depicted
in figure 4.1 shows on the left-hand side the project explorer which displays an
overview of the developed diagrams grouped by the type of each diagram. The
diagram types which are of relevance for the following example are (from top to
bottom): Application Specific Component Diagram, Pattern Diagrams, Protocol
Statecharts, Realtime Statecharts, Software Component Diagram. We describe
these diagram types briefly in the following while we generally adhere to the order
of the development process.

Software component diagrams are used to define the basic components which
are later used in the system. These diagrams do typically not contain any ports or
interfaces. The components of the case study are the RailCab and the BaseStation
component.

Pattern diagrams define the available real-time coordination patterns. Those
define a number of roles, which can later be applied to one or more components.
In our example, the specified pattern diagrams are Convoy and Registration con-
taining the roles registree, registrar, rear and front respectively.

For each role, a real-time statechart is automatically generated, which de-
fines the communication behavior of that role. In the conventional approach of
MECHATRONIC UML, these real-time statecharts have to be edited in order to
specify the actual communication behavior of the roles of a coordination pattern
[GTB+03]. Examples of the rear role and the registree role realtime statechart are
depicted in figure 4.2 and 4.3. Observe that the sets of events of realtime state-
charts belonging to different coordination patterns have to be disjoint as required
by the compositional model checking approach of MECHATRONIC UML.

Once all role behaviors are specified, an application specific component di-
agram can be created to apply coordination patterns to components in an appli-
cation specific setting. Such a diagram is depicted on the right-hand side of the
screenshot in figure 4.1. This diagram displays the setting applied for the case
study used throughout this paper. Each of the depicted RailCabs components ap-
plies one role of the convoy coordination pattern, such that they can potentially
operate in convoy mode together. The RailCab applying the rear role addition-
ally applies a registree role of a registration pattern, such that it can register to the
BaseStation applying the registrar role.
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Figure 4.1: Fujaba4Eclipse Plug-in Showing the Project Explorer and an Appli-
cation Specific Component Diagram
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As soon as a role is applied to a component, the realtime statechart of the
role is automatically copied to a protocol statechart. Being syntactically equal,
the protocol statechart can then be refined, without influencing the more general
behavior of the role. In our example, all roles are exactly applied once in the
application specific component diagram. Accordingly there exists one protocol
statechart for each role. Note, that these protocol statecharts do not have to be
refined manually within the scope of this paper.

As we gave an overview of the basic principles of developing software for
mechatronic systems in Fujaba4Eclipse, we proceed with the description of the
evaluated case study. As the final synthesis procedure will be presented computing
the component behavior of the RailCab component which applies the rear role
and the registree role, we give short descriptions of the corresponding protocol
statecharts in the following.

Both protocol statecharts (Figure 4.2 and Figure 4.3) generally correspond to
the behaviors of the timed automata presented in section 3.1.1 (Figure 3.1 and
Figure 3.2, p. 53). Therefore, we only describe the differing parts. In both stat-
echarts the upper bounds for clock values are reduced to a minimal value. This
was changed, as the underlying implementation of Seibel applies a discrete time
semantic, which generates one state for each integer valued clock valuation (see
section 5.3). Furthermore, location invariants are deduced automatically from the
highest values used in time guards of the outgoing transition of the correspond-
ing location. This was integrated in order to reduce the state space. Note that
in this implementation, we further abstract from the fact that time can pass dur-
ing the execution of realtime statechart transitions (cf. [BGHS04]). This simpli-
fies the internal transformations between timed automata and realtime statechart
while delivering the same synthesis results.

Before the synthesis of both of these statecharts can be reformed, we specify a
state composition rule as depicted in figure 4.4. This state composition rule corre-
sponds to the state composition rule r1 of section 3.1.1. Accordingly, it specifies
that the RailCab component is not allowed to be in state unregistered and state
convoy at the same time. Observe that we applied a notation for the state compo-
sition rule, which distinguishes between states of different roles by referring to the
role for each location. The location predicate registree.unregistered accordingly
refers to the location unregistered of the registree role protocol statechart.

