
Abstract

Emerging key technologies like the World Wide Web,
object-orientation, and distributed computing enable new
applications, e.g., in the area of electronic commerce,
management information systems, and decision support
systems. Today, many companies face the problem that they
have to reengineer pre-existing information systems to take
advantage of these technologies. Various computer-aided
reengineering tools have been developed to reduce the
complexity of the reengineering task. However, a major
limitation of current approaches is that they impose a
strictly phase-oriented, waterfall-type reengineering
process, without the support for iterations. Still, such
iterations often occur in real world examples, e.g., when
additional knowledge about the legacy system becomes
available or when the legacy system is modified during the
migration process. In this paper, we present an approach to
incremental consistency management that allows to
overcome this limitation by integrating reverse and forward
engineering activities in an intertwined process. The
described mechanism is based on a formalization of
redesign transformations by graph rewriting rules and has
been implemented in the Varlet reengineering environment.

1. Introduction and related work

An effective and efficient information management is a
crucial factor for the competitiveness of today’s companies.
It enables them to respond quickly to changing conditions
on a global market. Emerging key technologies like the
World Wide Web (Web),Object-Orientation (OO), Client/
Server(CS)applications, andopen system standards (e.g.,
CORBA [23], DCE [5]) greatly influence modern business
processes. Besides new applications in the area of electronic
commerce, there has been increasing interest in using
enterprise-wide data access to build management
information systems and decision support systems [22].
While new company start-ups are able to purchase

information systems (IS) that take advantage of the latest
technology, longer established enterprises have to modify
pre-existing IS to fit new requirements and exploit emerging
technologies. This is often a challenging task because many
IS have evolved over several generations of programmers
and comprise only obsolete or no documentation. Such
applications are usually calledlegacy information systems
[22].

In this decade there has been an increasing effort to
develop concepts and methods to reengineer legacy IS.
Some of these methods have been implemented in
computer-aided reengineering (CARE) tools to automate
laborious activities and reduce the complexity of the
reengineering problem. As the persistent data structure is
the central part of a legacy IS [1], most approaches focus on
databaseschema analysis [8,20,16,9] (reverse engineering)
and/or schema translation and redesign(forward
engineering) [3,4,17,10,15,6,14].

One of the most important limitations of current CARE
tools is that they do not consider the evolutionary and
exploratory nature of the reengineering process [7]. They
impose a strictly phase-oriented, waterfall-like
reengineering process, without the support foriteration.
This is an important limitation in practice, as iterations
between analysis and redesign steps occur frequently:
When a reengineer learns more about the abstract design of
a legacy system, (s)he often refutes some initial
assumptions or does some further investigations. Moreover,
migration projects might have durations from several
months up to years. It is probable that urgent requirements
demand (on-the-fly) modifications of the original IS during
this period. These modifications have to be reflected in the
migrated target system, which demands for iterations in the
reengineering process. Using current tools, the reengineer
loses the work (s)he has done in forward-engineering when
changing the legacy IS, in order to re-establish consistency.
In this paper, we describe an integrated CARE environment
that overcomes the described problem. Our approach is

Integration of Analysis and Redesign Activities
in Information System Reengineering

Jens H. Jahnke, Jörg Wadsack
AG-Softwaretechnik, Fachbereich 17, Universität Paderborn,

Warburger Str. 100, D-33098 Paderborn, Germany;
e-mail: [jahnke|maroc]@uni-paderborn.de

Published inProc. of the 3rd European Conference on Software Maintenance and Reengineering (CSMR’99), Amsterdam, NL.© 1999 IEEE Press.



based on a formalization of redesign operations bygraph
rewriting rules[18]. This formalization allows us to achieve
an incremental consistency management, i.e., to integrate
schema analysis and redesign activities in an iterative and
interactive reengineering process.

The rest of this paper is structured as follows. In the next
section, we introduce our approach with a case study that
motivates the need for tools supporting an iterative
reengineering process. Section 3 defines a formal basis of
our approach and describes the main implementation
concepts of our CARE environment. Finally, Section 4
closes with some concluding remarks.

