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ABSTRACT 
Many tools have been developed for recovering the 
design of legacy software. Interactively invoked 
abstraction operations and re-design transformations play 
a central role in these tools. A limitation of most existing 
approaches is, however, that they assume a mostly linear 
transformation process. They provide little support for 
iteration, recursion and incremental changes during the 
recovery process. Nevertheless, empirical results suggest 
that real-world abstraction and reengineering processes 
are in fact highly iterative. A history mechanism that 
explicitly maintains dependencies of all performed 
transformations can overcome this mismatch. Based on 
our experience with a specialized implementation of such 
a mechanism, we present a generalized history concept 
as an add-on to existing tools that support design 
recovery. 

Keywords: 
Software maintenance, design recovery, reengineering, 
reverse engineering, history concept, software 
transformation 

1. Introduction 
Over two thirds of today’s expenditures in information 
technology are spent on the maintenance of existing 
software systems. Re-documentation and reengineering 
activities account for largest part of this budget. Many 
reengineering tools have been developed in industry and 
academia in order to support this task, e.g., [1-7]. Such 
tools provide mechanisms for creating conceptual 
abstractions of the analyzed software system. Typically, 
these abstractions are created in semi-automatic, human-
centered processes. Interactively invoked abstraction and 
re-design transformations play a central role in these 
tools. However, case studies with industrial applications 
have shown that the applicability of current tools for 
human-centered design recovery is limited [8]. This is 
because they assume a relatively linear process with little 
support for process iteration, recursion and incremental 

changes during the reengineering process. The left-hand 
side of Figure 1 illustrates that reengineers typically 
loose large parts of the transformations performed 
manually when process iterations occur, i.e., when new 
analysis knowledge about the legacy system becomes 
available. Unfortunately, such iterations occur frequently 
in real-world abstraction and recovery processes [8]. 

A history mechanism that explicitly maintains 
dependencies among all performed transformations can 
tackle this problem. Such a history mechanism provides 
the tracability necessary for iterative reengineering 
processes. The right-hand side of Figure 1 illustrates this 
idea of an explicit dependency relation among all 
performed transformations. Let us assume that the black 
box represents knowledge about a software artifact that 
has been updated during the iteration. Then, the 
dependency information stored in the proposed history 
mechanism enables the selective removal of only those 
transformation operations that (transitively) depend on 
the changed information. 

In [9], we presented a dedicated implementation of such 
a mechanism in our database reverse engineering 
environment. Based on our experience with this 
prototype, we now suggest a generalized history concept 
as an add-on to various kinds of existing design recovery 
tools. Of course, different tools have different application 
domains (e.g., object-oriented design, database schema 
design) but the vast majority of tools have in common 
that they are graph-based, i.e., they store model data in 
abstract syntax graphs (ASG). Therefore, our approach 
makes use of the theoretical concept of graph-
transformation systems [10] as a suitable abstraction for 
all of these tools. This theoretical basis allows us to 
uniformly describe various kinds of design recovery 
processes in terms of graph processes [11]. Furthermore, 
the integration of our history mechanism with existing 
tools is facilitated by the current initiative for adopting a 
common graph-based data interchange format [12]. 

The rest of this paper is structured as follows. In the next 
section, we give an overview on related work in the area 
of document consistency preservation and history 



   

management. Section 3 introduces concepts that are 
fundamental for our approach, namely the concept of a 
graph and a graph grammar. Based on this definition, 
Section 4 outlines the proposed History Management 
mechanism. An application of this mechanism and its 
integration with an existing design tool is presented in 
Section 5. Finally, Section 6 closes with concluding 
remarks and future research directions. 

2. Related work 
The described research is related to various existing 
approaches to maintaining inter-document consistency in 
the software (forward) engineering process. Perhaps the 
most prominent technology in this regard is mechanisms 
for version and configuration management like e.g., the 
concurrent versions system (CVS) [13]. In principle, 
mechanisms like CVS can be used to create version 
histories of recovered design documents. However, such 
version histories do not consider the actual structural 
dependencies among the transformations performed in 
the abstraction process. Instead, the version history 
merely reflects a time-oriented view on intermediate 
stages reached in the (last iteration of the) recovery 
process. Consequently, traditional version management 
systems can only provide limited support for iteration as 
illustrated on the left-hand side of Figure 1.  