As soon as all composition rules are specified, the synthesis procedure is ini-
tiated by pressing the right mouse button while the cursor is over the RailCab
component and choosing Synthesize Component Behavior (see Figure 4.4).

In the background of the application, the implemented extension now creates
a discrete time abstraction, called finite integer semantic (FIS), of each protocol
automaton as proposed by Seibel [Sei07, pp. 30–33]. After that, a parallel compo-
sition is applied to both constructed FIS and the states specified by the state com-
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Figure 4.2: Rear Role Protocol Statechart

Figure 4.3: Registree Role Protocol Statechart
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Figure 4.4: Specified State Composition Rule and the Menu Entry to Synthesize
the Component Behavior
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position rule are removed from that parallel composition. On that resulting FIS,
our refinement check is implemented. This means that every state of the FIS is
checked concerning the offered behavior of the original parallel composition (cf.
section 3.3.2). Within this procedure, from on protocol statecharts perspective,
events of the other protocol statechart are treated is internal component behavior.
If all states offer the same behavior with respect to this equivalence relation, the
result is a protocol conform (or role conform) FIS which is then transformed back
to a real-time statechart.

The result of the synthesis procedure is the role conform realtime statechart de-
picted in figure 4.5. For a better understanding of this statecharts we implemented
a layout algorithm which positions the parallelly composed states in a way that all
states of one role form a state of the other role. In our example all states of the reg-
istree behavior (states (registree.unregistered,. . . ), (registree.registered,. . . ) and
(registree.waiting,. . . )) form a node of the rear role behavior. As the primary re-
sult, observe that the state (registree.unregistered,rear.convoy) has been removed
by the composition rule appliance, while the relevant behavior of each protocol
statechart is still present.

Figure 4.5: Synthesized Component Behavior of the RailCab Component

In this section we presented our evaluating implementations concerning the
refinement relation proposed in this paper. The main result is, that this refine-
ment relation seems suitable for the compositional approach of MECHATRONIC
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UML. Though, this was implemented using a discrete time abstraction for timed
automata which suffers a state explosion problem already for very small clock
values. Consequently, we present the experimental results of the continuous time
abstraction of timed automata in the next section.

4.2 Timed Automata Abstraction

As discussed in section 2.1.2.2, a discrete time semantics is not feasible for mecha-
tronic system because of several reasons. One of this reason is the state explosion
problem, which is present if realistic bounds for clocks are used in timed au-
tomata. In this section, we present experimental results comparing our zone au-
tomaton implementation with the implementation of the finite integer semantic
(FIS) developed by Seibel [Sei07].

As the input for the role conformance algorithm is a time abstracting model
of the parallel composition of two or more timed automata, the size of this model
is a crucial parameter to influence the runtime of the algorithm. Consequently,
we focus on the construction of the time abstracting model corresponding to the
parallel composition of two automata.

Before we present the examined automata, we describe both implementations
briefly in the following. Seibel’s synthesis approach based on the FIS is imple-
mented in Java and takes a set of timed automata modeled in UPPAAL as the in-
put. The first step in his implementation is to create a separate FIS for each timed
automaton. After that, the parallel composition of these separate FIS is computed.
Our zone automaton approach makes use of the UPPAAL UDBM library2, which
provides efficient algorithms for clock zones and operations on clock zones im-
plemented in C. In this approach a clock zone is represented by a difference bound
matrix (DBM), which has already been proposed by Dill in [Dil89] as an efficient
data structure to represent convex sets like clock zones. For a detailed overview
on DBMs and operations on DBM we refer to [BY03]. In order to make use of the
UDBM library, we utilized the provided Ruby binding and implemented the al-
gorithms also in Ruby. Our implementation takes an already parallelly composed
timed automaton as the input and computes the corresponding zone automaton.