2. A reengineering case study

The following case study reflects some of our experiences
with industrial projects. It deals with a legacyproduct and
document information system (PDIS) of an international
enterprise that produces a great variety of drugs and other
chemical products. Traditionally, this system has been used
by members of the central hotline at the company
headquarter. Now, the IT department plans to employ
Internet-technology to establish a distributed Web-based
marketing information system (MIS) based on the existing
PDIS. The aim of this project is to reduce costs and increase
the availability of current product data (24 hours a day).

In order to implement the desired MIS the legacy
relational database schema has to be well-understood.
Unfortunately, the legacy IS is hardly documented and the
programmers have left the company. Thus, the PDIS has to
beanalyzed to yield a semantically enriched source schema,
which can betranslated (andredesigned) into a conceptual
target schema that is suitable for the new MIS. In general,
this is an evolutionary and explorative process, as indicators
for abstract design concepts are often hidden in different
parts of the legacy IS, including its data, code, physical

schema, and its (obsolete) documentation (cf. Figure 1).
Furthermore, many legacy IS comprise arcane coding
concepts (e.g., variant records) and various kinds of
optimization structures.

The following description demonstrates how this
evolutionary process is supported by our CARE
environmentVarlet [12], i.e., how Varlet preserves the
consistency between the analyzed source schema and the
redesigned conceptual target model.

Step 1: schema analysis, translation, and redesign

Figure 2 shows a screenshot of theVarlet analyzer view
that displays a detail of the legacy database schema. At this,
each box represents a relational table, while foreign keys are

Figure  2. Case study: analysed relational legacy schema (detail)

codeschema catalog

Analysis

analysed
source
shema

translation/
redesign

schema
conceptual

documentation
obsolete

select distinct Name
from Student
where not exists
(select StudentId,
CourseId from Student,
Course

domain expert

 redesigner

Data

iteration

Figure  1. Schema reengineering process



represented as directed lines between these boxes. If a
foreign key consists of more than one attribute, the
correspondences of attributes in different tables are marked
by numbers. Attributes which belong to primary keys are
displayed in bold face.

Foreign key constraints and alternative keys are rarely
specified explicitly in schema catalogs of legacy IS. In case
of our case study, let us assume the reengineer has already
recovered the constraints shown in Figure 21. Moreover, the
reengineer has added further semantic information about the
legacy schema. For example, the equal sign “=” in the
triangles between tables ProductGroup and
CommodityGroup denotes that the corresponding foreign
key implies an inclusion dependency [6] inboth directions.
This means that for each tuple in tableCommodityGroup
there has to be at least one tuple in tableProductGroup with
equal value in columnCG.

After the PDIS has been analyzed,Varlet automatically
translates the semantically enriched schema into an object-
oriented conceptual model. This initial translation can be
redesigned and extended by using a set of predefined
redesign operations. Figure 3 shows a sample resulting
object model for our scenario. At this, bold grey arrows
denote ten sample applications of redesign operations the
reengineer has performed after the initial conceptual
translation. For example, the initially created classUser has
been renamed (1) toStaffMember and has been generalized
(2) by a new classUser with a specialization (3)Customer
that has a new attribute (4)company. Subsequently, the
reengineer aggregates attributestel1 andtel2 into a complex

1. See [13] and [11] for more information about the actual
analysis process inVarlet.

attribute (5) and splits classStaffMember (6). Then, attribute
doc_id is removed from classDocument (7), as artificial
keys are not needed in the object model. Finally, the
reengineer transforms classDocRef into an ordered
association (8) and changes the cardinality of its left-hand
side (9). The dialog in the bottom right corner of Figure 3
exemplifies that redesign operations are interactively
invoked by actualizing their formal parameter lists.

Step 2: schema completion and re-translation

Let us further assume, that by investigating the legacy
data in tableProdRef, the reengineer notices that many rows
comprise attributes with null-values. (S)he discovers that
there are actually four different variants of rows in this table
(cf. Figure 4). By talking to PDIS users, the reengineer
learns that tableProdRef not only maintains cross references
from documents to products but also to product groups and
commodity groups. Moreover, (s)he learns that all cross
references, either between different documents (table
DocRef) or between a document and products (table
ProdRef), have unique numbers with respect to the
referencing document. Consequently, (s)he discovers that
for every row in tableDocRef there exists a row (of
variant 4) in tableProdRef with equal key values. In

SplitClass(6)

GeneralizeNew(2)

AggrInTuple(5)

SpezializeNew(3)

Rename(1)

RemoveArtKey(7)

ClassToOrderedAssoc(10)AddAttr(4)

ClassToOrderedAssoc(8)ChangCard(9)

Figure  3. Redesigned conceptual model

variant id prodNo prodGr doc_id CG

1 ... ... ... ... ...

