Integration of Analysis and Redesign Activities
in Information System Reengineering

Jens H. Jahnke, Jorg Wadsack
AG-Softwaretechnik, Fachbereich 17, Universitat Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany;

e-mail: [jahnke|maroc]@uni-paderborn.de

Abstract information systems (IS) that take advantage of the latest
technology, longer established enterprises have to modify
. . . L) pre-existing IS to fit new requirements and exploit emerging

cbject-onentation, and distributed computing enable new technologies. This is often a challenging task because many

appllcatlons,t eg? n t_the are;i of ele((:jtrc()jmc_ COMMEICE, | have evolved over several generations of programmers
management information Systems, and decision Suppory 4 comprise only obsolete or no documentation. Such

systems. Toda_ly, many companies face the problem that theapplications are usually calléegacy information systems
have to reengineer pre-existing information systems to take[1

advantage of these technologies. Various computer-aidec

reengineering tools have been developed to reduce the In this decade there has been an increasing effort to
complexity of the reengineering task. However, a majordevelop concepts and methods to reengineer legacy IS.
limitation of current approaches is that they impose a Some of these methods have been implemented in
strictly phase-oriented, waterfall-type reengineering computer-aided reengineering (CARE) tools to automate
process, without the support for iterations. Still, such laborious activities and reduce the complexity of the
iterations often occur in real world examples, e.g., when reengineering problem. As the persistent data structure is
additional knowledge about the legacy system becomethe central part of a legacy IS [1], most approaches focus on
available or when the legacy system is modified during thedatabasechema analysig8,20,16,9] (reverse engineering)
migration process. In this paper, we present an approach toand/or schema translation and redesigr{forward
incremental consistency management that allows toengineering) [3,4,17,10,15,6,14].

overcome this limitation by integrating reverse and forward ope of the most important limitations of current CARE
engineering activities in an intertwined process. The iggls is that they do not consider the evolutionary and
described mechanism is based on a formalization Ofexploratory nature of the reengineering process [7]. They
redesign transformations by graph rewriting rules and has impose a strictly phase-oriented, waterfall-like
been implemented in the Varlet reengineering e”VirO”memreengineering process, without the support iferation.
This is an important limitation in practice, as iterations

. between analysis and redesign steps occur frequently:

1. Introduction and related work When a reengineer learns more about the abstract design of

An effective and efficient information management is a @ €gacy system, (s)he often refutes some initial
crucial factor for the competitiveness of today’s companies.@ssumptions or does some further investigations. Moreover,
It enables them to respond quickly to changing conditionsmigration projects might have durations from several
on a global market. Emerging key technologies like theMonths up to years. It is probable that urgent requirements
World Wide Wet{Web), Object-Orientation(OO), Clienty ~ demand (on-the-fly) modifications of the original IS during
Server(CS)applications andopen system standards.g., th!s period. These modlflcqtlons have to be 'refle.cted in the
CORBA [23], DCE [5]) greatly influence modern business mlgraFed target system, Wh.ICh demands for iterations in the
processes. Besides new applications in the area of electron®engineering process. Using current tools, the reengineer
commerce, there has been increasing interest in usindoSes the work (s)he has done in forward-engineering when
enterprise-wide data access to build managemeanhar!g'”g the legacy IS., in ordgr to re-establish consistency.
information systems and decision support systems [Zz]llnthls paper, we describe an integrated CARE environment
While new company start-ups are able to purchasethat overcomes the described problem. Our approach is

Emerging key technologies like the World Wide Web,

Published irProc. of the 3rd European Conference on Software Maintenance and Reengineering (CSMR’99), Amste@d®9MNIEEE Press.

based on a formalization of redesign operationgiayph schema catalog
rewriting rules[18]. This formalization allows us to achieve Data
an incremental consistency management, i.e., to integra 1_ L

schema analysis and redesign activities in an iterative and
interactive reengineering process.
The rest of this paper is structured as follows. In the next w

section, we introduce our approach with a case study th?10
motivates the need for tools supporting an iterative
reengineering process. Section 3 defines a formal basis of
our approach and describes the main implementation
concepts of our CARE environment. Finally, Section 4
closes with some concluding remarks.