The automata examined in this section are the simplified version of the rear
role and the registree role automaton already presented in section 3.2.1 (p. 61).
In order to examine the influence of the specified bounds for clock values, we
parameterized the three bounds using the parameters earliestConvoy, maxConvoy
and maxRegister (see Figure 4.6 and Figure 4.7). This way, we are able to ex-

2http://www.cs.aau.dk/ adavid/UDBM/
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amine both, the highest existing bound values as well as the differences between
bound values in one or in different automata of the parallel composition.

breakConvoy?

cr := 0
startConvoy!

convoy

cr >= earliestConvoy

cr <= maxConvoy

noConvoy

Figure 4.6: Parameterized Simple Rear
Role Timed Automaton

unregister! lifetick!

register!
unregistered registered

ce := 0

ce := 0

ce <= maxRegister

Figure 4.7: Parameterized Simple Reg-
istree Role Timed Automaton

The examined configurations of the parameters as well as their evaluations
results are presented in the table depicted in figure 4.8. We started the experiment
by applying small values for all parameters and step by step increasing the values
while also varying the difference between earliestConvoy and maxConvoy and
between maxConvoy and maxRegister. In general, it can be observed that, moving
towards higher clock values, the number of states and transitions but also the
computation time increases much faster in the FIS implementation. In the last
three experiments, the computation could not even be accomplished by the FIS
implementation due to stack overflow errors.

(ealiestConvoy,maxConvoy,maxRegistered) Approach States Transitions Time (ms)
FIS 16 100 5
ZA 16 38 21
FIS 33 226 15
ZA 44 102 68
FIS 200 1600 172
ZA 67 153 104
FIS 245 2102 287
ZA 122 283 344
FIS 645 5397 1917
ZA 195 440 708
FIS 848 7683 4208
ZA 122 283 344
FIS 1233 11301 11662
ZA 254 591 1396
FIS xxx xxx xxx
ZA 192 443 729
FIS xxx xxx xxx
ZA 122 283 338
FIS xxx xxx xxx
ZA 72 168 141

(1,5,10)

(2,10,40)

(2,10,20)

(0,1,1)

(4,5,10)

(1,2,2)

(3,15,30)

(9,10,20)

(5,20,20)

(3,15,20)

Figure 4.8: Evaluation Results for the Different Configurations of the Parameters

In order to examine the results in more detail, we illustrated the results as pre-
sented in figure 4.9, figure 4.10 and figure 4.11. When comparing the differences
in the number of states and the number of transitions between the two approaches,
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it can be noticed that in the results of the FIS with a higher number of states, the
number of transitions increases to much higher values. In the results of the zone
automaton on the other hand, this difference is not that evident. Though, a higher
number of transitions has a negative influence on the role conformance algorithm,
as this searches all possible paths in order to compare the offered events of a state.
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When comparing the computation times of the different computations of both
approaches, it can be observed that the computation of the zone automaton does
not increase proportionally to the absolute values of the parameters in contrast to
the computation of the FIS. For configurations (1,5,10) and (2,10,20) the compu-
tation times for the zone automaton are even equal. This can be explained by the
fact that the zone automaton does not take the absolute values into account which
used for bounds but instead considers the time intervals resulting from differences
between clock values.

Summarizing this evaluation, the zone automaton approach seems to be a fea-
sible approach for efficiently abstracting from the infinite state space inherently
arising from timed automata. It can also be observed, however, that the effi-
ciency varies depending the differences between the values used in clock con-
straints in the corresponding timed automata models. Unfortunately, Seibel’s im-
plementation could not utilized to integrate the zone automaton approach into Fu-
jaba4Eclipse, as already the parallel composition of the input automata is per-
formed on their corresponding finite integer semantics.
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Chapter 5

Related Work

In this chapter we discuss research approaches which are in some points related to
our synthesis approach. By related we mean that all approaches have in common
that a behavioral synthesis is performed in order to apply a given rule (require-
ment) to a given behavioral model, such that the relevant behavior of the orig-
inal model is preserved, or the appliance is rejected. We classify these related
approaches into three major groups: Controller Synthesis, Synthesis of Untimed
Component Behavior and Synthesis of Discrete Time Behavior.