2 ... null ... ... ...

3 ... null null ... ...

4 ... null null ... null

Figure  4. Variants of table ProdRef



addition, the reengineer finds out thatshortName is an
alternative key of tableUser, borrowed by table
ProductGroup in columnmanager.

The completed relational schema is given in Figure 5. In
this figure, we used ovals to mark the differences between
the completed relational schema and the first analysis result
(cf. Figure 2). Now, the graphical representation of table
ProdRef contains an annotation that there are four different
variants of entries in this table. The reengineer can browse
through these variants, while null-columns (and disabled
foreign keys) are dimmed. The white triangles at the
connection betweenDocRef and ProdRef represent the
semantic information that the corresponding foreign key has
been classified as an inheritance relationship. (To simplify
the layout of Figure 5, we selected a more abstract

representation of foreign keys that hides actual attribute
correspondences.)

Now, that the information about the legacy source schema
has changed, consistency with the created conceptual model
has been lost. Using currently existing, waterfall-oriented
tools, the reengineer has two options to try to re-establish
consistency: (1) (s)he starts the redesign process all over
again with a newly generated initial translation of the
modified legacy schema, or (2) (s)he tries to determine the
impact of the modifications on the redesigned conceptual
model manually. Both alternatives are unsatisfactory for
larger schemas: the first solution will most likely force the
reengineer to manually redo redesign operations, (s)he has
already performed once, while the second solution is error
prone.

Figure  5. Completed relational schema

new

new new

new

new
new

Figure  6. Updated conceptual model



Our approach overcomes this problem, by providing an
incremental mechanism to re-establish consistency between
the legacy schema and the redesigned conceptual model.
Figure 6 shows the new conceptual model, which has been
updated automatically according to the new information
about the legacy schema. The environment determined that
operations 8, 9 and 10 have to be undone. Operations 8 and
10 are no longer applicable, because the different variants of
tableProdRef have been mapped to an inheritance structure
by the initial translation and this violates the precondition of
operationClassToOrderedAssoc. Operation 9 is no longer
applicable, as it depends on the applicability of operation 8.

This case study shows only one iteration between analysis
and redesign activities. However, in general, database
reengineering is an evolutionary process and deals with
many iterations. A consistency management mechanism is
thus a key component of a database reengineering
environment. In the next section, we will describe
implementation concepts for such a component. The main
idea is to specify redesign operations as graph rewriting
rules with formally defined pre- and post-conditions. If the
legacy schema has been modified, input/output-
dependencies between such rules are used to determine
those operations that are affected by the modification.
Subsequently, all affected operations with violated pre- or
post-conditions are undone.

3. Implementation Concepts

3.1 The migration schema

In our reengineering environment we employattributed
abstract syntax graphs (ASG) to represent the legacy
schema and the corresponding conceptual model. Both
ASGs are connected via an additional mapping structure,
which reflects their interdependencies. This entire graph
structure is called themigration schema. Figure 7 shows a
simplified detail of the migration schema for our sample
scenario. The ASG of the relational schema is given on the
left side of Figure 7, while its right side shows the
representation of the conceptual model. The syntactic root
of the relational schema is represented by a node of type
SQLSchema carrying the name“PDIS”  of the example
schema as an attribute. Starting with this root node, the
syntactic structure of the legacy schema is represented by all
nodes that are transitively reachable by traversing edges of
typec (contains). A table definition is represented by a node
of typetable with outgoingc edges leading to the contained
attribute and foreign key definitions. The ASG of the
conceptual model has a similar structure. The mapping
structure represents the correspondences between relational
and conceptual schema elements, e.g., a node of type
MapTable shows that tableDocument has been mapped to an
equally named class. The same applies for tableUser, but for

simplicity we left out the secondMapTable node. The
foreign key between both tables has been mapped to a 1:n-
association between the corresponding classes (cf. node
MapFK). Note, that no redesign operation has been
performed so far, i.e., Figure 7 shows the situation after the
initial translation of the relational schema into the
conceptual model.

