
A History Concept for Design Recovery Tools

Jens H. Jahnke
Department of Computer

Science
University of Victoria

PO Box 3055, Victoria B.C.
Canada V8W3P6

jens@acm.org

Jörg P. Wadsack
Dept. of Mathematics and

Computer Science
University of Paderborn

Warburger Str. 100
33098 Paderborn, Germany

maroc@upb.de

Albert Zündorf
Dept. of Mathematics and

Computer Science
University of Braunschweig

 Post box 3329
38023 Braunschweig, Germany

zuendorf@ips.cs.tu-bs.de

ABSTRACT
Many tools have been developed for recovering the
design of legacy software. Interactively invoked
abstraction operations and re-design transformations play
a central role in these tools. A limitation of most existing
approaches is, however, that they assume a mostly linear
transformation process. They provide little support for
iteration, recursion and incremental changes during the
recovery process. Nevertheless, empirical results suggest
that real-world abstraction and reengineering processes
are in fact highly iterative. A history mechanism that
explicitly maintains dependencies of all performed
transformations can overcome this mismatch. Based on
our experience with a specialized implementation of such
a mechanism, we present a generalized history concept
as an add-on to existing tools that support design
recovery.

Keywords:
Software maintenance, design recovery, reengineering,
reverse engineering, history concept, software
transformation

1. Introduction
Over two thirds of today’s expenditures in information
technology are spent on the maintenance of existing
software systems. Re-documentation and reengineering
activities account for largest part of this budget. Many
reengineering tools have been developed in industry and
academia in order to support this task, e.g., [1-7]. Such
tools provide mechanisms for creating conceptual
abstractions of the analyzed software system. Typically,
these abstractions are created in semi-automatic, human-
centered processes. Interactively invoked abstraction and
re-design transformations play a central role in these
tools. However, case studies with industrial applications
have shown that the applicability of current tools for
human-centered design recovery is limited [8]. This is
because they assume a relatively linear process with little
support for process iteration, recursion and incremental

changes during the reengineering process. The left-hand
side of Figure 1 illustrates that reengineers typically
loose large parts of the transformations performed
manually when process iterations occur, i.e., when new
analysis knowledge about the legacy system becomes
available. Unfortunately, such iterations occur frequently
in real-world abstraction and recovery processes [8].

A history mechanism that explicitly maintains
dependencies among all performed transformations can
tackle this problem. Such a history mechanism provides
the tracability necessary for iterative reengineering
processes. The right-hand side of Figure 1 illustrates this
idea of an explicit dependency relation among all
performed transformations. Let us assume that the black
box represents knowledge about a software artifact that
has been updated during the iteration. Then, the
dependency information stored in the proposed history
mechanism enables the selective removal of only those
transformation operations that (transitively) depend on
the changed information.

In [9], we presented a dedicated implementation of such
a mechanism in our database reverse engineering
environment. Based on our experience with this
prototype, we now suggest a generalized history concept
as an add-on to various kinds of existing design recovery
tools. Of course, different tools have different application
domains (e.g., object-oriented design, database schema
design) but the vast majority of tools have in common
that they are graph-based, i.e., they store model data in
abstract syntax graphs (ASG). Therefore, our approach
makes use of the theoretical concept of graph-
transformation systems [10] as a suitable abstraction for
all of these tools. This theoretical basis allows us to
uniformly describe various kinds of design recovery
processes in terms of graph processes [11]. Furthermore,
the integration of our history mechanism with existing
tools is facilitated by the current initiative for adopting a
common graph-based data interchange format [12].

The rest of this paper is structured as follows. In the next
section, we give an overview on related work in the area
of document consistency preservation and history

management. Section 3 introduces concepts that are
fundamental for our approach, namely the concept of a
graph and a graph grammar. Based on this definition,
Section 4 outlines the proposed History Management
mechanism. An application of this mechanism and its
integration with an existing design tool is presented in
Section 5. Finally, Section 6 closes with concluding
remarks and future research directions.