5.1 Controller Synthesis

The field of controller synthesis [AMP95, AMPS98, AT02, BK06, GGR08] deals
with the problem of synthesizing a behavioral model for a controller which inter-
acts with some environment.

In a controller, interaction is specified through alternating actions between the
controller and the environment. Consequently, for the behavioral model a special
type of timed automaton, a timed game automaton [AMP95, MPS95], is applied.
In a timed game automaton, transitions are partitioned into those controllable by
the controller and those controllable by the environment.

The input timed game automaton is typically underspecified (also called open),
such that additional properties have to be integrated by the synthesis procedure
in order to ensure required safety or liveness properties. For the description of
the additional properties, formulas of the linear temporal logic (LTL) [Pnu77],
the metric temporal logic (MTL) [CMP94] or the timed computation tree logic
(TCTL) [ACD90, ACD93] are utilized and therefore form the second part of the
input of the synthesis procedure.

The starting point of the controller synthesis procedure is the open timed game
automaton. On this open model the synthesis procedure is performed, which in-
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tegrates the requirements given as LTL, MTL [BK06] or TCTL formulas [AT02]
into the given model. The output is either a closed timed game automaton or a
diagnostic description, referring to the reason why a property could not be inte-
grated.

The main difference to our synthesis approach is that the given behavioral
model of controller synthesis does not take a compositional character of this model
into account as this is not necessarily given in the underlying controller behavior.
In our approach this is given by the independent pattern role automata. Conse-
quently, the compositionality can also not be considered for the specification of
the properties which have to be synthesized. Altogether, this results in a different
equivalence relation between the original and the synthesized model which in turn
results in different synthesis algorithms.

5.2 Synthesis of Untimed Component Behavior
Giese and Vilbig proposed in [GV06] a synthesis procedure for the behavior of in-
teracting components. In this approach, the interaction between different compo-
nents is specified using contracts [Gie00]. A contract is used, similar as an inter-
face in the Unified Modeling Language (UML) [OMG09], to specify available op-
erations but additionally to specify valid interaction sequences of these operations.
These valid interaction sequences are defined using state diagrams, which may in-
clude special internal actions specified through so-called τ -transitions. These in-
ternal actions are not further distinguished and therefore form representational
non-determinism [WM97].

Furthermore, a contract is specified independently from other contracts, simi-
larly to coordination patterns in MECHATRONIC UML. Consequently, when one
component takes part in several contracts, state combinations appear, which might
be forbidden due to system requirements. Consequently, a state restriction formal-
ism is introduced to specify forbidden state combinations.

The synthesis procedure defined by Giese and Vilbig can be divided into three
steps: (1) the parallel composition of the state diagrams is constructed, (2) the re-
stricted state combinations are removed from this parallelly composed state dia-
gram and (3) it is verified that the resulting state diagram still refines each of the
participation contracts properly. If this is the case, the result is a maximal contract
conform state diagram for each participating component with respect to defined
state restrictions.

As historically, the approach proposed in this paper originated from the ap-
proach by Giese and Vilbig, the fundamental synthesis approach, described by
the 3 steps mentioned above, is very similar (abstracting from the notion of time
present in this paper). Though, both approaches differ in the applied behavioral
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model and the applied equivalence relation defined between the original and the
synthesized model.

The behavioral state diagram defined in contracts specifies a sequence of
events (or actions) but does not distinguish between sending and receiving events.
In MECHATRONIC UML this is distinguished by defining several roles for one
coordination pattern instead of one contract. Contract based specification of inter-
actions is sufficient for software component specifications, where the direction of
the action calls is implicitly defined by the type of the contract (required or pro-
vided). Though, this is not applicable for specifying communication behavior as
in MECHATRONIC UML’s coordination patterns. Here, the direction of the event
has to be considered, for example, in order to define the time interval in which one
component has to listen on the communication channel.