3.2 Schema translation and redesign by graph
rewriting

In our approach, the initial translation of the legacy
schema and all conceptual redesign operations are formally
specified bygraph rewriting rules [18]. In order to introduce
them, we need the formal concept of a graph1.

Definition 1. Graph

G := (N, E, tN, tE, s, t) is agraph over two given label sets
LN, LE with:

 • N(G):=N and E(G):=E are finite sets of nodes and edges,

 • tN(G):N→LN and tE(G):E→LE are their typing functions,

 • s(G):E→N and t(G):E→N assign each edge its source
and target.

1. For simplicity, our formal definition of a graph (and a graph
rewriting rule) does not consider attributes of graph objects.

MapSchema

table
“User”

table
“Document”

column
“uid”

column
“name”

Relational Schema Conceptual Model

l_map r_map

c

column
“uid”

c

r_map

foreign
key

FK

RefT
“creator”

assoc
“[0,1]:[1,n]”

r_mapl_map

SetRefT
“docs”

src

drn

MapCol

l_map

l_map r_map

l_map r_map

c

MapTable

MapFK

MapCol

Figure  7: Internal graph representation of the
migration schema

c

OO-Schema
“MIS”

class
“Document”

SQL-Schema
“PDIS”

Key

c c c

c

class
“User”

c

attr
“uid”

drn

l_map r_map

c

Mapping Structure

l_map r_map



Definition 2. Graph rewriting rule

A graph rewriting rule o:= (P, Q) is a tuple of graphs (P and
Q) over the same sets of node and edge labels. The graphs
P(o):=P and Q(o):=Q are called the left- and right-hand
side of o and represent the pre- and postcondition of the rule,
respectively. P(o) describes which elements (nodes and
edges) a graph G must contain such that o can be applied. If
G contains a subgraph S that is a valid match for P(o), Q(o)
describes how S shall look like after the application. P(o)
and Q(o) can have common objects. These objects are
preserved during the application of o. Objects in P(o) that
do not occur in Q(o) are deleted, while objects in Q(o) which
do not occur in P(o) are added.

The following two definitions provide a formal criterion
for the applicability of graph rewriting rules. We employ this
criterion to (re-)validate the preconditions of redesign
operations when a modification of the legacy schema has to
be propagated.

Definition 3: Match of a graph rewriting rule

Given a graph G and a graph rewriting rule o: (P, Q), a
morphism in:P→G identifies amatch of o in G, iff:

 • objects that will be deleted can uniquely be identified, i.e.
∀x ∈ P\Q, x’∈ P: in(x)=in(x’) ⇒ x = x’

 • there are no dangling edges after the deletion, i.e.
∀n ∈ N(P)\N(Q),∀e ∈ E(G):
(s(e)=in(n)∨ t(e)=in(n)) ⇒ ∃e’ ∈ E(P)\E(Q) : in(e’)=e

Definition 4: Application of a graph rewriting rule

Anapplication of a graph rewriting rule o: (P, Q) to a graph
G is represented by a tupleo: (in, out) with two morphisms
in:P→G and out:Q→ G’ , where

 • in is a match for o in G,

 • out is a match for o’:(Q,P) in G’,

 • ∀x∈P∩Q: in(x)=out(x), and

 • G \ (in(P\Q)) = G’ \ (out(Q\P)).

The application of a graph rewriting rule o on a graph G
with result G’ will be denoted as G’=G↓o.

A sample graph rewriting rule that is used during the
initial translation of the relational schema into the
conceptual model is given in Figure 8. It describes that a
relational table can initially be mapped to a class. The
element on the left-hand side are identically preserved at the
right-hand side. In addition, the right-hand side contains two
new nodes (8 and 9) and four new edges to represent the new
class and the migration schema. The transfer clause at the
bottom of Figure 8 passes the name of the mapped table to
the newly created class. The information maintained in the

mapping structure is used during the initial translation to
apply the mapping rules in the right order. A discussion of
this algorithm is out of the scope of this paper and can be
found in [19].