2. Related work
The described research is related to various existing
approaches to maintaining inter-document consistency in
the software (forward) engineering process. Perhaps the
most prominent technology in this regard is mechanisms
for version and configuration management like e.g., the
concurrent versions system (CVS) [13]. In principle,
mechanisms like CVS can be used to create version
histories of recovered design documents. However, such
version histories do not consider the actual structural
dependencies among the transformations performed in
the abstraction process. Instead, the version history
merely reflects a time-oriented view on intermediate
stages reached in the (last iteration of the) recovery
process. Consequently, traditional version management
systems can only provide limited support for iteration as
illustrated on the left-hand side of Figure 1.

Lefering and Schurr suggest a dedicated formalism
called Triple Graph Grammars for specifying structure
dependencies among Abstract Syntax Graphs (ASGs)
[14]. This formalism is used in the IPSEN project for
generating integration tools that maintain consistency

and propagate changes from software design documents
to the implementation code and vice versa [15].
Nowadays most commercially available development
environments provide (limited) support for propagating
changes between software documents on different levels
of abstraction.
Unfortunately, very few reverse engineering tools
provide similar support for propagating changes of the
knowledge about a legacy system to its reverse
engineered abstraction. Current reverse engineering
tools assume a similar waterfall-like process that was
imposed by forward engineering tools two decades ago.
Typical human-centered reverse engineering tools (e.g.,
[1, 2, 16, 17]) provide extractor programs for populating
the tool repository. The contents of the repository can
then be visualized and transformed with various kinds of
viewers and editors. With most current tools, these two
steps (1) legacy system analysis and information
extraction, and (2) information transformation and
abstraction cannot be iterated without losing the
interactive work performed on abstracting and
transforming the information on the legacy system.
One notable exception is the DB-MAIN database reverse
engineering environment developed by the University of
Namur, Belgium [18]. DB-MAIN logs the history of all
interactions during interactive abstraction and refactoring
sessions in order to better support continuous evolution
in relational databases. This allows the reuse of the
operational “knowledge” accumulated during the
different phases of a reengineering process. The DB-
MAIN history mechanism addresses issues of

Legacy Code

…

Layouter QOCA
�

�

Work
package 3
(2 pers.)

Tranformations

Resulting abstraction

Iterations

G G G G G G

T

T

T

T

T

G G G

G

G

G

G

Layouter QOCA
�

�

Work
package 3
(2 pers.)

Legacy Code
G

model artifact

actual (structural)
dependency

(History Graph)

linear (time-based)
dependency

Figure 1. Iteration support without and with a History Mechanism for maintaining transformation dependencies

consistency maintenance during evolution of the
persistent data (schemas) during the life cycle of a
database application. Hick et al. have developed different
“evolution strategies” depending on whether the
evolution takes place in the physical, logical or
conceptual schema. Each performed transformation is
recorded precisely and completely to make its inversion
possible. The history has to be monotone and linear,
which implies no iteration and no branches. Concurrent
work is not supported, i.e., only one person can modify
the schema at the same time.

The DB-MAIN consistency management strategies
depend on the reversibility property of the
transformations applied. This property makes it possible
that changes can be propagated from one schema level to
another. In case that a transformation recorded in the
history becomes invalid, i.e., its precondition fails, the
reengineer has to resolve the inconsistencies manually.
In contrast to the History Mechanism proposed in this
paper, DB-MAIN does not allow the reengineer to get
back (and modify) the initial state of the legacy system.

The Varlet database-reengineering environment is
another tool that supports iterative analysis and
abstraction processes [9]. In this approach, Varlet logs
all database schema transformations invoked by the user
in an automated logbook (including their pre- and post-
conditions and interdependencies). Moreover, the initial,
low-level representation of the legacy schema remains
available for the user. This enables the user to revisit the
starting point of his/her interactive modification at a later
point in the reverse engineering process in order to
modify existing or add new low-level information on the
legacy system. The new information might stem from
applying additional extractor programs or from
interviews conducted with developers or other human
experts. Whenever the initial representation of the legacy
system is changed, Varlet uses the logged transformation
dependencies to determine which interactive operations
are affected by the modifications. The pre-conditions of
these transformations are then re-evaluated and only
those transformations that fail this test are undone. After
this propagation step, the consistency of the extracted
information on the legacy system and its interactively
created abstraction has been reestablished.
This paper describes a generalization of the Varlet
consistency management mechanism as a reusable
component to be integrated with existing transformation-
based reverse engineering tool. Compared to the original
mechanism implemented in Varlet, the functionality of
the consistency management component described in this
paper is limited to determining and undoing all
interactive operations that are affected by a change of the
legacy system. This means that the preconditions of

operations are not re-evaluated. The rationale behind
this limitation is to minimize the requirements on tools
that can interface with our component. The re-evaluation
of the performed operations would require tools to
explicitly disclose all checks (preconditions) performed
prior to the execution of each operation. This
information is normally not available.