Lefering and Schurr suggest a dedicated formalism 
called Triple Graph Grammars for specifying structure 
dependencies among Abstract Syntax Graphs (ASGs) 
[14]. This formalism is used in the IPSEN project for 
generating integration tools that maintain consistency 

and propagate changes from software design documents 
to the implementation code and vice versa [15].  
Nowadays most commercially available development 
environments provide (limited) support for propagating 
changes between software documents on different levels 
of abstraction.   
Unfortunately, very few reverse engineering tools 
provide similar support for propagating changes of the 
knowledge about a legacy system to its reverse 
engineered abstraction.  Current reverse engineering 
tools assume a similar waterfall-like process that was 
imposed by forward engineering tools two decades ago.  
Typical human-centered reverse engineering tools (e.g., 
[1, 2, 16, 17]) provide extractor programs for populating 
the tool repository.  The contents of the repository can 
then be visualized and transformed with various kinds of 
viewers and editors.  With most current tools, these two 
steps (1) legacy system analysis and information 
extraction, and (2) information transformation and 
abstraction cannot be iterated without losing the 
interactive work performed on abstracting and 
transforming the information on the legacy system. 
One notable exception is the DB-MAIN database reverse 
engineering environment developed by the University of 
Namur, Belgium [18]. DB-MAIN logs the history of all 
interactions during interactive abstraction and refactoring 
sessions in order to better support continuous evolution 
in relational databases. This allows the reuse of the 
operational “knowledge” accumulated during the 
different phases of a reengineering process. The DB-
MAIN history mechanism addresses issues of 
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Figure 1. Iteration support without and with a History Mechanism for maintaining transformation dependencies 



   

consistency maintenance during evolution of the 
persistent data (schemas) during the life cycle of a 
database application. Hick et al. have developed different 
“evolution strategies” depending on whether the 
evolution takes place in the physical, logical or 
conceptual schema. Each performed transformation is 
recorded precisely and completely to make its inversion 
possible. The history has to be monotone and linear, 
which implies no iteration and no branches. Concurrent 
work is not supported, i.e., only one person can modify 
the schema at the same time.  

The DB-MAIN consistency management strategies 
depend on the reversibility property of the 
transformations applied. This property makes it possible 
that changes can be propagated from one schema level to 
another. In case that a transformation recorded in the 
history becomes invalid, i.e., its precondition fails, the 
reengineer has to resolve the inconsistencies manually. 
In contrast to the History Mechanism proposed in this 
paper, DB-MAIN does not allow the reengineer to get 
back (and modify) the initial state of the legacy system. 

The Varlet database-reengineering environment is 
another tool that supports iterative analysis and 
abstraction processes [9].  In this approach, Varlet logs 
all database schema transformations invoked by the user 
in an automated logbook (including their pre- and post-
conditions and interdependencies).  Moreover, the initial, 
low-level representation of the legacy schema remains 
available for the user.  This enables the user to revisit the 
starting point of his/her interactive modification at a later 
point in the reverse engineering process in order to 
modify existing or add new low-level information on the 
legacy system.  The new information might stem from 
applying additional extractor programs or from 
interviews conducted with developers or other human 
experts. Whenever the initial representation of the legacy 
system is changed, Varlet uses the logged transformation 
dependencies to determine which interactive operations 
are affected by the modifications. The pre-conditions of 
these transformations are then re-evaluated and only 
those transformations that fail this test are undone. After 
this propagation step, the consistency of the extracted 
information on the legacy system and its interactively 
created abstraction has been reestablished.  
This paper describes a generalization of the Varlet 
consistency management mechanism as a reusable 
component to be integrated with existing transformation-
based reverse engineering tool.  Compared to the original 
mechanism implemented in Varlet, the functionality of 
the consistency management component described in this 
paper is limited to determining and undoing all 
interactive operations that are affected by a change of the 
legacy system.  This means that the preconditions of 

operations are not re-evaluated.  The rationale behind 
this limitation is to minimize the requirements on tools 
that can interface with our component.  The re-evaluation 
of the performed operations would require tools to 
explicitly disclose all checks (preconditions) performed 
prior to the execution of each operation.  This 
information is normally not available. 