2. A reengineering case study

0ODSOIete
documentation
— 5

main expert

redesigner

source
shema

translation/
redesign

The following case study reflects some of our experiences
with industrial projects. It deals with a legaayoduct and
document information syste(®DIS) of an international
enterprise that produces a great variety of drugs and other
chemical products. Traditionally, this system has been used
by members of the central hotline at the company
headquarter. Now, the IT department plans to employ
Internet-technology to establish a distributed Web-basedchema, and its (obsolete) documentation (cf. Figure 1).
marketing information systeMIS) based on the existing Furthermore, many legacy IS comprise arcane coding
PDIS. The aim of this project is to reduce costs and increas®ncepts (e.g., variant records) and various kinds of
the availability of current product data (24 hours a day). optimization structures.

iteration

Figure 1. Schema reengineering process

In order to implement the desired MIS the legacy The following description demonstrates how this
relational database schema has to be well-understooelvolutionary process is supported by our CARE
Unfortunately, the legacy IS is hardly documented and thenvironmentVarlet [12], i.e., how Varlet preserves the
programmers have left the company. Thus, the PDIS has tmnsistency between the analyzed source schema and the
beanalyzedo yield a semantically enriched source schemaredesigned conceptual target model.
which can bdranslated(andredesignellinto a conceptual
target schema that is suitable for the new MIS. In I[zgeneraﬁte[) 1: schema analysis, transation, and redesign
this is an evolutionary and explorative process, as indicators Figure 2 shows a screenshot of Walet analyzer view
for abstract design concepts are often hidden in differerthat displays a detail of the legacy database schema. At this,
parts of the legacy IS, including its data, code, physica¢ach box represents a relational table, while foreign keys are

User
CommuodityGroup ProductGroup
tell : CHAR(
te|2 CHP.R(18) CG: INTEGER < - CG: INTEGER T
Bl
(9 name : CHAR{1 6] manager : CHARAD)
name : CHAR{S0) represents_IsA- Rel id : INTEGER 0
shottName : CHAR(18 has_inverse_IND)
' (18) = - /Remwe grpName : CHAR(18)
uid : CHAR{40) ——] ocumen]
address : CHAR(0) validity : DATE Rl
department : CHAR(1E) confidential : INTEGER
author : CHHR(BD) ProdRef
DocRer title : CHAR(Z55) 4 INTEGER
doc_id : INTEGER |— o, & uid : CHARED) prodir: INTEGER [@ Froduct
refID : INTEGER >p— ECSREENHELER < prodnio : INTEGER [T hame - CHAR(18)
tarDac : INTEGER |——-Ji» €—— doc_id : INTEGER | 7 no : INTEGER
CG: INTEGER 2 0] grp : INTEGER ()
CG:INTEGER [L

Figure 2. Case study: analysed relational legacy schema (detail)

ProductGroup
Lizer Commodity Graup
o) e grpMame : string
Department address : string CG:int —_— —+ id - int
department : string uid : string name ; string o6 manager : strin
e 7 : name : string HE- B
tel : tupel(string; string) I
,«_’F.L’P ProdRel] praamer o Frodgctroun 1
—_—f I e —
£ t
| Feport, ——|no:int +—! "
Staffember Customer Froduct_Q - atri
> . . name : string
manager shorthame : string company : string Document
title : string
confidential - int *‘ic S== Execute Command 8 ‘
creator docs | yalidity : DATE Ga.ssTuOrdemdAssuc(FrodRef , [Procuct_])
author : string

(ordered) [0-10]

| Docmrer

target

Figure 3. Redesigned conceptual model

represented as directed lines between these boxes. Ifattribute (5) and splits claStaffMembe(6). Then, attribute
foreign key consists of more than one attribute, theloc idis removed from clasBocument(7), as artificial
correspondences of attributes in different tables are markdeys are not needed in the object model. Finally, the
by numbers. Attributes which belong to primary keys argeengineer transforms clasBocRef into an ordered
displayed in bold face. association (8) and changes the cardinality of its left-hand