3. Graph Transformation Systems
Graphs are commonly used by reverse engineering tools
for internal representation of software artifacts, e.g., [1,
2, 16, 17]. Of course, the specific graph models used in
different tools might comprise variations with respect to
their expressiveness. Nevertheless, most graph models
have in common that they support different node- and
edge types, attributes and directed edges. Recently, the
reverse engineering research community has developed a
standard graph model (called GXL) to promote tool
interoperability [12]. Since the start of this initiative in
1998, an increasing number of tools have been extended
with GXL import / export functionality. In the following,
we will use the GXL graph model as a basis for
presenting our approach. Still, the reader should note that
our technique does not depend on using this particular
model.

The GXL Graph Model
In the following, we will use the UML for giving a brief,
semi-formal introduction to the GXL graph model. We
refer to [10] for a complete formalization of attributed
graph models. A more in-depth discussion of GXL can
be found in [12]. Figure 2 shows a UML specification of
the GXL graph model.

Graph
-directed

GraphElement
0..N

Node
�

�
Edge��

from

1

to
1

TypedElementType
AttributedElement

-id�
�

�

�

�

�

hasType
1

0..1

refers_type

1

0..N

Relation Link

0..n

1

�

�

�

�

GXLDocument
�

�refersDocument

0..1

Default cardinalities
source of composition 1
source of association 0..n

Figure 2. GXL graph model

A graph can be directed or undirected. It contains graph
elements in form of nodes, edges, and relations.
Relations contain a set of links pointing to one graph
element each. All graph elements have unique identifiers.

GXL also includes the notion of hypergraphs, i.e., graph
elements can themselves contain sub-graphs.
Furthermore, GXL supports typed graph elements (where
the type of a graph element is itself a graph element of a
type graph). We omit a more detailed discussion of the
GXL typing concept since it is not a required in this
paper. Note that the actual exchange of GXL graph
instances is performed in a canonical textual format
based on XML [12].

Graph productions
Graph transformation systems (or graph grammars) are
typically defined as a start graph and a set of graph
transformation rules (or graph productions). Generally,
graph productions can be defined as a pair of graphs, a
set of application conditions, and a set of attribute
transfer clauses. The two graphs are called the left-hand
side and the right-hand side of the production,
respectively. Graph elements of the left-hand side might
also appear on the right-hand side. Graph productions
and their application semantics have been formalized
based on algebra theory. A complete formalization of
these concepts is out of the scope of this paper and can
be found in [10]. The intuitive understanding provided
by the following semi-formal definitions is sufficient for
the purpose of this paper.

Defintion 1. Graph production

A graph production is a tuple r:(P, Q, C, T), where

P(r)=P and Q(r)=Q are two graphs over the same sets of
node and edge type labels;
P(r) is called the left-hand side and Q(r) is called the
right-hand side of r.

C is a set of application conditions.

T is a set of attribute transfer clauses.

Defintion 2. Application of a graph production

A production r:(P,Q,C,T) is applied to a host graph G in
the following five steps:
• choose an occurrence of the left-hand side P in G. P

has an occurrence in graph G if there is a morphism
m:P→G which preserves source and target and
labelling mappings.

• check the application conditions C. If they hold the
occurrence of P in G is called a match for P.

• remove all elements in G that have been matched to
elements in P that do not occur in Q,

• adding all elements to G that are new in Q. The
occurrence of Q in the modified host graph G is
called comatch.

• transfering attribute values to nodes in G that match
nodes in Q(r) according to the attribute transfer
clauses specified in T.

We denote G↓(r,m) for the graph that is produced by the
application of a production r to a graph G (in a match m).

Note that graph productions are typically represented
graphically, e.g., using the notation proposed by Schurr
et al. [19]. In the following, we will discuss the sample
graph production shown in Figure 3.