The second difference is the applied equivalence relation, which is used to
define if a synthesized component behavior is contract conform or not. The
equivalence relation of Giese and Vilbig (called contract conformance) is based
on the representational non-determinism possibly present in contracts through τ -
transitions. This representational non-determinism is not applicable in such a late
development phase, where MECHATRONIC UML’s coordination patterns are ap-
plied. Though, the basic idea of arbitrary internal behavior inbetween the relevant
actions of one role is preserved in this paper.

5.3 Synthesis of Discrete Real-time Component Be-
havior

Seibel extends the approach of Giese and Vilbig in [Sei07] by the notion of time
concerning the behavioral models and the state restrictions. The type of timed
behavioral models applied are timed automata [AD90, HNSY92] as also applied
in the model checker UPPAAL [BDL04] (see also section 2.1).

Timed automata generally imply a concept of sending and receiving events and
therefore require two different behavioral models for two communicating compo-
nents. The concept of contracts, however, requires that one state diagram is de-
fined for two interacting components. Consequently, Seibel replaces the concept
of contracts by a port concept, similar to ports in UML [OMG09]. In this port
concept, communication between components is specified using one port for each
participating component, while the behavior of a port is defined by a timed au-
tomaton. Resulting from that, the synthesis procedure is defined on timed au-
tomata.

Seibel extends the restriction formalism as he adds time constraints to state
restrictions similar to our state composition rules. Furthermore, he introduces
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restriction automata which are concurrently executed to the port automata and
whose events have to be complementary to those of the port automata. This way,
restriction automata can listen to events of the port automata, such that they restrict
certain event sequences.

For the synthesis procedure and formal analysis on timed automata a discrete
time semantics, called finite integer semantic (FIS) (cf. section 2.1.2.2), is con-
structed which discretizes the time to integer steps. On this FIS, both the parallel
composition as well as the state restrictions are applied.

The synthesis procedure basically divides into the same three steps of (1) par-
allel composition, (2) restriction appliance and (3) checking for protocol con-
formance, which corresponds to the contract conformance by Giese and Vilbig.
Though, the complete procedure is defined on the FIS. Consequently, if a protocol
conform FIS could be synthesized, the protocol conform is transformed back to a
timed automaton, representing the component behavior.

As Seibel’s approach extends the approach of Giese and Vilbig, the fundamen-
tal idea of the synthesis procedure which is constructing the parallel composition,
applying composition rules and verifying if the original behavior is still present,
is again similar to our proposed procedure. In addition to that, the applied port
concept is very similar to the role concept in MECHATRONIC UML. The only
difference is that roles are defined independently from a particular component in
real-time coordination patterns. The idea to further apply automata as composi-
tion rules is derived from the idea of restriction automata. Though, the realization
is different: state composition automata do not interact with the role automata in
contrast to Seibel’s restriction automata.

The main difference between our approach and Seibel’s approach is the dis-
crete abstraction of time which is applied by Seibel, and which is not applicable
for MECHATRONIC UML (see section 2.1.2.2). Furthermore, Seibel applies the
parallel composition and the state restrictions on the FIS, while we only use the
abstraction to verify role conformance. At last, Seibel also allows for represen-
tational non-determinism by the explicit use of τ -transitions representing inter-
nal component behavior, instead of treating the behavior of other ports as inter-
nal component behavior. Consequently, the applied equivalence relations differ in
this point again. Though, Seibel proposes to additionally allow an arbitrary num-
ber of delay transitions between the relevant actions of the port automata, which
is equally applied in our observational timed bisimulation (see section 3.3.1).
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Conclusion and Future Work

In this section we conclude the overall results of this paper. In addition to that, we
describe those concepts of the procedure, where additional work is suggested for
the future.

