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Abstract. Current production control systems for e.g. a factory for cars or
any other complex industrial good face two major problems. First, produc-
tion control systems need to become (more) dezentralized to increase their
availability. It is no longer acceptable, that a failure of a single central pro-
duction control computer or program causes hours of down-time for the who-
le production line. Second, todays market forces demand smaller lot sizesand
amore flexible mixture of different products manufactured in parallel on one
production line. Common specification languages for embedded systems,
like SDL, statecharts, etc. focus on the specification of (re)active components
of production control systems like control units, actors (e.g. motors, valves),
and sensors (e.g. switches, lightborders, pressure, and temperature sensors),
and on the interaction of such reactive components via events and signals.
They provide no appropriate meansfor the specification of (more) intelligent,
autonomous production agents. Such autonomous production agents need
knowledge of manufacturing plansfor different goods and of their surround-
ing world, e.g. the layout of the factory or the availability of manufacturing
cells. In addition, such production agents have to coordinate their access to
assembly lines with other competing agents. This paper proposes to use (ob-
ject-oriented) graph structures for the representation of production agentsand
graph (object structure) rewrite rules for the specification of their behaviour.
We show how the FUJABA environment may be used to specify production
agents and generate their implementation and to validate them viaagraphical
simulation.

1 Introduction

In [1] Blostein states that practically applicable graph transformation systems should
alow to combine graph transformations and conventional (object-oriented)
programming code, seamlessly. In order to achieve this, Fujaba1 combines common
object-oriented notations, i.e. UML class diagrams, UML activity diagrams, and UML
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collaboration diagrams, into a visual specification language that integrates object-
oriented modeling, normal (Java) code, and graph transformations ([2], [3], [8]).

Like other CASE tools, the Fujaba environment allowsto edit UML class diagrams and
provides a code generator that generates Java classes containing attributes and method
declarations. In addition, the Fujaba environment generates canonical implementations
for associations. To specify method bodies, Fujaba uses so-called story diagrams. Story
diagrams combine UML activity diagrams and UML collaboration diagrams. Activity
diagrams define the high-level control flow between different activities. The activities
may be specified either by normal Java code or by a graph transformation depicted asa
UML collaboration diagram. The control flow specified by an activity diagram is
trandated into standard Java while and if statements (see [6]). Activities containing
standard Java code are just copied into the resulting control structures. The graph
transformation / collaboration diagrams are translated into Java code that relies on the
class features generated from the class diagram, only. This is done using query
optimization techniques adapted from the database field and refined for graph
transformations ([2], [12]). The resulting code employs usual main memory object
structuresto represent the host graph. It does not rely on specia graph libraries or graph
rewrite rule interpreters but it manipulates the object structures by usua pointer
operations. Thus, the resulting code blends seamlessy with other system parts and is
not resource demanding. Finally, it is 100% pure Java code, that runs on any Java
platform. Altogether, this enables the application of graph rewriting techniques for
various new areas, e.g. for embedded systems.

As part of the ISILEIT project funded by the German Research Society (DFG) our
department studies the application of formal methods to embedded systems. Actually,
the running example of this paper stems from the reference case study of the ISILEIT
project [8]. The ISILEIT project is a joined project with electrical and mechanical
engineers. Thefocusisnot just on theoretical results, but there are a so strong demands
for practical benefits, like e.g. the generation of running production systems from their
formal specification and the reduction of system reconfiguration times. Thus, we
propose to attack these problems with Fujaba.

Embedded systems are not yet a well known application area of graph rewriting
systems. Common specification languages for embedded systems, like SDL,
statecharts, etc., focus on the specification of (re)active components of production
control systems like control units, actors (e.g. motors, valves) and sensors (e.g.
switches, lightborders, pressure and temperature sensors) and on the interaction of such
reactive components via events and signals. However, these common specification
languages provide no appropriate means for the specification of (more) intelligent,
autonomous production agents. Such autonomous production agents need knowledge
about manufacturing plans for different goods and of their surrounding world, i.e. the
layout of the factory and the availability of material and manufacturing cells. In
addition, such production agents have to coordinate their access to assembly lines with
other competing agents. Finally, production agents should deal with unforseen
situations, like the drop-out of a production line or changes to the production plans.

Altogether the requirements for intelligent production agents are close to general
process modeling requirements. Fortunately, there exists already a sophisticated graph



grammar based approach to process modeling, namely the Dynamite project [5]. Thus,
our approach has taken the dynamic task net idea from the Dynamite project and
adapted these task nets for the needs of intelligent production agents and uses Fujabato
specify and implement these nets.

In the following chapter a short introduction of a simple production system exampleis
given. Chapter 3 describes the class diagram and the activity diagram of a method. In
chapter 4 acut-out of the generated Java code for the specified method is presented. The
following chapter introduces the test environment of Fujaba. The last chapter gives
conclusions and future work issues.