Operations viewed as graph productions
In principle, any tool for software design recovery can be
viewed as specific graph transformation systems, where
each modifying operation offered to the user is
represented by a graph production. For example,
consider a refactoring operation generalize that creates
an abstract super class for a selected class c and
generalizes some members of c. Figure 3 shows a
representation of this refactoring operation in form of a
graph production.

Production generalize(c:Class, a:Members [0..n], name: string);

4

a:Member

c:Class

Member:Member

contains

a:Member

contains

1

2 3

:Class

is_a

4

left-hand side

a:Member

c:Class

Member :Member

contains

a:Member

contains

1

2 3

:Class

is_a

4
:Class

5
is_a

right-hand side

transfer 5.abstract=true; 5.name=name;
Figure 3. Graph production generalize

The unique identification number in the upper left corner
of each node allows identifying identical nodes on both
sides of the production. Node 1 represents the class to be
generalized. Node 3 represents the set of members that
will move to the new abstract super class (Node 5). Node
2 represents the set of all remaining class members1.
Node 4 considers the case that the class to be generalized
might already have a super class2. In this case, Node 4
will become the super class of the new generalization

1 Note, that both nodes (2 and 3) are determined by the user’s selection,
parameter a.
2 The dashed border of Node 4 specifies that a match for this node is
optional. We adopted this notation from [19]. This notation is merely
an abbreviation since productions with optional graph elements can
always be presented by a set of productions without optional graph
elements.

(Node 5). The transfer clause at the bottom of Figure 3
specifies that the new class is abstract by assigning the
true value to the corresponding attribute of Node 5.

Creating Reengineering Histories with
Graph Processes
The overall goal of our research is the development of
mechanisms that facilitate incremental and iterative
reverse engineering processes. Tracability is the most
important prerequisite for such a mechanism, i.e., in case
of process iterations, we have to be able to trace and
propagate modifications of the initial representation of
the legacy system to its transformed representation, in
order to re-establish consistency. The requirement for
tracability implies some sort of “logbook” about the
interdependencies of all operations invoked by the user.
We will now propose the realization of such a logbook
based on the formal concept of graph processes [11].

Analogously to the treatment of operations as graph
productions, we can view operation applications as
applications of graph productions. In the previous
section, we pointed out that the application of a graph
production could be defined by its match and comatch.
More precisely, the application of a production
r:(P,Q,C,T) to a host graph G is defined as a tuple of
morphisms (m:P→G, m’:Q→ G↓(r,m)) where m denotes
the match and m’ denotes the comatch.

As an example Figure 5 shows an application of
production generalize to the sample host graph in Figure
4. The left-hand side of Figure 5 shows the match while
the right-hand side shows the comatch.

Person:Class

pension_plan:Member

mame:Member

programmer:Class

login:Member

is_a

containscontains

worksFor:Reference

Company:Class

targetsource

address:Member

contains

contains

Figure 4. Sample host graph

Real-world reverse engineering processes involve
numerous such operation applications invoked by the
user, which might partly depend on results created by
previous operation applications. A history mechanism
has to keep track of these operation applications and their
interdependencies. Again, we propose a graph structure
for this purpose. The top part of Figure 6 shows the
general form of such a graph-based representation of an

operation application (called transformation for short).
The bottom part of Figure 6 illustrates this representation
for our example in Figure 5.3

generalize(:programmer, {:p_plan}, “Employee”);

 4
Person:Class

p_plan:Member

programmer:Class

login:Member

is_a

containscontains

1

2 3

1

Person:Class

p_plan:Member

programmer:Class

login:Member

is_a

containscontains
Employee:Class

is_a
4

5

2 3

Figure 5. Application of production generalize

Graph
Element

Graph
Element

Transfor
mation

Graph
Element

Graph
Element

... ... in out

Person:
Class

programmer:
Class

generalize
login:

Member

p_plan:
Member

Person:
Class

programmer:
Class
login:

Member
p_plan:
Member

Employee:
Class

(general form)

(example)

Figure 6. Graph representation of operation
applications

We call the graph that stores the dependencies among
transformations the History Graph. Figure 7 illustrates
the structure of this graph, where T-nodes represent
transformations and G-nodes represent elements of the
Abstract Syntax Graph (ASG). Each transformation
consumes certain ASG elements and replaces them by
other ASG elements. In graph grammar terms, the
consumed elements represent the match of the

3 For readability reasons, we only listed graph nodes as input and
output of transformation generalize. However, the internal
representation of the History Graph maintains nodes and edges as input
or output of transformations.

corresponding graph production, while the produced
ASG elements represent its comatch. From the above
discussion follows that the History Graph, which
represents a particular software refactoring history,
contains the current ASG of the refactored SW systems
as a subgraph. This subgraph can easily be determined
by filtering all graph elements that have not been
consumed by transformations, i.e., that are not sourced
by an ‘in’ edge that points to a transformation node (bold
G-nodes in Figure 7).