Foreign key constraints and alternative keys are rarelgIde (9)_._The dialog in the bottom rl_ght corner .Of Flgu_re 3
specified explicitly in schema catalogs of legacy IS. In cas xemplifies that redesign operations are interactively
of our case study, let us assume the reengineer has alreérd\//Oked by actualizing their formal parameter lists.
recovered the constraints shown in FiguteNaoreover, the ~ Step 2: schema completion and re-translation
reengineer has added further semantic information about the

L Let us further assume, that by investigating the legacy
legacy schema. For example, the equal sign in th%ata in tabld’rodRef the reengineer notices that many rows
triangles between tables ProductGroup and 9 y

: . . comprise attributes with null-values. (S)he discovers that
CommodityGroupdenotes that the corresponding foreign .) o

I . . ; oS there are actually four different variants of rows in this table
key implies an inclusion dependency [6]doth directions. (cf. Figure 4). By talking to PDIS users, the reengineer
This means that for each tuple in talemmodityGroup - ™19 - 5Y 9 ’ 9

there has to be at least one tuple in tatsteluctGroupwith learns that tablBrodRefnot only maintains cross references
. from documents to products but also to product groups and
equal value in colum@G.

commodity groups. Moreover, (s)he learns that all cross
After the PDIS has been analyza#rlet automatically references, either between different documents (table
translates the semantically enriched schema into an obje®ocRef or between a document and products (table
oriented conceptual model. This initial translation can bérodRef, have unique numbers with respect to the
redesigned and extended by using a set of predefinedferencing document. Consequently, (s)he discovers that
redesign operationsFigure 3 shows a sample resulting for every row in tableDocRef there exists a row (of

object model for our scenario. At this, bold grey arrowsvariant4) in tableProdRef with equal key values. In
denote ten sample applications of redesign operations the

reengineer has performed after the initial conceptual

translation. For example, the initially created cldserhas variant | id | prodNg prodGr doc_id CG
been renamed (1) ®taffMembeand has been generalized 1
(2) by a new clasBserwith a specialization (3fustomer 2 null
that has a new attribute (4¢pmpany Subsequently, the
. A) 3 null null
reengineer aggregates attributed4 andtel2 into a complex
4 null null null

1. See [13] and [11] for more information about the actual .)
analysis process ivarlet Figure 4. Variants of table ProdRef

User ﬁ ﬁ FroductGroup
name : CHAR(S0) CommadityGroup CG: INTEGER
telz : CHAR(18) CG: INTEGER g -« grphame : CHAR(18) [—ed
address | CHAR(40) name : CHAR{18) id : INTEGER
department : CHAR(18) q manager : CHAR{40)
tell : CHAR(18)
shortHame : CHAR{18) T ‘L
uid : CHAR(40) b~
Document
|Key2 fof2) i
doc_id : INTEGER
uid : CHAR(40) FrodRef
E validity : DATE Product
‘% authar : CHAR(B0) id : INTEGER name : CHAR(18)
DocRef confidential : INTEGER _q_q_ _p_ no : INTEGER _9
tarDoc : INTEGER title : CHAR(235) doc_id : INTEGER grp : INTEGER
doc_id : INTEGER —> CG: INTEGER
reflD: INTEGER [p, B>~ Visriznt 4 of 4

Figure 5. Completed relational schema

addition, the reengineer finds out thetiortNameis an representation of foreign keys that hides actual attribute
alternative key of tableUser, borrowed by table correspondences.)

ProductGroupin columnmanager Now, that the information about the legacy source schema

The completed relational schema is given in Figure 5. Ilas changed, consistency with the created conceptual model
this figure, we used ovals to mark the differences betweemas been lost. Using currently existing, waterfall-oriented
the completed relational schema and the first analysis restitols, the reengineer has two options to try to re-establish
(cf. Figure 2). Now, the graphical representation of tableonsistency: (1) (s)he starts the redesign process all over
ProdRefcontains an annotation that there are four differenagain with a newly generated initial translation of the
variants of entries in this table. The reengineer can browsaodified legacy schema, or (2) (s)he tries to determine the
through these variants, while null-columns (and disabledimpact of the modifications on the redesigned conceptual
foreign keys) are dimmed. The white triangles at thanodel manually. Both alternatives are unsatisfactory for
connection betweermocRef and ProdRef represent the larger schemas: the first solution will most likely force the
semantic information that the corresponding foreign key haseengineer to manually redo redesign operations, (s)he has
been classified as an inheritance relationship. (To simplifalready performed once, while the second solution is error
the layout of Figure 5, we selected a more abstragtrone.