6.1 Conclusion

In this paper we proposed an approach to automatically synthesize the behavior
for a MECHATRONIC UML component which takes part in several real-time coor-
dination patterns. The current approach of MECHATRONIC UML suffers from the
manual refinement and synchronization of the coordination role behaviors which
has to be accomplished to construct the component behavior. Therefore, we pro-
pose to specify dependencies between several role automata separately by means
of composition rules. Additionally, we defined a procedure to automatically inte-
grate the composition rules for a given set of role automata.

We propose two kinds of composition rules. State composition rules remove
either complete location combinations from the parallel composition of the indi-
vidual role automata or only specified time intervals of the defined location com-
binations; event composition automata add further time constraints to locations
and transitions of the parallel composition by introducing new clocks, while re-
ferring only to those clocks in the added time constraints. Both types of compo-
sition rules only remove transitions from the underlying timed automaton seman-
tics. This preserves all universally quantified properties which might have been
verified on the individual role automata in advance, as long as no time-stopping
deadlock is introduced. This additionally has to be checked for the synthesized
timed automaton after the synthesis procedure is performed. The real-time model
checker UPPAAL is proposed to be applied for this.
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We pointed out, however, that only preserving the universally quantified prop-
erties does not necessarily preserve the relevant behavior of a coordination role
being part of a mechatronic real-time system. Therefore, we defined an appropri-
ate refinement relation by means of the observational timed bisimulation, which
also preserves the untimed existentially quantified properties. We assume that this
indeed preserves all relevant behavioral properties of the coordination roles when
automatically refined for the implementation in a component. We further assume
that this is also appropriate for the compositional approach of MECHATRONIC

UML, where the compositional model checking approaches of abstraction and
assume/guarantee reasoning are applied.

In order to establish the proposed refinement relation we developed an auto-
matic procedure to check for role conformance, which describes the untimed ex-
istential part of the refinement relation. This procedure employs an efficient ab-
straction of the timed automaton, the zone automaton. The zone automaton is an
appropriate model for the reachability analysis of a timed automaton regarding
the offered events of each location. During this analysis certain types of dead-
locks can be removed automatically. Nevertheless, the model checker UPPAAL
also has to be applied also at this point, in order to find time-stopping deadlocks.
If time-stopping deadlocks are found, the system developer has to try to remove
these deadlocks manually and check once more for role conformance. If the model
is role conform and does not contain any time-stopping deadlocks, the result is a
component behavior which preserves the relevant behavior of the participating
coordination roles while also taking the specified composition rules into account.

6.2 Future Work
Although the described synthesis approach already defines a sound procedure for
the automatic construction of the behavior of a MECHATRONIC UML component,
several aspects are suggested for future work.

The most obvious point is the complete evaluation of the approach regarding
a realistic set of case studies. Although we were able to accomplish partial eval-
uations of the proposed concepts, the complete approach was only studied using
one example of the RailCab research project. This could be analyzed thoroughly
inspecting the identified real-time coordination patterns of May [May08], for ex-
ample. This way, it could also be evaluated if the proposed composition rule for-
malism is sufficient to specify existing dependencies between several coordination
roles.

Concerning the composition rule formalism, it might also be of interest to
specify composition rules which describe parts of the synchronization behavior
which may not be removed from the parallel composition. Those rules might be



6.2. FUTURE WORK 117

called positive composition rules, as they would not remove any behavior of the
underlying timed automaton semantics, but ensure that the described behavior is
preserved.

In addition to that, specification patterns [DAC98, DAC99, KC05] could be
applied for the specification of synchronization properties defined by composition
rules. This way, a set of rule patterns of best-practice could be established to
facilitate the specification of composition rules.