3. Graph Transformation Systems 
Graphs are commonly used by reverse engineering tools 
for internal representation of software artifacts, e.g., [1, 
2, 16, 17]. Of course, the specific graph models used in 
different tools might comprise variations with respect to 
their expressiveness. Nevertheless, most graph models 
have in common that they support different node- and 
edge types, attributes and directed edges. Recently, the 
reverse engineering research community has developed a 
standard graph model (called GXL) to promote tool 
interoperability [12]. Since the start of this initiative in 
1998, an increasing number of tools have been extended 
with GXL import / export functionality. In the following, 
we will use the GXL graph model as a basis for 
presenting our approach. Still, the reader should note that 
our technique does not depend on using this particular 
model.  

The GXL Graph Model 
In the following, we will use the UML for giving a brief, 
semi-formal introduction to the GXL graph model. We 
refer to [10] for a complete formalization of attributed 
graph models. A more in-depth discussion of GXL can 
be found in [12]. Figure 2 shows a UML specification of 
the GXL graph model.  
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Figure 2. GXL graph model 

  

A graph can be directed or undirected. It contains graph 
elements in form of nodes, edges, and relations. 
Relations contain a set of links pointing to one graph 
element each. All graph elements have unique identifiers. 



   

GXL also includes the notion of hypergraphs, i.e., graph 
elements can themselves contain sub-graphs. 
Furthermore, GXL supports typed graph elements (where 
the type of a graph element is itself a graph element of a 
type graph). We omit a more detailed discussion of the 
GXL typing concept since it is not a required in this 
paper. Note that the actual exchange of GXL graph 
instances is performed in a canonical textual format 
based on XML [12]. 

Graph productions 
Graph transformation systems (or graph grammars) are 
typically defined as a start graph and a set of graph 
transformation rules (or graph productions). Generally, 
graph productions can be defined as a pair of graphs, a 
set of application conditions, and a set of attribute 
transfer clauses. The two graphs are called the left-hand 
side and the right-hand side of the production, 
respectively. Graph elements of the left-hand side might 
also appear on the right-hand side. Graph productions 
and their application semantics have been formalized 
based on algebra theory. A complete formalization of 
these concepts is out of the scope of this paper and can 
be found in [10]. The intuitive understanding provided 
by the following semi-formal definitions is sufficient for 
the purpose of this paper.  

Defintion 1. Graph production 

A graph production is a tuple r:(P, Q, C, T), where 

P(r)=P and Q(r)=Q are two graphs over the same sets of 
node and edge type labels;  
P(r) is called the left-hand side and Q(r) is called the 
right-hand side of r. 

C is a set of application conditions. 

T is a set of attribute transfer clauses. 

Defintion 2. Application of a graph production 

A production r:(P,Q,C,T) is applied to a host graph G in 
the following five steps: 
• choose an occurrence of the left-hand side P in G. P 

has an occurrence in graph G if there is a morphism 
m:P→G which preserves source and target and 
labelling mappings.  

• check the application conditions C. If they hold the 
occurrence of P in G is called a match for P. 

• remove all elements in G that have been matched to 
elements in P that do not occur in Q, 

• adding all elements to G that are new in Q. The 
occurrence of Q in the modified host graph G is 
called comatch. 

• transfering attribute values to nodes in G that match 
nodes in Q(r) according to the attribute transfer 
clauses specified in T. 

We denote G↓(r,m) for the graph that is produced by the 
application of a production r to a graph G (in a match m). 

Note that graph productions are typically represented 
graphically, e.g., using the notation proposed by Schurr 
et al. [19]. In the following, we will discuss the sample 
graph production shown in Figure 3.  

Operations viewed as graph productions 
In principle, any tool for software design recovery can be 
viewed as specific graph transformation systems, where 
each modifying operation offered to the user is 
represented by a graph production. For example, 
consider a refactoring operation generalize that creates 
an abstract super class for a selected class c and 
generalizes some members of c. Figure 3 shows a 
representation of this refactoring operation in form of a 
graph production.  