P grmp]t
Commodity Group

Stafftdember +;Wr CG : int oG FProductGroup
/ shortHame : string name : string \\—+ grpklame : string |——
ey | £& id : int
35 ierd +
Pt keize rer
Liser l .
address : string Department
. .) #Ref — _ |cGxRer

uid : string department : string — g:

- el id : int
name : string
tel: tupelistring; string)

o

[y Al o
company - string confidential : int e
f
o] I i) S —— PP iy
ref tapet

& .
I Document |
idity - ProGrpXRef
| validity : DATE . "
Customer —# | title : string [E—

author : string

name : string

Figure 6. Updated conceptual model

Our approach overcomes this problem, by providing an Relational Schema ; Mapping Structurey Conceptual Model
incremental mechanism to re-establish consistency betwee ST Scher
the legacy schema and the redesigned conceptual mod{ pps’
Figure 6 shows the new conceptual model, which has begn
updated automatically according to the new information|t
about the legacy schema. The environment determined thft
operations 8, 9 and 10 have to be undone. Operations 8 aib“Dotcﬂeemn
10 are no longer applicable, because the different variants ¢f —Tc
tableProdRefhave been mapped to an inheritance structure e
by the initial translation and this violates the precondition of i
operationClassToOrderedAsso©peration 9 is no longer J
applicable, as it depends on the applicability of operation 8Jc

00-Schema
M

C

| class

“Document”
C

RefT
“creator”

FK

foreign
ke

sIc

This case study shows only one iteration between analysis
and redesign activities. However, in general, databasg
reengineering is an evolutionary process and deals with
many iterations. A consistency management mechanism is
thus a key component of a database reengineerini table
environment. In the next section, we will describe L User +
implementation concepts for such a component. The main N
idea is to specify redesign operations as graph rewriting column
rules with formally defined pre- and post-conditions. If the uid
legacy schema has been modified, input/output- column
dependencies between such rules are used to determine name
those operations that are affected by the modification.
Subsequently, all affected operations with violated pre- ot

post-conditions are undone.
. simplicity we left out the seconilapTable node. The
3. Implementation Concepts foreign key between both tables has been mapped to a 1:n-
3.1 The migration schema association between the corresponding classes (cf. node
]))) MapFK). Note, that no redesign operation has been
In our reengineering environment we emptyributed o formed so far, i.e., Figure 7 shows the situation after the

abstract syntax graphgASG) to represent the legacy initia| translation of the relational schema into the
schema and the corresponding conceptual model. Bo%nceptual model.

ASGs are connected via an additional mapping structure,]]
which reflects their interdependencies. This entire grapB-2 Sch_e_ma translation and redesign by graph
structure is called thmigration schemaFigure 7 shows a rewriting

simplified detail of the migration schema for our sample |, our approach, the initial translation of the legacy

scenario. The ASG of the relational schema is given on the.nema and all conceptual redesign operations are formally

left side of Figure 7, while its right side shows theg,ecified bygraph rewriting ruleg18]. In order to introduce
representation of the conceptual model. The syntactic ro:afem we need the formal concept of a glaph

of the relational schema is represented by a node of type
SQLSchemecarrying the naméPDIS” of the example pefinition 1. Graph

schema as an attribute. Starting with this root node, the .)

syntactic structure of the legacy schema is represented by &= (N, E, &, &, S, 1) is agraph over two given label sets
nodes that are transitively reachable by traversing edges bk Le With:

typec (contains). A table definition is represented by a nodes N(G):=N and E(G):=E are finite sets of nodes and edges,
of typetablewith outgoingc edges leading to the contained
attribute and foreign key definitions. The ASG of the
conceptual model has a similar structure. The mapping s(G):E-~N and t(G):E-~N assign each edge its source
structure represents the correspondences between relationadnd target.

