
 Test ing and Simulating

Production Control Systems Using

the Fujaba Environment

Jörg Niere, Albert Zündorf

AG-Softwaretechnik, Fachbereich 17, Universität Paderborn
Warburger Str. 100, D-33098 Paderborn, Germany

e-mail:[nierej|zuendorf]uni-paderborn.de

Abstract. The Fujaba environment provides means for the specification of
the software systems in UML notation and it has the opportunity to simultate
the specified applications beforehand. Therefore, Fujaba provides editors for
UML class diagrams for the static aspects of a software system and it provi-
des Story Diagrams for the specification of dynamic behaviour. Story Dia-
grams combine UML activity diagrams for control flows and a UML colla-
boration diagram like notation for graph rewrite rules. Statecharts can be
used for the specification of reactive objects. In Fujaba, each diagram has a
precise formal semantics and this enables to generate Java code from the spe-
cification. The generated Java code is executed in a Java Virtual Machine
(JVM) and can be visualized by an integrated object browser. This paper
shows in a tool demonstration how to use the Fujaba environment in order to
simulate a specification of a shuttle based production control system.

1 Introduction

This paper presents in a tool demonstration how the Fujaba1 environment [FNT98] can
be used to specify e.g. production control systems. Fujaba provides UML class dia-
grams for the specification of static parts of the system. A combination of UML activity
and UML collaboration diagrams with an underlying graph grammar semantics for dy-
namic parts of software systems, e.g. methods. Statecharts [Har84] for reactive objects
and SDL [ITU96] block diagrams for the specification of asynchronous messages.
From such a specification, Fujaba is able to generate 100% pure Java code. The inte-
grated Dynamic Object Browsing System (DOBS) allows a simulation of the generated
code. Such a simulation enables us to test the specification in order to validate its be-
haviour.

2 Fujaba, an overview

Fujaba has been developed since 1998. Fujaba is planned as a round-trip and reverse
engineering tools, that provides editors, code genrators and recognizers for all types of

1. From UML to Java And Back Again

UML diagrams. Figure 1 shows a screen shot of the Fujaba environment that contains
the class diagram of the production control system example.

The class diagram shows a simple example specification of a production control sys-
tem. ClassFactory serves as a root class for the example and models the whole factory.
The production line consists of fields represented by classField. The self-association
next connects fields to tracks for shuttles. Shuttles moving on fields are modeled by
classShuttle. Shuttles are able to stand at a certain field (associationat to classField)
and to carry some good (associationcarries to classGood). The goods will be produced
at assembly lines in the factory. Classes can contain attributes, e.g. the string typed va-
riablewantedGood of classShuttle, or methods and signals. In a class diagram, methods
are only method declarations and method bodies can be specified using Story Diagrams.
Fujaba combines UML activity diagrams and graph rewrite rules for the specification
of method bodies. The control flow of methods is specified via UML activity diagrams,
where each activity can contain either Java source code as well as graph rewrite rules.

Figure 2 shows a screen dump of Fujaba with the body of thego method of classShuttle.
The control flow of the method starts at the filled circle on the top of the diagram and
follows the transitions. The first activity contains a graph rewrite rule. If the execution
of the graph rewrite rule is successful, the control flow follows the transitions guarded
with success and the method reaches the end-symbol. In case of a non-successful exe-
cution of the graph rewrite rule, the variableblocked is set totrue and the method ends.

Figure 1 Fujaba class diagram screen shot

Graph rewrite rules in Fujaba show the left- and right-hand sides of a rule in a single
picture and modifications are specified explicitly. We made the experience that typical-
ly rules look-up relatively large object (graph) structures, but contain only some modi-
fications and so the single-picture notation is more compact and easier to read.

The execution of the graph rewrite rule works as follows: First bind each variable in the
rule to an object in the object structure and then execute the modifications. Fujaba
traverses the object structure starting from already bound objects and tries to bind the
unbound objects of the rule. In Figure 2, thethis object is already bound (the variable
has no type) and thus, Fujaba first tries to bind the field objectf1 by traversing theat
link betweenthis andf1. The next variable to be bound isf2, which is also a field. The
cross-out of theat link betweenf2 and the variableother of typeShuttle specifies that
there must not be another shuttle at fieldf2. Now, the modifications, specified in the
rule, are executed, which means that theat link betweenthis andf1 is deleted (specified
by the two parallel, ’red’ lines) and a newat link is created betweenthis andf2 (speci-
fied by ’green’ plusses). Finally, the collaboration statement "1:blocked:= false" is
executed.