 

Production generalize(c:Class, a:Members [0..n], name: string); 
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transfer 5.abstract=true;   5.name=name; 
Figure 3. Graph production generalize 

 

The unique identification number in the upper left corner 
of each node allows identifying identical nodes on both 
sides of the production. Node 1 represents the class to be 
generalized. Node 3 represents the set of members that 
will move to the new abstract super class (Node 5). Node 
2 represents the set of all remaining class members1. 
Node 4 considers the case that the class to be generalized 
might already have a super class2. In this case, Node 4 
will become the super class of the new generalization 

                                                 
1 Note, that both nodes (2 and 3) are determined by the user’s selection, 
parameter a. 
2 The dashed border of Node 4 specifies that a match for this node is 
optional. We adopted this notation from [19]. This notation is merely 
an abbreviation since productions with optional graph elements can 
always be presented by a set of productions without optional graph 
elements. 



   

(Node 5). The transfer clause at the bottom of Figure 3 
specifies that the new class is abstract by assigning the 
true value to the corresponding attribute of Node 5. 

Creating Reengineering Histories with 
Graph Processes 
The overall goal of our research is the development of 
mechanisms that facilitate incremental and iterative 
reverse engineering processes. Tracability is the most 
important prerequisite for such a mechanism, i.e., in case 
of process iterations, we have to be able to trace and 
propagate modifications of the initial representation of 
the legacy system to its transformed representation, in 
order to re-establish consistency. The requirement for 
tracability implies some sort of “logbook” about the 
interdependencies of all operations invoked by the user. 
We will now propose the realization of such a logbook 
based on the formal concept of graph processes [11]. 

Analogously to the treatment of operations as graph 
productions, we can view operation applications as 
applications of graph productions. In the previous 
section, we pointed out that the application of a graph 
production could be defined by its match and comatch. 
More precisely, the application of a production 
r:(P,Q,C,T)  to a host graph G is defined as a tuple of 
morphisms (m:P→G, m’:Q→ G↓(r,m)) where m denotes 
the match and m’ denotes the comatch.  

As an example Figure 5 shows an application of 
production generalize to the sample host graph in Figure 
4. The left-hand side of Figure 5 shows the match while 
the right-hand side shows the comatch.  
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Figure 4. Sample host graph 

 
Real-world reverse engineering processes involve 
numerous such operation applications invoked by the 
user, which might partly depend on results created by 
previous operation applications. A history mechanism 
has to keep track of these operation applications and their 
interdependencies. Again, we propose a graph structure 
for this purpose. The top part of Figure 6 shows the 
general form of such a graph-based representation of an 

operation application (called transformation for short). 
The bottom part of Figure 6 illustrates this representation 
for our example in Figure 5.3 

 

generalize(:programmer, {:p_plan}, “Employee”); 
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Figure 5. Application of production generalize 
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We call the graph that stores the dependencies among 
transformations the History Graph. Figure 7 illustrates 
the structure of this graph, where T-nodes represent 
transformations and G-nodes represent elements of the 
Abstract Syntax Graph (ASG). Each transformation 
consumes certain ASG elements and replaces them by 
other ASG elements. In graph grammar terms, the 
consumed elements represent the match of the 

                                                 
3 For readability reasons, we only listed graph nodes as input and 
output of transformation generalize.  However, the internal 
representation of the History Graph maintains nodes and edges as input 
or output of transformations. 



   

corresponding graph production, while the produced 
ASG elements represent its comatch. From the above 
discussion follows that the History Graph, which 
represents a particular software refactoring history, 
contains the current ASG of the refactored SW systems 
as a subgraph. This subgraph can easily be determined 
by filtering all graph elements that have not been 
consumed by transformations, i.e., that are not sourced 
by an ‘in’ edge that points to a transformation node (bold 
G-nodes in Figure 7). 
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Figure 7. History Graph 

 

Likewise, the History Graph also subsumes all previous 
states of the ASG during the interactive refactoring 
process. Thus, it is possible to trace back to any past state 
in the editing history. 

The History Graph is a specific implementation of the 
general concept of a graph process as introduced by 
Corradini et al. [11]. Corradini defines a graph process as 
a partially ordered structure, plus suitable mappings 
which relate the elements of this structure to those of a 
given typed graph grammar. 