and conceptual schema elements, e.g., a node of type

MapTableshows that tablBocumentas been mapped to an

equally named class. The same applies for tabds but for 1. For simplicity, our formal definition of a graph (and a graph
rewriting rule) does not consider attributes of graph objects.

assoc
“0,11[1,n)"

drn

Key

class
“User”

attr
“uid”
SetRefT
“docs”

ASEASSCS U SSSSISCSSSSSSESSESSSESSSSLWSSE L LN SR N
QS S S S A S S S S SSSSSSESESSSESSSSSANSNS S SNS S SLAONSS W

Figure 7: Internal graph representation of the
migration schema

* tNy(G):N - Ly and &(G):E - Lg are their typing functions,

Definition 2. Graph rewriting rule MapTableToClass()

Agraph rewriting ruleo:= (P, Q) is a tuple of graphs (P and ||, . SQLSchema H_' '3 : MapSchema L[4 - 00 Schema
Q) over the same sets of node and edge labels. The graphs '6:1_map 7 map
'5: c* - o

P(0):=P and Q(0):=Q are called the left- and right-hand
side of 0 and represent the pre- and postcondition of the rule,[

respectively. P(0) describes which elements (nodes anc
edges) a graph G must contain such that o can be applied. |

G contains a subgraph S that is a valid match for P(0), Q(0) ‘ 1 = ’<_¢ 3 =3 ‘_>‘ ro=4 ‘
describes how S shall look like after the application. P(0) * 6 1_map 7:r_map
. _ . _

Th

and Q(0) can have common objects. These objects are 5"
preserved during the application of 0. Objects in P(0) that
do not occur in Q(0) are deleted, while objects in Q(o) which
do not occur in P(0) are added. transfer 9'.name="2.name;

The following two definitions provide a formal criterion Figure 8. Graph rewriting rule MapTableToClass
for the applicability of graph rewriting rules. We employ this
criterion to (re-)validate the preconditions of redesign
operations when a modification of the legacy schema has tGeneralizeNew(cl:Class; props:ClassProp[n]; Name:string)
be propagated.

Definition 3: Match of a graph rewriting rule

Given a graph G and a graph rewriting rule o: (P, Q), a
morphism in:P- G identifies anatchof o in G, iff:

« objects that will be deleted can uniquely be identified, i.e.
Ox O P\Q, xX'OP:in(x)=in(x)d x=x

« there are no dangling edges after the deletion, i.e.
On O N(P)\N(Q),0e O E(GY): , :
(s(e)=in(n)Ot(e)=in(n)) 0 e’ O E(P)\E(Q) : in(e’)=e transfer 6'.name=Name;

Figure 9. Graph rewriting rule GeneralizeNew

Definition 4: Application of a graph rewriting rule

Anapplicationof a graph rewriting rule o: (P, Q) to a graph mapping structure is used during the initial translation to

G is represented by a tupde (in, out) with two morphisms apply the mapping rules in the right order. A discussion of
in:P . G and out:Q. G', where this algorithm is out of the scope of this paper and can be

found in [19].

Figure 9 shows another graph rewriting rule that specifies
* out is a match for 0:(Q,P) in G, one of the redesign operatiofeneralizeNe)y we used in
« OxOPN Q: in(x)=out(x), and our case study. Dashed boxes represent optional nodes,
) , while node sets are represented by stacked boxes. The left-
* G\ (in(P\Q)) = G"\ (out(Q\P)). hand side ofGeneralizeNeviooks for a node of typ€lass
The application of a graph rewriting rule o on a graph G (1) that aggregates a set of nodes of @fzessProp(2) via
with result G’ will be denoted as G'=G. edges of type. Furthermore, node 1 might have an outgoing