Figure 9 shows another graph rewriting rule that specifies
one of the redesign operations (GeneralizeNew), we used in
our case study. Dashed boxes represent optional nodes,
while node sets are represented by stacked boxes. The left-
hand side ofGeneralizeNew looks for a node of typeClass
(1) that aggregates a set of nodes of typeClassProp (2) via
edges of typec. Furthermore, node 1 might have an outgoing
edge labelledisa (4) to another node of typeClass (3). In
contrast to rules used for the initial schema translation,
redesign rules are applied manually. At this, the reengineer
chooses the application context of a redesign rule by
actualizing its formal parameters (cl, props) by references to
selected schema components. An application of
GeneralizeNew creates a node (6) that represents a new
superclass of the selected class. Moreover, the two edges on
the left-hand side are replaced by new edges representing the
migration of the selected class properties (2) to the
generalization.

MapTableToClass()

‘1 : SQLSchema

‘5: c

‘2 : Table

‘4 : OO Schema‘3 : MapSchema
‘6: l_map ‘7: r_map

1’ =‘1

2’ = 2’

4’ = ‘43’ = ‘3

9’ : Class8’ : MapTable
10’:l_map 13’:r_map

11’: c 12’: c

::=

transfer 9’.name=‘2.name;

5’: c
6’: l_map 7’: r_map

Figure  8. Graph rewriting rule MapTableToClass

GeneralizeNew(cl:Class; props:ClassProp[n]; Name:string)

‘2 = props

‘5:c

‘3 : Class

‘4:isa

‘1 = cl

2’ = ‘2

3’ = ‘3

8’:isa

1’ = ‘1

7’:isa

9’:c
6’ : Class

::=

Figure  9. Graph rewriting rule GeneralizeNew

transfer 6’.name=Name;



The purpose of our consistency management component
is to propagate modifications of the legacy schema to the
entire migration schema. This can be achieved by re-
evaluating the pre-conditions of all applied (redesign)
operations that are affected by the modification. The case
study shows that often redesign operations depend on the
result of previously performed operations. By using their
representation as graph rewriting rules, we are able to define
a dependency relation that will be used to determine the set
of affected operation applications:

Definition 5. Structural dependency

Let Ω denote a set of applications of graph rewriting

rules, with o:(in,out), o’:(in’,out’) ∈Ω. Application o’

structurally depends ono in Ω (denoted aso’↵Ωo),
iff: o=o’ ∨ ∃ x∈P(o’), y∈Q(o)\P(o):

in’(x)=out(y) ∨ ∃o” ∈Ω : o’↵Ω o”  ∧ o” ↵Ω o

To propagate modifications, theVarlet environment
maintains a graph that not only represents the current state
of the migration schema, but also provides information
about all applied operations and their structural
dependencies. This graph is called thehistory graph,
because it reflects the editing history. Figure 10 shows a
detail of a history graph, that represents an application of
mapping rule MapTableToClass and the first five
applications of redesign operations in our case study (cf.
Figure 3). At this, objects of the migration schema have
black color, while grey color is used to represent operation
applications. Objects of the migration schema that have
actually been consumed by redesign operations (i.e. that
have an ingoingin edge) remain in the history graph. They
are marked using dashed lines.

Definition 6. History graph

A history graph is a graph that includes the current
migration schema as a subgraph. Moreover, it contains
nodes and edges that represent all applications of (mapping
and redesign) operations. Given a history graph H:=(N, E,
tN, tE, s, t) the current migration schema MS(H):=(N’, E’, tN,

tE, s, t) is defined as:

 • N’:={n ∈N | (∃e∈E: t(e)=n ∧ tE(e)=’out’)  ∧
(∀n’∈N, e∈E: t(e)=n ∧ s(e)=n’ ∧ tE(e)=’in’

⇒ ∃e’ ∈ E: t(e’)=n ∧ s(e’)=n’ ∧ tE(e’)=’out’)}

 • E’:={e∈E | s(e), t(e)∈N’}

Now we can formulate an algorithm that uses a history
graph to propagate a modification of the legacy schema to
the entire migration schema. Again, the modification of the
legacy schema is formally represented by an application of
a graph rewriting rule. The algorithm in Figure 11 takes the
current history graph and a given modification (m) as inputs
and returns the updated history graph. At first, it uses the
structural dependency relation to determine all applied
operations that are affected bym. Then it uses thetime
attribute, which reflects the chronological order of applied
operations, to select the oldest operation application (o).
Subsequently, it re-evaluates ifo is still a valid application
after the modification. If this is not the case, it determines all
applied operations that structurally depend ono and
removes them from the history graph. Finally,o is removed
from the set of operation applications to be validated (Ωa).
This is iteratively done until this set is empty.