 

4. Using History Graphs for consistency 
management in reengineering tools 

We have employed the concept of History Graphs for 
consistency management during iterations in design 
recovery processes. For example, assume that midway 
during a reverse engineering process the reengineer 
learns about additional dependencies in the legacy 
system. Ideally, (s)he would like to add this new 
information to the initially extracted representation of the 
legacy system and validate those refactoring 
transformations which might have to be undone due to 
the new knowledge. The History Graph concept serves 
exactly this purpose. With its help the user can get back 

to the initial representation of the legacy system, make 
all desired changes, and determine which transformations 
might have lost their validity. 

In the Varlet project, we developed a prototype reverse 
engineering tool that uses History Graphs for this 
purpose [9]. In addition to their input/output 
dependencies, transformations in the Varlet History 
Graph also log their pre- and post-conditions. This 
enabled us to perform the validation of transformations 
fully automatically. On the downside, the History Graph 
mechanism built in Varlet requires tight integration with 
the rest of the tool and cannot be reused in other existing 
tools. Therefore, we have developed a lightweight 
History Graph mechanism that can loosely be integrated 
with existing reverse engineering tools. 

4.1 Tool integration prerequisites 
A tool has to meet certain requirements to be able to 
interface with our History Graph component. We have 
minimized these requirements as much as possible to 
enable the integration with many different environments. 
Basically, a tool has to be able to  

1. import and export its internal ASG structure 
(preferably in GXL format), and 

2. for each design recovery transformation on the ASG 

o report the graph elements that represent the 
input of the transformation4 

o report the graph elements that represent the 
output of the transformation 

in GXL format. 

An increasing number of current reengineering tools 
fulfill Requirement 1, e.g., Rigi [2]. Others can easily be 
extended because they are end-user programmable. For 
example, we have extended UMLStudio5 in our sample 
application described in the next section. Requirement 2 
is easy to achieve if Requirement 1 is satisfied because 
the input and output of a transformation can be 
represented as two GXL graphs (i.e., the match and the 
comatch according to Definition 2). 

The sequence diagram in Figure 8 illustrates a typical 
interaction scenario between a design recovery tool and 
the History Management component. Note that the 
diagram covers a single iteration in the recovery process 
only. The process starts with the creation of the start 
graph by passing it to the GXLHistory component, 
(addGraph(sG)). Then, a sequence of transformations 
is performed by the user. These transformations (t1 to 

                                                 
4 Including all graph elements that are checked in checks of 
preconditions of the operation. 
5 www.pragsoft.com 



   

tn) are logged in the History Graph. This is done by 
calling function addTransformation(l,r,t), 
where l and r denote in- and output of transformation t, 
respectively. 

At any point in time, the user can inspect the editing 
history. This is done by invoking the 
createHistory() operation. As result (s)he obtains 
the list of the transformation t1 to tn with the respective 
time stamps. 

GXLHistory 
 

addGraph (sG) 
 

propagateChanges () 
 

(newG) 
 

createHistory () 
 (trafos) 
 

getGraph (t1) 
 (curG) 
 

addChanges (c) 
 

Tool 
 

addTransformation (l1, r1, t1) 
 

addTransformation (ln, rn, tn) 
 

... 
 

 

Figure 8. Interaction with History Component 

 

When an iteration of the reverse engineering process is 
required, the tool restores the start graph by passing the 
transformation t1 to the GXLHistory component (cf. 
getGraph(t1)). Subsequently, the user can perform all 
necessary additions and/or modifications to the initial 
representation of the legacy systems and submit the 
changes to the GXLHistory  (cf. addChanges(c)).  
Likewise, the user may restore any other situation by 
calling getGraph (tx) with an intermediate 
transformation tx and by editing that situation.  

Now the User can use the logged history information to 
re-establish consistency through an incremental undo of 
all transformations that depend on the changes to the 
start graph (propagateChange()). As result of this 

operation (s)he gets the current graph ((newG)) without 
the undone transformation. 