A sample graph rewriting rule that is used during theedgte Iatbflledsla (4) todar;othtehr npq? ?f tyrrlﬁlasst(B). Ilnt'
initial translation of the relational schema into thefgge;ailsn r?“é: Z?eua;se Iiegrmaﬁulglll IaAtthi:nlﬁe rreelgiai:loer;r
conceptual model is given in Figure 8. It describes that a 9 app Y- L 9

chooses the application context of a redesign rule by

relational table can initially be mapped to a class. The ctualizing its formal parametexd, props by references to
element on the left-hand side are identically preserved at e 9 P PIops by

right-hand side. In addition, the right-hand side contains tw elvra]ctrecljiz :Icherrnat comrpl)ogentg. thAtnr arppllcna;tlon n ?:/
new nodes (8 and 9) and four new edges to represent the n Ry cralizeliencreates a hode (6) that represents a ne

class and the migration schema. The transfer clause at tq_l%pfrgasigf tifo1|e sslercteld CIZSE' I\:o\:;zoger, ﬂ;e t\rNO eﬂ?nestﬁn
bottom of Figure 8 passes the name of the mapped table g ‘efi-nand side are replaced by new edges representing the

the newly created class. The information maintained in thénlgrathn Qf the selected class properties (2) to the
generalization.

*inis amatch foroin G,

Pm----- -»lr At | g <~ - — = /O OpApplication OpApplication
OpApplication ! L, “AggrinTuple(s) “AddAttr(4)

I -

. r

(initial translation) infout out out

------- wojy === = =1 out
“MapTableToClass” c, L el] | C out ’ ,
_ - Attr ! o | A Attr infout
infout out re.TTTT P name’ [C “tel” ‘company’
c
Table Class in out Class | OpApplication p| Class
“User/Staff” “User/Staff’ “User” Infout |specializeNew(3)] out ~ |“Customer”
infout

infout | OpApplication | OU
OpApplication “GeneralizeNew(2)" out

“Rename(1)" 0%

isa isa

Figure 10. History graph (detail)

The purpose of our consistency management componebefinition 6. History graph
is to propagate modifications of the legacy schema to the

entilre tmigr?ﬁion schem;.t_ This](c:an” be algh(;evedd by_ N igration schema as a subgraph. Moreover, it contains
evaluating the pre-conditions of all applied (re eSIgn)nodes and edges that represent all applications of (mapping

operations that are affected by the modification. The casg | . 4osian) operations. Given a historv araph H:=(N. E
study shows that often redesign operations depend on tl{le gn) op : y graph H:=(N, E,

: . : - tns te, S, t) the current migration schema MS(H):=(N’, k&, t
result of previously performed operations. By using their¥ tEt ')d fined as- g (H):=(N' &
representation as graph rewriting rules, we are able to defilji'é' S, 1) is defined as:

a dependency relation that will be used to determine the setN’:={n ON | (Ce0E: t(e)=n Otg(e)="out’) O

of affected operation applications: (ON'ON, €E: t(e)=n 0 s(e)=n’ 0 te(e)="in
O e’ OE: t(e’)=n Os(e’)=n" Otg(e’)="out’)}

Let Q denote a set of applications of graph rewriting * E"={eE | s(e), telIN}
rules, with o:(in,out), 0%:(in’,out’) LJQ. Application o’ Now we can formulate an algorithm that uses a history
structurally depend®no in Q (denoted aﬁ'DQﬁ), graph t_o pro_paggte a modificatior_1 of the Ieg_a_cy §chema to
ift. 5=0' [OXOP(0’), yIQ(0)\P(0): the entire migration schema. Again, the modn‘lcatu_)n qf the
N e O = = O = legacy schema is formally represented by an application of
in'(x)=out(y) U[b"Q : 0’0" Lo"" 0 a graph rewriting rule. The algorithm in Figure 11 takes the
To propagate modifications, th¥arlet environment current history graph and a given modification &s inputs
maintains a graph that not only represents the current sta@@d returns the updated history graph. At first, it uses the
of the migration schema, but also provides informatiorstructural dependency relation to determine all applied
about all applied operations and their structuraloperations that are affected by Then it uses théime
dependencies. This graph is called thistory graph attribute, which reflects the chronological order of applied
because it reflects the editing history. Figure 10 shows @perations, to select the oldest operation applicain (
detail of a history graph, that represents an application dbubsequently, it re-evaluatesoifis still a valid application
mapping rule MapTableToClass and the first five after the modification. If this is not the case, it determines alll
applications of redesign operations in our case study (cépplied operations that structurally depend o@nand
Figure 3). At this, objects of the migration schema havéemoves them from the history graph. Finallys removed
black color, while grey color is used to represent operatiofrom the set of operation applications to be validafe). (
applications. Objects of the migration schema that havé&his is iteratively done until this set is empty.