G

G

G

G

G

G

T

T

T
T

T

G

G

G

G

G G

G

in

in

in

in

in

out

out

out

out

out

in

G

in

Figure 7. History Graph

Likewise, the History Graph also subsumes all previous
states of the ASG during the interactive refactoring
process. Thus, it is possible to trace back to any past state
in the editing history.

The History Graph is a specific implementation of the
general concept of a graph process as introduced by
Corradini et al. [11]. Corradini defines a graph process as
a partially ordered structure, plus suitable mappings
which relate the elements of this structure to those of a
given typed graph grammar.

4. Using History Graphs for consistency
management in reengineering tools

We have employed the concept of History Graphs for
consistency management during iterations in design
recovery processes. For example, assume that midway
during a reverse engineering process the reengineer
learns about additional dependencies in the legacy
system. Ideally, (s)he would like to add this new
information to the initially extracted representation of the
legacy system and validate those refactoring
transformations which might have to be undone due to
the new knowledge. The History Graph concept serves
exactly this purpose. With its help the user can get back

to the initial representation of the legacy system, make
all desired changes, and determine which transformations
might have lost their validity.

In the Varlet project, we developed a prototype reverse
engineering tool that uses History Graphs for this
purpose [9]. In addition to their input/output
dependencies, transformations in the Varlet History
Graph also log their pre- and post-conditions. This
enabled us to perform the validation of transformations
fully automatically. On the downside, the History Graph
mechanism built in Varlet requires tight integration with
the rest of the tool and cannot be reused in other existing
tools. Therefore, we have developed a lightweight
History Graph mechanism that can loosely be integrated
with existing reverse engineering tools.

4.1 Tool integration prerequisites
A tool has to meet certain requirements to be able to
interface with our History Graph component. We have
minimized these requirements as much as possible to
enable the integration with many different environments.
Basically, a tool has to be able to

1. import and export its internal ASG structure
(preferably in GXL format), and

2. for each design recovery transformation on the ASG

o report the graph elements that represent the
input of the transformation4

o report the graph elements that represent the
output of the transformation

in GXL format.

An increasing number of current reengineering tools
fulfill Requirement 1, e.g., Rigi [2]. Others can easily be
extended because they are end-user programmable. For
example, we have extended UMLStudio5 in our sample
application described in the next section. Requirement 2
is easy to achieve if Requirement 1 is satisfied because
the input and output of a transformation can be
represented as two GXL graphs (i.e., the match and the
comatch according to Definition 2).

The sequence diagram in Figure 8 illustrates a typical
interaction scenario between a design recovery tool and
the History Management component. Note that the
diagram covers a single iteration in the recovery process
only. The process starts with the creation of the start
graph by passing it to the GXLHistory component,
(addGraph(sG)). Then, a sequence of transformations
is performed by the user. These transformations (t1 to

4 Including all graph elements that are checked in checks of
preconditions of the operation.
5 www.pragsoft.com

tn) are logged in the History Graph. This is done by
calling function addTransformation(l,r,t),
where l and r denote in- and output of transformation t,
respectively.

At any point in time, the user can inspect the editing
history. This is done by invoking the
createHistory() operation. As result (s)he obtains
the list of the transformation t1 to tn with the respective
time stamps.

GXLHistory

addGraph (sG)

propagateChanges ()

(newG)

createHistory ()
 (trafos)

getGraph (t1)
 (curG)

addChanges (c)

Tool

addTransformation (l1, r1, t1)

addTransformation (ln, rn, tn)

...

Figure 8. Interaction with History Component

When an iteration of the reverse engineering process is
required, the tool restores the start graph by passing the
transformation t1 to the GXLHistory component (cf.
getGraph(t1)). Subsequently, the user can perform all
necessary additions and/or modifications to the initial
representation of the legacy systems and submit the
changes to the GXLHistory (cf. addChanges(c)).
Likewise, the user may restore any other situation by
calling getGraph (tx) with an intermediate
transformation tx and by editing that situation.