4.2 History Management algorithm 
Internally, we use an extended version of the GXL graph 
model for maintaining the History Graph: we have 
introduced transformation nodes that carry a timestamp 
and a name attribute (cf. Figure 9). Transformation nodes 
are created automatically by the History component for 
each call to addTransformation. The timestamp is 
used to log the time when a transformation has occurred 
and the name logs the name of the corresponding 
operation. 

Graph
-directed

GraphElement

Node
�

�

Edge�
�

from
1

to1

TypedElementType
AttributedElement

-id�
�

�

�

�

�

hasType
1

0..1

refers_type

1

0..N

GXLDocument
�

�

refersDocument

0..1 Transformation
-name

-timestamp

out
in

0..n

 

 

Figure 9. Graph model for History Graphs 

 

The algorithm in Figure 10 describes the work performed 
by our History Management component. At the 
beginning, it receives the start graph from the 
reengineering tool. This start graph (SG) becomes the 
initial history graph (HG). Then, the History 
Management component logs all invoked 
transformations in the history graph. If process iterations 
occur the History Management component recovers the 
initial start graph and sends it to the tool. Line 8 specifies 
that the start graph can be recovered by taking all graph 
elements from HG that do not represent transformations 
and do not comprise incoming out-edges. 

Once the reengineer has completed the modifications to 
the initial start graph, it is sent back to the History 
Management component, which computes the changed 
graph elements (lines 9 and 10). Subsequently, all 
transformations affected by the changes are determined 
by transitively traversing in- and out-edges in the History 
Graph. Note that we use regular path expressions to 
represent graph traversals, as proposed in [19]. Finally, 
all affected transformations are removed from the 
History Graph (Line 12) and the updated tool graph is 
computed and sent to the tool (lines 13 and 14). This is 
illustrated in Figure 11 where the star represents a 
changed graph element in the start graph and the circle 



   

marks dependent graph elements that are to be removed 
from the History Graph. In this figure, the bold G-nodes 
represent the updated tool graph that is sent back to the 
tool. 
Algorithm History Management
Begin

1. Receive Start Graph from tool (addGraph(SG))
2. HG := SG; // SG becomes the initial History Graph

3. Repeat

4. Repeat
5. Log tool transformation in HG (addTransformation)
6. Until Start Graph requested (getGraph)

7. Recover Start Graph and send it to tool
8. SG := {e∈HG | type(e)≠“Trafo” ∧ e.(<-Out-)=∅}

9. Receive changed Start Graph (addChanges(c))

10. Receive progagate command (propagateChanges)
// determine all affected transformations

11. AffectedTrafos:= c.(-in->).(-out->&-in->)*

// undo affected transformations
12. HG:= HG–(AffectedTrafos.-out-> ∪ AffectedTrafos)

13. Compute updated tool graph and send to tool
14. TG := {e∈HG | type(e)≠“Trafo” ∧ e.(-In->)=∅}

15. Display Undo Report (AffectedTrafos)

16.Loop
End.

Figure 10. Algorithm History Management 
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Figure 11. Updated and pruned History Graph 

5. Application example: Design Pattern 
Recovery 

The first application of our History Mechanism has been 
in the domain of database design recovery. We reported 
on this case study in a previous paper [9]. Since then, we 
have worked on a generalization of our approach to 
extend existing tools in various other domains. In the 
following, we describe an application example in the 
domain of design pattern recovery. The notion of design 

patterns has been introduced by Gamma et al. as a way 
of communicating design solutions for frequently 
recurring problems [20]. Using design patterns adds a 
level of abstraction that facilitates description and 
understanding of software systems. Recently, researchers 
have begun to use the notion of patterns in the design 
recovery and documentation of legacy software systems, 
e.g., [21]. 

In our study, we have used UMLStudio6, a commercial 
UML design tool, for recovering design patterns from the 
Abstract Window Toolkit (AWT)7. We have chosen 
UMLStudio because it has advanced mechanisms for 
end-user programmability: UMLStudio provides a 
scripting language called PragScript. PragScript is a 
LISP dialect and facilitates traversal of the entire internal 
data structure of the tool. UMLStudio is shipped with a 
collection of sample scripts and complete online 
documentation. It took us approximately four days of 
work to develop the required GXL export/import 
functionality by “customizing” these scripts. 