3 The dynamic behaviour of shuttles

To specify the dynamic behaviour of reactive objects, Fujaba uses statecharts. State-
charts are assigned to classes, e.g. Figure 3 shows the statechart of classShuttle. The
notation is taken from the original statecharts introduced by Harel [Har84] and com-
bined with graph rewrite rules.

Figure 2 Story Diagram for method go of class shuttle

The top-level states of a shuttle arewaiting andactive. After creation each shuttle is in
statewaiting and if anassign signal is received, the shuttle goes in the complex state
active. The complex stateactive contains four different states, namelyfetch, produce,
sleeping anddeliver. Each state represents a step in the production process of the sample
factory. Like in Harel statecharts, each state consists of an entry-, a do-, and an exit-ac-
tion. Guards, signals, and actions connected to transitions are notated as
"signal[guard]/ action". The execution sequence of actions is similar to Harel state-
charts.

However, note that in our approach a statechart controls only a single reactive object,
e.g. a single shuttle. Multiple reactive objects communicate with each other via asyn-
chronous messages. This communication is modeled using SDL block diagrams.

Statefetch of classShuttle models that a shuttle has to go to a field named "Entry" and
get some piece of iron. This behaviour is specified in the inline do-action, which is a
graph rewrite rule. If the shuttle, specified by thethis object, is currently not at a field
named "Entry" the execution halts until areached signal is received or a timer of ten
seconds runs out. The latter is specified by the "after 10000 / go()" transition. The tran-
sition-actiongo lets the shuttle move to the next field (c.f. Figure 2) and the graph re-
write rule is executed again. Once the shuttle is at an "Entry" field a newGood object
is created and put on the shuttle. After successful execution the shuttle sends itself are-

Figure 3 Statechart of shuttles

ached signal, which is queued and after finishing the do-action the shuttle goes into
stateproduce. Theproduce state checks if the shuttle is at a field with an assembly line.
If not, the shuttle moves to the next field after ten seconds as in statefetch. When the
shuttle reaches a field with an assembly line, it sends itself areached signal and apro-
duce signal to the assembly. After that, it goes into statesleeping and waits for agoOn
signal. Once the shuttle receives agoOn signal from the assembly line, it switches to
statedeliver which models the delivery of the manufactured good. After delivery, the
shuttle reaches statefetch again and the production process starts, anew.

4 Testing the specification

From the specified class diagrams, Story-Diagrams, and statecharts, the Fujaba code
generator produces automatically 100% pure Java code. For example, classes are
mapped to Java classes with attributes and method declarations. Story-Diagrams define
the method bodies and the event handling of each class, which is specified by a
statechart. Statecharts are implemented using threads in order to be executed concur-
rently. For more details of the code generation for class diagrams and Story-Diagrams
see [FNT98, FNTZ99] and the mapping to threads is explained in [Koe99] in detail. The
concurrency control concepts are taken from [Lea97].

A sample factory configuration is shown in Figure 4. The screen shot is taken from the
dynamic object browsing systems (DOBS) of Fujaba and shows the current object

Figure 4 Current factory configuration

structure within the Java Virtual Machine (JVM). There is a factory in the upper left and
an assemby line in the upper right corner. The assembly line is standing at fieldf2 and
the production line is currently a circle of four fieldsf2 to f5, which are connected via
next/prev links. On the production line there are currently two shuttles6 on fieldf4, and
s7 on field f5.

Dobs allows to display attributes of objects based on the Java runtime type information
and reflection mechanisms, for example the current attributewantedGood has as value
the string "clock". To provide a more convenient representation, Dobs can display dif-
ferent icons for objects. Therefore, Dobs uses the Java reflection mechanisms to ask an
object, which icons shall be displayed. E.g. the icon of shuttles7 shows only the shuttle
itself, in contrast to shuttles6, where a piece of iron is lying on the shuttle. This visual-
isation is more expressive than to show a good object with acarries link to the shuttle
like it is modeled in the class diagram (see Figure 1).