While propagating a modificationVarlet logs all redesign
operations that are no longer valid. The purpose of this log
is to explicitly inform the reengineer about changes that

Figure  10. History graph (detail)

Class
“User/Staff”

Attr
“tel1”

Attr
“tel2”

Attr
“name”

OpApplication
“Rename(1)”

Class
“User”

OpApplication
“GeneralizeNew(2)”

OpApplication
“AggrInTuple(5)”

Attr
“tel”

OpApplication
“SpecializeNew(3)”

Class
“Customer”

OpApplication
“AddAttr(4)”

Attr
“company”

c c

isa

c

isa

c

in

in/out

out

in/out

in/out

in/out

in/out

out

out

out
outout

out
in/out

in out

out

Table
“User/Staff”

OpApplication
(initial translation)

“MapTableToClass”

in/out out



have been performed to the conceptual model in order to re-
establish consistency. If operations applied by the initial
schema translation have been undone a number of
unmapped legacy schema elements result. In this case, the
initial translation algorithm is called after the propagation to
find a new translation of these elements.

Propagate (H, m:(inm,outm)) returns H’

H and H’ are the history graph before respectively after a modification m.
m is a modification of MS(H) (i.e., modification of the migration schema)
begin

let Ω denote the set of all operation applications represented in H;

Ωa:={o:(in,out)∈Ω | x∈P(m), y∈P(o): in(y)=inm(x)};
// get all directly affected operation applications

while Ωa≠∅ do

let o:(in,out)∈Ωa with o.time = Min( {o’.time | o’∈Ωa} );
// get operation application with min. time stamp

if in represents a match of o in (MS(H)↓m) according to Def. 3 then

Ωd:= {o’∈Ω | o’↵Ω o }

remove all o’∈Ωd from H
fi

remove o from Ωa

loop
return H as H’

end

Figure 11. Change propagation algorithm

4. Conclusions

Providing tools that allow for an evolutionary and
explorative reengineering process is a challenging but
important goal of current research. The approach presented
in this paper, is one step in this direction in the domain of
reengineering legacy IS. A formal specification of all
operations applied to a legacy schema allows to propagate
modifications in case of cycles between analysis and
redesign activities. In general, many transformation-based
techniques are suitable to implement our approach [2]. We
have chosen graph rewriting rules, because they are
executableand intuitively well-understandable.

We employ the Progres [21] (programmed graph
rewriting systems) environment to implement the current
version of theVarlet consistency management component.
With Progres executable code can be automatically
generated from specified graph rewriting rules. Thus, the
Varlet environment facilitates the customization of
(redesign) operations by simply adding new or changing
existing graph rewriting rules. The current (graphical)
Progres specification consists of 300 pages. Form this
specification we generate 180 000 lines of C code, which
implements the core component ofVarlet. The user interface

is implemented using TCL/TK.

We have evaluatedVarlet in an industrial project that is
similar to the sample scenario described in this paper. The
real case study deals with 79 relational tables. Our approach
scales well, because the reengineer interactively determines
the application context for redesign operations (cf.
Figure 3). Consequently, matches for applied graph
rewriting rules can be identified in constant time (if
applicable). The same applies for the actual applications of
graph rewriting rules and the corresponding update
operations on the history graph. In case of an iteration
between analysis and redesign activities, the change
propagation algorithm presented in Figure 11 obviously has
the complexity O(n), where n denotes the number of
redesign operations performed to the initial schema
translation. Our current research focus is on generalizing the
presented approach to also consider the dynamic part of a
legacy IS, i.e., its application code.

Acknowledgments

We would like to thank Barbara Bewermeyer, Ulrich
Nickel, Wilhelm Schäfer, Felix Wolf, and Albert Zündorf
for many fruitful discussion and valuable comments.
Furthermore, we would like to thank Tarja Systä for her
great support in editing this paper.

References
[1] P. Aiken. Data Reverse Engineering: Slaying the Legacy

Dragon. McGraw-Hill, 1995.
[2] I. Baxter. Tutorial on Transformation System -

Transformation Technology Bibliography. Fifth
International Conference on Software Reusability
(ICSR5), Victoria, B.C., Canada, June 1998.