UMLStudio provides (limited) functionality for reverse 
engineering UML class diagrams from Java source code. 
However, it does not provide automated means for 
detecting the existence of design patterns. They have to 
be detected interactively by adding pattern annotations to 
the constituting design elements. For this purpose, we 
added a pattern annotation function to UMLStudio. The 
screen shot in Figure 12 illustrates this approach for an 
excerpt of six sample classes of the AWT8. When the 
reengineer has discovered an instance of a design pattern, 
(s)he can select its constituents and invoke the pattern 
annotation function. In our screenshot, the reengineer has 
recovered three instances of design patterns, namely 
Association, Composite, and Delegation. Some design 
patterns depend on the existence of others, e.g., the 
Composite depends on Delegation and Association. We 
were unable to visualize the direction of such 
dependencies in UMLStudio. Nevertheless, we believe 
that this does not cause a real problem for users who 
know the design patterns they are trying to detect. 

                                                 
6 www.pragsoft.com 
7 http://java.sun.com/products/jdk/awt 
8 For simplicity reasons, we compressed the diagram by hiding 
operations and attributes that are not required for the discussion of our 
example. 



   

In our theoretical model, we can treat the implemented 
pattern annotation function as a graph production. If we 
use our History concept to log transformations necessary 
for recovering and annotating the three design patterns in 
Figure 12, we obtain the History Graph in Figure 13: the 
first annotation transformation makes the information 
explicit that the two references parent and component 
between Component and Container constitute a single 
association. The second transformation annotates the 
existence of a delegation between the two paint methods 
in both classes. Of course, the recovery of this pattern 
requires additional knowledge, which indicates that a 
delegation indeed happens between the two operations. 
One possibility to retrieve this information is to 
investigate the implementation of these operations. 
Another frequently used heuristic takes equally named 
operations as an indication for a delegation. This 
heuristic was used in our example in Figure 12. Finally, 
the third design pattern (Composite) is based on the 
existence of the delegation, an association and an 
inheritance relationship. 

Let us assume that the reengineer discovered at a later 
point that the naming heuristic did not apply in this case 
and the name equality between both operations is just 
coincident. Then, the Delegation annotation (and all 
other dependent transformations) have to be undone to 
avoid inconsistency. Using the History component, the 
reengineer can go back to the initial version of the class 
model and enter the information that the knowledge 
about the paint operations has changed. Then, the 
propagation algorithm would automatically undo all 

dependent operations while the other manual recovery 
work is consistently preserved. 
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Figure 13. History Graph for design pattern detection 

 

6. Conclusions and future work 
Mechanisms that allow for iterative and explorative 
refactoring processes in human-centered reengineering 
tools are crucial for the usability of these tools. Only few 
currently existing tools provide such mechanisms [9, 18]. 
Moreover, these mechanisms are usually tightly 
integrated with the rest of the tool and cannot be reused 
in other tool environments. The approach presented in 
this paper is based on our practical experiences with one 
of these mechanisms [9] and attempts to generalize the 
involved concepts to make them reusable. The recent 

Figure 12. Design pattern detection with UMLStudio 



   

movement of the reengineering community towards tool- 
interoperability based on a common graph exchange 
format (GXL) opens up an opportunity to develop 
reusable “backbone” components like the History 
Manager described in this paper. 

In a previous paper, we have shown that our approach is 
feasible and scalable [9]. This application was in the 
domain of data reverse engineering. This paper 
demonstrates that the History concept can be generalized 
for other application domains (recovery of object-
oriented design patterns) and integrated with existing 
reengineering tools. Our future work will be on 
improving the interfacability and usability of our History 
component. We intend to implement a user interface with 
a history browser.  

Acknowledgements 
The described research has been supported in part by the 
National Science and Research Counsel of Canada 
(NSERC). Many thanks to Vladislav Krasnyanskiy for 
his support in implementing the current History 
Management component. 

References 
[1] Muller, H., S. Tilley, and K. Wong. Understanding 

Software Systems using Reverse Engineering 
Technology: Perspectives from the Rigi Project. in 
CASCON '93. 1993. Toronto Ontario, Canada: IBM. 