The current factory configuration shall work as follows. Shuttles go to the field named
"Entry" (field f4), pick up a piece of iron and then go to the assembly line. The assembly
line produces a specific good out of the iron, e.g. a key or a lock and after that, the shut-
tle goes to a field named "Deliver", where the good is taken from the shuttle and stored
(the storage is not modeled here).

To test this sample factory, Dobs allows the user to invoke methods on certain objects.
For example the popup menu in Figure 4 shows that thego method of shuttles6 is in-
voked by the user. So, for testing this specification, the user is e.g. able to let the shuttles
do their job using the method invocation concept.

Figure 5 Assembly line producing a good

Such a test, where the user has to invoke different methods or doing layout, is very la-
bor-intensive and the control parts rely on the user. But, reactive objects work autono-
mously and may be simulated in a continous way and not step by step. Therefore, the
user just sends assign events to the shuttles. This turns the shuttle threads into state ac-
tive and they start to execute the production process autonomously and concurrently.

Figure 5 shows the inlet of Dobs (see Figure 4) with the sample factory. The threads are
just started and the shuttles are moving around. Shuttles6 is currently at the assembly
line, where a clock is produced out of the piece of iron the shuttles carrying in Figure 4.
The stop sign in the icon of shuttles7 says that the shuttle could not go on to the next
field, because shuttles6 is currently there, and so shuttles7 is blocked1 (see also meth-
od go of classShuttle in Figure 2).

Now, there might be the need to reconfigure the production line, because the demands
has changed or the production line is not as productive as it could be. Such reconfigu-
rations can be done by the developer within the running simulation. For example, the
production line can be extended by new fields and to raise the productivity an additional
shuttles8 might be installed. To facilitate reconfigurations, the system could be halted,
but this is not necessary. Using a simulation, bugs in the specification can be pointed
out, e.g. whether shuttles might crash or may block each other. But not only bugs in the
specification can be pointed out, but also configuration problems. For example, if shutt-
les are mostly blocked, because the assembly line is to slow, the option of buying a se-
cond assembly line can be analysed by a simulation or other more optimal configurati-
ons can be discussed.

5 Conclusions and perspectives

We have shown, how the Fujaba environment can be used in order to specify production
control systems and to test the specifications through simulation. The main problem is
that modern production systems underly frequent changes and reconfiguration of hard-
ware and software takes much time, because the software can’t be tested up front. We
presented a possible solution to overcome these main problems by using the Fujaba en-
vironment. Fujaba has either the opportunity to edit a specification for a production con-
trol system as well as the generation of Java code and the simulation using Dobs.

Future work is to improve the simulation features of Dobs. For example, we need a
script language for the configuration of Dobs, where parts of the configuration can be
placed directly in the specification. Attributes shall be assigned with drawing objects,
where e.g. a lamp attribute is displayed as a lamp and not as a text which says true or
false. Another current project is a topology editor. E.g. a track-based production system
may be plugged together in an editor offering track icons. This topology will be trans-
lated into graph rewrite rules to create initial starting object structures for the simulation
afterwards.

1. attribute blocked is true

References

[FNT98] T. Fischer, J. Niere, L.Torunski, Conception and realisation of a integrated
development environment for UML, Java and Story Driven Modeling (in german),
Mater Thesises, Paderborn, 1998.

[FNTZ98] T. Fischer, J. Niere, L.Torunski, Story Diagrams: A new Graph Rewrite Language
based in the Unified Modeling Language and Java, Proceedings of Theory and
Application of Graph Transformations (TAGT), LNCS Spriner 1999

[Koe99] H.J. Köhler, Code generation for UML collaboration, sequence, and statechart
diagrams (in german), Master Thesis University of Paderborn, to appear in 1999.

[Har84] D. Harel, Statecharts: A visual approach to complex systems, CS84-05, Department
of Applied Mathematics, The Weizmann Institute of Science, 1994

[ITU96] ITU-T Recommodation Z.100 Specification and Description Language (SDL),
International Union (ITU), Geneva, 1994 + Addendum 1996

[Lea97] D. Lea, Concurrent Programming in Java, Addison Wesley, 1998