Now the User can use the logged history information to
re-establish consistency through an incremental undo of
all transformations that depend on the changes to the
start graph (propagateChange()). As result of this

operation (s)he gets the current graph ((newG)) without
the undone transformation.

4.2 History Management algorithm
Internally, we use an extended version of the GXL graph
model for maintaining the History Graph: we have
introduced transformation nodes that carry a timestamp
and a name attribute (cf. Figure 9). Transformation nodes
are created automatically by the History component for
each call to addTransformation. The timestamp is
used to log the time when a transformation has occurred
and the name logs the name of the corresponding
operation.

Graph
-directed

GraphElement

Node
�

�

Edge�
�

from
1

to1

TypedElementType
AttributedElement

-id�
�

�

�

�

�

hasType
1

0..1

refers_type

1

0..N

GXLDocument
�

�

refersDocument

0..1 Transformation
-name

-timestamp

out
in

0..n

Figure 9. Graph model for History Graphs

The algorithm in Figure 10 describes the work performed
by our History Management component. At the
beginning, it receives the start graph from the
reengineering tool. This start graph (SG) becomes the
initial history graph (HG). Then, the History
Management component logs all invoked
transformations in the history graph. If process iterations
occur the History Management component recovers the
initial start graph and sends it to the tool. Line 8 specifies
that the start graph can be recovered by taking all graph
elements from HG that do not represent transformations
and do not comprise incoming out-edges.

Once the reengineer has completed the modifications to
the initial start graph, it is sent back to the History
Management component, which computes the changed
graph elements (lines 9 and 10). Subsequently, all
transformations affected by the changes are determined
by transitively traversing in- and out-edges in the History
Graph. Note that we use regular path expressions to
represent graph traversals, as proposed in [19]. Finally,
all affected transformations are removed from the
History Graph (Line 12) and the updated tool graph is
computed and sent to the tool (lines 13 and 14). This is
illustrated in Figure 11 where the star represents a
changed graph element in the start graph and the circle

marks dependent graph elements that are to be removed
from the History Graph. In this figure, the bold G-nodes
represent the updated tool graph that is sent back to the
tool.
Algorithm History Management
Begin

1. Receive Start Graph from tool (addGraph(SG))
2. HG := SG; // SG becomes the initial History Graph

3. Repeat

4. Repeat
5. Log tool transformation in HG (addTransformation)
6. Until Start Graph requested (getGraph)

7. Recover Start Graph and send it to tool
8. SG := {e∈HG | type(e)≠“Trafo” ∧ e.(<-Out-)=∅}

9. Receive changed Start Graph (addChanges(c))

10. Receive progagate command (propagateChanges)
// determine all affected transformations

11. AffectedTrafos:= c.(-in->).(-out->&-in->)*

// undo affected transformations
12. HG:= HG–(AffectedTrafos.-out-> ∪ AffectedTrafos)

13. Compute updated tool graph and send to tool
14. TG := {e∈HG | type(e)≠“Trafo” ∧ e.(-In->)=∅}

15. Display Undo Report (AffectedTrafos)

16.Loop
End.

Figure 10. Algorithm History Management

G

G

G

G

G

G

T

T

T
T

T

G

G

G
G

G G
in

in

in

in

in

out

out

out

out

out

G

in

Figure 11. Updated and pruned History Graph

5. Application example: Design Pattern
Recovery

The first application of our History Mechanism has been
in the domain of database design recovery. We reported
on this case study in a previous paper [9]. Since then, we
have worked on a generalization of our approach to
extend existing tools in various other domains. In the
following, we describe an application example in the
domain of design pattern recovery. The notion of design

patterns has been introduced by Gamma et al. as a way
of communicating design solutions for frequently
recurring problems [20]. Using design patterns adds a
level of abstraction that facilitates description and
understanding of software systems. Recently, researchers
have begun to use the notion of patterns in the design
recovery and documentation of legacy software systems,
e.g., [21].