[2] Storey, M.A. and H. Muller. Manipulating and 
Documenting Software Structures using SHriMP 
Views. in International Conference in Software 
Maintenance. 1995: IEEE CS Press. 

[3] Henrard, J., et al. Program Understanding in 
Database Reverse Engineering. in DEXA'98. 1998. 
Vienna, Austria. 

[4] Ebert, J., B. Kullbach, and A. Panse, The Extract-
Transform-Rewrite Cycle - A Step towards 
MetaCARE. 1997, Fachberichte Informatik, 
Universität Koblenz-Landau: Koblenz. 

[5] Cremer, K. A Tool Supporting the Re-Design of 
Legacy Applications. in 2nd Euromicro Conference 
on Software Maintenance and Reengineering. 1998: 
IEEE-CS Press. 

[6] Grisworld, W.G., et al., Tool Support for Planning 
the Restructuring of Data Abstractions in Large 
Systems. IEEE Transactions on Software 
Engineering, 1998. 24(7): p. 534-558. 

[7] Jahnke, J.H. and A. Zundorf. Using Graph 
Grammars for Building the Varlet Database Reverse 
Engineering Environment. in Theory and Application 
of Graph Transformations. 1998. Paderborn, 
Germany: University of Paderborn, Germany. 

[8] Jahnke, J.H. and A. Walenstein. Reverse Engineering 
Tools as Media for Imperfect Knowledge. in Working 

Conference on Reverse Engineering (WCRE 2000). 
2000. Brisbane, Australia: IEEE Computer Society. 

[9] Jahnke, J.H. and J.P. Wadsack. Integration of 
analysis and redesign activities in information system 
reengineering. in 3rd European Conference on 
Software Maintenance and Reengineering 
(CSMR'99). 1999. Amsterdam, NL: IEEE Computer 
Society. 

[10] Rozenberg, G., ed. Handbook of Graph Grammars 
and Computing by Graph Transformation. Vol. 1. 
1999, World Scientific. 

[11] Corradini, A., U. Montanari, and F. Rossi, Graph 
processes. Fundamenta Informaticae, IOS Press, 
1996. 26(3): p. 241-265. 

[12] Holt, R., et al. GXL: Towards a Standard Exchange 
Format. in Working Conference on Reverse 
Engineering (WCRE). 2000. Brisbane, Australia: 
IEEE-CS Press. 

[13] Simpson, M., CVS Version Control and Branch 
Management. Dr. Dobb's Journal of Software Tools, 
2000. 10(25): p. 108,110-114. 

[14] Lefering, C. and A. Schurr, Specification of 
Integration Tools, in Building tightly integrated 
software development environments - The IPSEN 
Project, M. Nagl, Editor. 1996, Springer Verlag: 
Berlin. 

[15] Nagl, M., ed. Building tightly integrated software 
development environments - The IPSEN Project. 
LNCS. Vol. 1170. 1996, Springer: Berlin. 

[16] Rajala, N., D. Campara, and N. Mansurov. Insight - 
Reverse Engineer Case Tool. in Intl. Software 
Engineering Conference (ICSE-'99). 1999: ACM 
Press. 

[17] Kullbach, B., et al. Program Comprehension in 
Multi-Language Systems. in Working Conference on 
Reverse Engineering (WCRE). 1998. Hawaii, USA: 
IEEE-CS Press. 

[18] Hick, J.-M., et al. Strategies pour l'evolution des 
applications de bases de donnees relationnelles : 
l'approche DB-MAIN. in XVIIe congress INFORSID, 
La Garde, France. 1999. 

[19] Schurr, A., A. Winter, and A. Zundorf. Graph 
Grammar Engineering with PROGRES. in European 
Software Engineering Conference (ESEC). 1995: 
Springer Verlag. 

[20] Gamma, E., et al., Design patterns : elements of 
reusable object-oriented software. Addison-Wesley 
professional computing series. 1995, Reading, Mass.: 
Addison-Wesley. xv, 395. 

[21] Keller, R.K., et al., eds. The SPOOL Approach to 
Pattern-Based Recovery of Design Components. 
Advances in Software Engineering. Topics in 
Evolution, Comprehension, and Evaluation, ed. E. H. 
and O. Tanir. 2001, Springer-Verlag. 