[3] Andreas Behm, Andreas Geppert, and Klaus R. Dittrich. On
the migration of relational schemas and data to object-
oriented database systems. InProc. 5th International
Conference on Re-Technologies for Information Systems,
Klagenfurt, Austria, December 1997.

[4] J. Fong. Converting relational to object-oriented databases.
ACM SIGMOD Record, 26(1), March 1997.

[5] Open Software Foundation.Introduction to OSF/DCE.
Prentice Hall, New Jersey, 1992.

[6] C. Fahrner and G. Vossen. Transforming Relational Database
Schemas into Object-Oriented Schemas according to
ODMG-93. InProc. of the 4th Int. Conf. of on Deductive
and Object-Oriented Databases 1995, 1995.

[7] J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and
D. Roland. Requirements for information system reverse
engineering support. Technical Report RP-95-13,
University of Namur, Belgium, 1993.

[8] J. Henrard, V. Englebert, J.-M. Hick, D. Roland, and J.-L.
Hainaut. Program understanding in database reverse
engineering. Technical Report RP-98-004, Institute
d’Informatique, University of Namur, Belgium, 1998.

[9] Himel Inc, 17153 President Drive, Castro valley, CA 94546,



USA. DBInformer User’s Manual, 1997.
[10] F. Hüsemann. Eine erweiterte

Schemaabbildungskomponente für Datenbank–
Gateways. In 10. Workshop "‘Grundlagen von
Datenbanken"’, pages 52–56, Konstanz, June 1998.
Konstanzer Schriften in Mathematik und Informatik Nr.
63, Universität Konstanz.

[11] J. H. Jahnke and M. Heitbreder. Design recovery of legacy
database applications based on possibilistic reasoning. In
Proceedings of 7th IEEE Int. Conf. of Fuzzy Systems
(FUZZ’98). Anchorage, USA.. IEEE Computer Society,
May 1998.

[12] J. H. Jahnke, W. Schäfer, and A. Zündorf. A design
environment for migrating relational to object oriented
database systems. InProc. of the 1996 Int. Conference on
Software Maintenance (ICSM’96). IEEE Computer
Society, 1996.

[13] J. H. Jahnke, W. Schäfer, and A. Zündorf. Generic fuzzy
reasoning nets as a basis for reverse engineering
relational database applications. InProc. of European
Software Engineering Conference (ESEC/FSE), number
1302 in LNCS. Springer, September 1997.

[14] P. Martin, J. R. Cordy, and R. Abu-Hamdeh. Information
capacity preserving of relational schemas using
structural transformation. Technical Report ISSN 0836-
0227-95-392, Dept. of Computing and Information
Science, Queen’s University, Kingston, Ontario, Canada,
November 1995.

[15] ONTOS Inc., Three Burlington Woods, Burlington, MA,
USA. ONTOS Object Integration Server for Relational
Databases 2.0 - Schema Mapper User’s Guide, 2.0
edition, 1996.

[16] W. J. Premerlani and M. R. Blaha. An approach for reverse
engineering of relational databases.Communications of
the ACM, 37(5):42–49, May 1994.

[17] S. Ramanathan and J. Hodges. Extraction of object-oriented
structures from existing relational databases.ACM
SIGMOD Record, 26(1), March 1997.

[18] Grzegorz Rosenberg, editor.Handbook of Graph Grammars
and Computing by Graph Transformation. World
Scientific, Singapore, 1997.

[19] Andreas Schuerr. Specification of graph translators with triple
graph grammars. Technical report, RWTH Aachen,
1994.

[20] O. Signore, M. Loffredo, M. Gregori, and M. Cima.
Reconstruction of er schema from database applications:
a cognitive approach. InProc. of 13th Int. Conference of
ERA, Manchester, pages 387–402. Springer, 1994.

[21] A. Schürr and A. J. Winter and A. Zündorf. Graph Grammar
Engineering with PROGRES. In W. Schäfer (ed.)
Software Engineering - ESEC ‘95. Springer Verlag, 1995

[22] Amjad Umar.Application (Re)Engineering - Building Web-
Based Applications and Dealing with Legacies. Prentice-
Hall International, London, UK, 1997.

[23] S. Vinoski. Corba: Integrating diverse applications within
distributed heterogeneous environments.IEEE
Communications Magazine, 14(2), February 1997.