actually been consumed by redesign operations (i.e. that \yhjle propagating a modificatioarletlogs all redesign
have an ingoingn edge) remain in the history graph. They oherations that are no longer valid. The purpose of this log

are marked using dashed lines. is to explicitly inform the reengineer about changes that

A history graphis a graph that includes the current

Definition 5. Structural dependency

have been performed to the conceptual model in order to rés implemented using TCL/TK.
establish consistency. If operations applied by the initial
schema translation have been undone a number
unmapped legacy schema elements result. In this case,
initial translation algorithm is called after the propagation toS
find a new translation of these elements.

We have evaluateWarlet in an industrial project that is
%[milar to the sample scenario described in this paper. The
fal case study deals with 79 relational tables. Our approach
cales well, because the reengineer interactively determines
the application context for redesign operations (cf.
Figure 3). Consequently, matches for

Propagate (H, m:(ing,,0uty,)) returns H’
H and H’ are the history graph before respectively after a modification m.
mis a modification of MS(H) (i.e., modification of the migration schemay)
begin

let Q denote the set of all operation applications represented in H;

Q2:={0:(in,0ut)0Q | xOP(m), yOIP(0): in(y)=ing,(x)};

II'get all directly affected operation applications
while Q320 do

let 0:(in,out)1Q? with o.time = Min({0’.time | 0’'0Q%);

applied graph
rewriting rules can be identified in constant time (if

applicable). The same applies for the actual applications of
graph rewriting rules and the corresponding update
operations on the history graph. In case of an iteration
between analysis and redesign activities, the change
propagation algorithm presented in Figure 11 obviously has
the complexity O(n), where n denotes the number of

redesign operations performed to the initial schema
translation. Our current research focus is on generalizing the
presented approach to also consider the dynamic part of a

Il get operation application with min. time stamp
if in represents a match of 0 in (MS(H)iﬁ) according to Def. 3 then
Q%={o0Q|00%0}
remove all 0'0Q¢ from H

legacy IS, i.e., its application code.
Acknowledgments

We would like to thank Barbara Bewermeyer, Ulrich

fi Nickel, Wilhelm Schéafer, Felix Wolf, and Albert Zindorf

= for
remove o from Q2

loop
return Has H'
end

Figure 11. Change propagation algorithm (1]

2
4. Conclusions 2
Providing tools that allow for an evolutionary and
explorative reengineering process is a challenging big
important goal of current research. The approach present cl
in this paper, is one step in this direction in the domain of
reengineering legacy IS. A formal specification of all
operations applied to a legacy schema allows to propagate
modifications in case of cycles between analysis angh
redesign activities. In general, many transformation-based
technigues are suitable to implement our approach [2]. Wg)]
have chosen graph rewriting rules, because they are
executablandintuitively well-understandable. [6]

We employ the Progres [21] (programmed graph
rewriting systems) environment to implement the current
version of theVarlet consistency management component.,
With Progres executable code can be automatically
generated from specified graph rewriting rules. Thus, the
Varlet environment facilitates the customization of
(redesign) operations by simply adding new or changingg]
existing graph rewriting rules. The current (graphical)
Progres specification consists of 300 pages. Form this
specification we generate 180 000 lines of C code, which
implements the core componendairlet The user interface [9]

many fruitful discussion and valuable comments.

Furthermore, we would like to thank Tarja Systa for her
great support in editing this paper.

References

P. Aiken. Data Reverse Engineering: Slaying the Legacy
Dragon McGraw-Hill, 1995.

I. Baxter. Tutorial on Transformation System -
Transformation Technology Bibliography. Fifth
International Conference on Software Reusability
(ICSRY, Victoria, B.C., Canadalune 1998.

Andreas Behm, Andreas Geppert, and Klaus R. Dittrich. On
the migration of relational schemas and data to object-
oriented database systems.Pmoc. 5th International
Conference on Re-Technologies for Information Systems,
Klagenfurt, AustriaDecember 1997.