With regards to time-stopping deadlocks, the whole approach could be ex-
tended to also support integer variables in timed automata and real-time state-
charts respectively, like they are for example available in the timed automaton
formalism of UPPAAL. This way, it might even be possible to remove all time-
stopping deadlocks automatically from the role and composition conform timed
automaton.
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tronic Systems. In J. Braz, H. Araújo, A. Vieira, and B. Encarnacao,
editors, Informatics in Control, Automation and Robotics I. Springer,
March 2006. 47

[BGT05] Sven Burmester, Holger Giese, and Matthias Tichy. Model-Driven
Development of Reconfigurable Mechatronic Systems with Mecha-
tronic UML. In Uwe Assmann, Arend Rensink, and Mehmet Aksit,
editors, Model Driven Architecture: Foundations and Applications,
volume 3599 of Lecture Notes in Computer Science (LNCS), pages
47–61. Springer Verlag, August 2005. 2, 47



122 BIBLIOGRAPHY

[BK06] Borzoo Bonakdarpour and Sandeep S. Kulkarni. Automated Incre-
mental Synthesis of Timed Automata. In Lubos Brim, Boudewijn R.
Haverkort, Martin Leucker, and Jaco van de Pol, editors, Formal
Methods: Applications and Technology, 11th International Work-
shop, FMICS 2006 and 5th International Workshop PDMC 2006,
Bonn, Germany, August 26-27, and August 31, 2006, Revised Se-
lected Papers, volume 4346 of Lecture Notes in Computer Science
(LNCS), pages 261–276. Springer-Verlag Berlin Heidelberg, 2006.
111, 112

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Di-
agonal Constraints in Timed Automata: Forward Analysis of Timed
Systems. In Paul Pettersson and Wang Yi, editors, Proceedings of the
Third International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS 2005), Uppsala, Sweden, September 26-
28, 2005, volume 3829 of Lecture Notes in Computer Science, pages
112–126. Springer, 2005. 14

[BN01] Dirk Beyer and Andreas Noack. Efficient Verification of Timed
Automata Using BDDs. In Proceedings of the 6th International
ERCIM Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS 2001), Paris, France, July 16-17, 2001, pages 95–113,
2001. 22, 23

[Bur06] Sven Burmester. Model-Driven Engineering of Reconfigurable
Mechatronic Systems. Dissertation, University of Paderborn, 8 2006.
44, 47

[BY03] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algo-
rithms and Tools. In Lectures on Concurrency and Petri Nets, pages
87–124, 2003. 16, 23, 24, 25, 26, 27, 29, 33, 87, 106

[CE82] Edmund M. Clarke and E. Allen Emerson. Using Branching Time
Temporal Logic to Synthesize Synchronization Skeletons. Science
of Computer Programming, 2(3):241–266, December 1982. 34

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts / London,
England, 4th edition, 1999. 23, 34, 77

[CMP94] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Compositional
Verification of Real-time Systems. In Proceedings of the 9th An-
nual IEEE Symposium on Logic in Computer Science, 4-7 July 1994,
Paris, France, pages 458–465, 1994. 111



BIBLIOGRAPHY 123

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Prop-
erty Specification Patterns for Finite-State Verification. In Mark A.
Ardis and Joanne M. Atlee, editors, Proceedings of the Second Work-
shop on Formal Methods in Software Practice, March 4-5, 1998,
Clearwater Beach, Florida, USA, pages 7–15. ACM, 1998. 117

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in Property Specifications for Finite-State Verification. In Pro-
ceedings of the 21st International Conference on Software Engineer-
ing ICSE’99, pages 411–420, 1999. 117

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976. 2

[Dil89] David L. Dill. Timing Assumptions and Verification of Finite-State
Concurrent Systems. In Automatic Verification Methods for Finite
State Systems, International Workshop, Grenoble, France, June 12-
14, 1989, Proceedings, volume 407/1990 of Lecture Notes in Com-
puter Science (LNCS), pages 197–212. Springer-Verlag Berlin / Hei-
delberg, 1989. 106

[GB03] Holger Giese and Sven Burmester. Real-Time Statechart Semantics.
Technical Report tr-ri-03-239, Lehrstuhl für Softwaretechnik, Uni-
versität Paderborn, Paderborn, Germany, 6 2003. 11, 41

[GBSO04] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Ober-
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