In our study, we have used UMLStudio6, a commercial
UML design tool, for recovering design patterns from the
Abstract Window Toolkit (AWT)7. We have chosen
UMLStudio because it has advanced mechanisms for
end-user programmability: UMLStudio provides a
scripting language called PragScript. PragScript is a
LISP dialect and facilitates traversal of the entire internal
data structure of the tool. UMLStudio is shipped with a
collection of sample scripts and complete online
documentation. It took us approximately four days of
work to develop the required GXL export/import
functionality by “customizing” these scripts.

UMLStudio provides (limited) functionality for reverse
engineering UML class diagrams from Java source code.
However, it does not provide automated means for
detecting the existence of design patterns. They have to
be detected interactively by adding pattern annotations to
the constituting design elements. For this purpose, we
added a pattern annotation function to UMLStudio. The
screen shot in Figure 12 illustrates this approach for an
excerpt of six sample classes of the AWT8. When the
reengineer has discovered an instance of a design pattern,
(s)he can select its constituents and invoke the pattern
annotation function. In our screenshot, the reengineer has
recovered three instances of design patterns, namely
Association, Composite, and Delegation. Some design
patterns depend on the existence of others, e.g., the
Composite depends on Delegation and Association. We
were unable to visualize the direction of such
dependencies in UMLStudio. Nevertheless, we believe
that this does not cause a real problem for users who
know the design patterns they are trying to detect.

6 www.pragsoft.com
7 http://java.sun.com/products/jdk/awt
8 For simplicity reasons, we compressed the diagram by hiding
operations and attributes that are not required for the discussion of our
example.

In our theoretical model, we can treat the implemented
pattern annotation function as a graph production. If we
use our History concept to log transformations necessary
for recovering and annotating the three design patterns in
Figure 12, we obtain the History Graph in Figure 13: the
first annotation transformation makes the information
explicit that the two references parent and component
between Component and Container constitute a single
association. The second transformation annotates the
existence of a delegation between the two paint methods
in both classes. Of course, the recovery of this pattern
requires additional knowledge, which indicates that a
delegation indeed happens between the two operations.
One possibility to retrieve this information is to
investigate the implementation of these operations.
Another frequently used heuristic takes equally named
operations as an indication for a delegation. This
heuristic was used in our example in Figure 12. Finally,
the third design pattern (Composite) is based on the
existence of the delegation, an association and an
inheritance relationship.

Let us assume that the reengineer discovered at a later
point that the naming heuristic did not apply in this case
and the name equality between both operations is just
coincident. Then, the Delegation annotation (and all
other dependent transformations) have to be undone to
avoid inconsistency. Using the History component, the
reengineer can go back to the initial version of the class
model and enter the information that the knowledge
about the paint operations has changed. Then, the
propagation algorithm would automatically undo all

dependent operations while the other manual recovery
work is consistently preserved.

Attr

Attr

T

Attr

Attr in

out

Ass-
oc

In-
herit T

in

Ass-
oc

In-
herit

out

Com-
pos.

T

in

Ass
oc

Op

out

Dele-
gat.

Op

Op

Op

Dele-
gat.

Figure 13. History Graph for design pattern detection

6. Conclusions and future work
Mechanisms that allow for iterative and explorative
refactoring processes in human-centered reengineering
tools are crucial for the usability of these tools. Only few
currently existing tools provide such mechanisms [9, 18].
Moreover, these mechanisms are usually tightly
integrated with the rest of the tool and cannot be reused
in other tool environments. The approach presented in
this paper is based on our practical experiences with one
of these mechanisms [9] and attempts to generalize the
involved concepts to make them reusable. The recent

Figure 12. Design pattern detection with UMLStudio

movement of the reengineering community towards tool-
interoperability based on a common graph exchange
format (GXL) opens up an opportunity to develop
reusable “backbone” components like the History
Manager described in this paper.

In a previous paper, we have shown that our approach is
feasible and scalable [9]. This application was in the
domain of data reverse engineering. This paper
demonstrates that the History concept can be generalized
for other application domains (recovery of object-
oriented design patterns) and integrated with existing
reengineering tools. Our future work will be on
improving the interfacability and usability of our History
component. We intend to implement a user interface with
a history browser.

Acknowledgements
The described research has been supported in part by the
National Science and Research Counsel of Canada
(NSERC). Many thanks to Vladislav Krasnyanskiy for
his support in implementing the current History
Management component.