J. Fong. Converting relational to object-oriented databases.
ACM SIGMOD Record26(1), March 1997.

Open Software Foundationlntroduction to OSF/DCE
Prentice Hall, New Jersey, 1992.

C. Fahrner and G. Vossen. Transforming Relational Database
Schemas into Object-Oriented Schemas according to
ODMG-93. InProc. of the 4th Int. Conf. of on Deductive
and Object-Oriented Databases 199995.

J-L. Hainaut, V.Englebert, J. Henrard, J-M. Hick, and
D. Roland. Requirements for information system reverse
engineering support. Technical Report RP-95-13,
University of Namur, Belgium, 1993.

J. Henrard, V. Englebert, J.-M. Hick, D. Roland, and J.-L.
Hainaut. Program understanding in database reverse
engineering. Technical Report RP-98-004, Institute
d’Informatique, University of Namur, Belgium, 1998.

Himel Inc, 17153 President Drive, Castro valley, CA 94546,

USA. DBInformer User's Manuall1997.

[10] F. Hisemann. Eine erweiterte
Schemaabbildungskomponente far Datenbank—
Gateways. In 10. Workshop "Grundlagen von
Datenbanken’; pages 52-56, Konstanz, June 1998.
Konstanzer Schriften in Mathematik und Informatik Nr.
63, Universitat Konstanz.

[11] J. H. Jahnke and M. Heitbreder. Design recovery of legacy
database applications based on possibilistic reasoning. In
Proceedings of 7th IEEE Int. Conf. of Fuzzy Systems
(FUZZ'98). Anchorage, USAIEEE Computer Society,
May 1998.

[12] J.H. Jahnke, W.Séfer, and A.Zlundorf. A design
environment for migrating relational to object oriented
database systems.Pmoc. of the 1996 Int. Conference on
Software Maintenance (ICSM'Q6)IEEE Computer
Society, 1996.

[13] J. H. Jahnke, W. Séfer, and A. Zundorf. Generic fuzzy
reasoning nets as a basis for reverse engineering
relational database applications. Pnoc. of European
Software Engineering Conference (ESEC/FS$Ember
1302 in LNCS. Springer, September 1997.

[14] P. Martin, J. R. Cordy, and R. Abu-Hamdeh. Information
capacity preserving of relational schemas using
structural transformation. Technical Report ISSN 0836-
0227-95-392, Dept. of Computing and Information
Science, Queen’s University, Kingston, Ontario, Canada,
November 1995.

[15] ONTOS Inc., Three Burlington Woods, Burlington, MA,
USA. ONTOS Object Integration Server for Relational
Databases 2.0 - Schema Mapper User's Guig®
edition, 1996.

[16] W. J. Premerlani and M. R. Blaha. An approach for reverse
engineering of relational databas€ammunications of
the ACM 37(5):42—-49, May 1994.

[17] S. Ramanathan and J. Hodges. Extraction of object-oriented
structures from existing relational databasé<M
SIGMOD Record26(1), March 1997.

[18] Grzegorz Rosenberg, editbtandbook of Graph Grammars
and Computing by Graph TransformationNorld
Scientific, Singapore, 1997.

[19] Andreas Schuerr. Specification of graph translators with triple
graph grammars. Technical report, RWTH Aachen,
1994.

[20] O. Signore, M. Loffredo, M. Gregori, and M. Cima.
Reconstruction of er schema from database applications:
a cognitive approach. IAroc. of 13th Int. Conference of
ERA, Manchestepages 387-402. Springer, 1994.

[21] A. Schirr and A. J. Winter and A. Ziindorf. Graph Grammar
Engineering with PROGRES. In W. Schéfer (ed.)
Software Engineering - ESEC ‘9Springer Verlag, 1995

[22] Amjad Umar.Application (Re)Engineering - Building Web-
Based Applications and Dealing with Legacieégentice-
Hall International, London, UK, 1997.

[23] S. Vinoski. Corba: Integrating diverse applications within
distributed heterogeneous environmentslEEE
Communications Magazin&4(2), February 1997.