References
[1] Muller, H., S. Tilley, and K. Wong. Understanding

Software Systems using Reverse Engineering
Technology: Perspectives from the Rigi Project. in
CASCON '93. 1993. Toronto Ontario, Canada: IBM.

[2] Storey, M.A. and H. Muller. Manipulating and
Documenting Software Structures using SHriMP
Views. in International Conference in Software
Maintenance. 1995: IEEE CS Press.

[3] Henrard, J., et al. Program Understanding in
Database Reverse Engineering. in DEXA'98. 1998.
Vienna, Austria.

[4] Ebert, J., B. Kullbach, and A. Panse, The Extract-
Transform-Rewrite Cycle - A Step towards
MetaCARE. 1997, Fachberichte Informatik,
Universität Koblenz-Landau: Koblenz.

[5] Cremer, K. A Tool Supporting the Re-Design of
Legacy Applications. in 2nd Euromicro Conference
on Software Maintenance and Reengineering. 1998:
IEEE-CS Press.

[6] Grisworld, W.G., et al., Tool Support for Planning
the Restructuring of Data Abstractions in Large
Systems. IEEE Transactions on Software
Engineering, 1998. 24(7): p. 534-558.

[7] Jahnke, J.H. and A. Zundorf. Using Graph
Grammars for Building the Varlet Database Reverse
Engineering Environment. in Theory and Application
of Graph Transformations. 1998. Paderborn,
Germany: University of Paderborn, Germany.

[8] Jahnke, J.H. and A. Walenstein. Reverse Engineering
Tools as Media for Imperfect Knowledge. in Working

Conference on Reverse Engineering (WCRE 2000).
2000. Brisbane, Australia: IEEE Computer Society.

[9] Jahnke, J.H. and J.P. Wadsack. Integration of
analysis and redesign activities in information system
reengineering. in 3rd European Conference on
Software Maintenance and Reengineering
(CSMR'99). 1999. Amsterdam, NL: IEEE Computer
Society.

[10] Rozenberg, G., ed. Handbook of Graph Grammars
and Computing by Graph Transformation. Vol. 1.
1999, World Scientific.

[11] Corradini, A., U. Montanari, and F. Rossi, Graph
processes. Fundamenta Informaticae, IOS Press,
1996. 26(3): p. 241-265.

[12] Holt, R., et al. GXL: Towards a Standard Exchange
Format. in Working Conference on Reverse
Engineering (WCRE). 2000. Brisbane, Australia:
IEEE-CS Press.

[13] Simpson, M., CVS Version Control and Branch
Management. Dr. Dobb's Journal of Software Tools,
2000. 10(25): p. 108,110-114.

[14] Lefering, C. and A. Schurr, Specification of
Integration Tools, in Building tightly integrated
software development environments - The IPSEN
Project, M. Nagl, Editor. 1996, Springer Verlag:
Berlin.

[15] Nagl, M., ed. Building tightly integrated software
development environments - The IPSEN Project.
LNCS. Vol. 1170. 1996, Springer: Berlin.

[16] Rajala, N., D. Campara, and N. Mansurov. Insight -
Reverse Engineer Case Tool. in Intl. Software
Engineering Conference (ICSE-'99). 1999: ACM
Press.

[17] Kullbach, B., et al. Program Comprehension in
Multi-Language Systems. in Working Conference on
Reverse Engineering (WCRE). 1998. Hawaii, USA:
IEEE-CS Press.

[18] Hick, J.-M., et al. Strategies pour l'evolution des
applications de bases de donnees relationnelles :
l'approche DB-MAIN. in XVIIe congress INFORSID,
La Garde, France. 1999.

[19] Schurr, A., A. Winter, and A. Zundorf. Graph
Grammar Engineering with PROGRES. in European
Software Engineering Conference (ESEC). 1995:
Springer Verlag.

[20] Gamma, E., et al., Design patterns : elements of
reusable object-oriented software. Addison-Wesley
professional computing series. 1995, Reading, Mass.:
Addison-Wesley. xv, 395.

[21] Keller, R.K., et al., eds. The SPOOL Approach to
Pattern-Based Recovery of Design Components.
Advances in Software Engineering. Topics in
Evolution, Comprehension, and Evaluation, ed. E. H.
and O. Tanir. 2001, Springer-Verlag.