2 Sample Factory Example

Figure 1 showsascenario of asamplefactory used as running example within the paper.
The example stems from a real world system that serves as the case study for our
ISILEIT project funded by the German Research Society (DFG) [8]. The factory is
modeled as a flat building without levels and pillars in it. The floor is layered with
rectangle shaped fields allowing to address certain positionsin the building. The factory
contains certain kinds of production places. A production placeise.g. an assembly line,
where goods arrive and are loaded on shuttles.

Good Robot Assembly Line
Storage

Shuttle Field
Figure 1 Simple factory example

Shuttles are able to move over the floor, where the fields on the floor serve as a map.
Each field can be allocated with only one shuttle, so a shuttle must be able to dodge a
field which is allocated by another shuttle. Shuttle accept ordersto carry goods from an
assembly lineto astorage. Thereby, shuttles can only carry one good and orderswill be
executed until there are no more goods on the assembly line, the storage is full or the
shuttle receives a new order.

In order to meet these requirements and to force the autonomy of shuttles, a working
plan should be specified for example with a task net. The net may look like the one
shown in Figure 2. Each shuttle can be assigned to aworking plan (here produce_good)
and will then execute the actions in the working plan autonomously. Tasks may require
certain resources like task mill_cutting, which will require an assembly linelater on. The
task net is hierarchically organized, e.g. task produce_good has the subtasks
fetch_material, mill_cutting, and deliver. The tasks are conneted by next linksin order to
specify a sequence of execution. Some tasks may have more than one successor task,



D taskohjedt shuttle?

[ | other object
— shutes|
f fied

a assemdylire

Figure 2 Task net for shuttles
modeling independend steps that may be executed in any order. Similarily, one task
may require multiple predecessor tasks to be completed until it becomes executable.
Based on this task net idea, the following chapter outlines the static aspects of our
example.

3 Classand Story Diagrams

Based on the requirements and motivations outlined above, we propose the following
sample design for intelligent production agents, cf. Figure 3. Class Shuttle models
transport vehicles which are our production agents. These production agents need to
know about the Factory they are living in and about the AssemblyLines and Storages
they are negotiating with and about Goods to be produced. Therefore, class Actor hasa
actors association to the factory. Nevertheless, class Actor is a design decision we made
for this example and encapsulates common parts of other classes, only. Next,
production agents need to be aware of their own location and of the locations of
assembly lines and storages. This is achieved via class Field. Each field has a certain
position within the factory stored in its attributes x and y. Links of type horizontal and
vertical allow shuttlesto move from afield to its neighbors. A target link identifiesthe
current movement target and at links model the current locations of all Actors. Next,
class Task models the working plan of a production agent as described above. We use
subtasks links to structure hierarchica plans and next links to represent the successor
relationship. Finally, tasks may allocate assembly lines or storages via resource links.
Note, this is a very simple modeling of work plans for simplification reasons. More
sophisticated versions could e.g. model priorities, durations, and other pertchart
properties, in addition. The root of a production plan is attached to its executing
production agent via aplan link. In addition, alink named current identifies the active
task. So far a production agent has knowledge about the configuration of the factory it
isliving in. To alow multiple production agents to coordinate themselves, they need to
know about each other and about their plans. Actually, the class diagram described so
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Figure 3 Class diagram of the factory example

far allows to represent such information within each production agent. However, to
minimize communication efforts, shuttle coordination is restricted to waiting queues at
the different assembly lines. When planning a manufacturing task, a production agent
may look up the waiting queues of assembly linesin order to choose one with minimal
waiting time.

Equiped with this static design, we are now able to specify the behavior of our
production agents using story diagrams. Story diagrams combine UML activity
diagrams and graph rewrite rules. Therefore, UML activity diagrams contain activities
and directed transitions among activities to specify the (high-level) control flow. In
UML, activities can contain "pseudo” code, only. Story diagrams extend the notation
by using either Java code or graph rewrite rules for the specification of activities.
Special transition guards alow to branch on the success or failure of agraph rewriting
step.



Our production agents shall not just execute afixed plan (which could actualy just have
been hard coded) but they should refine their production plans depending on different
situations like e.g. the availability of assembly lines. As a simplified example for such
aflexible planning step, Figure 4 shows a story diagram used to plan amillcutting step.
Fujaba uses a notation for graph rewrite rules that is similar to UML collaboration
diagrams. In this notation, the left- and right-hand sides of arewrite rule are displayed
in one picture: elements to be deleted are canceled with two (red) lines and newly
created elements are marked by attached (green) plusses (see[2], [3] for more details).
Such agraph rewriteruleis executed by first finding amatch for the variables and links
intherewriteruleto objects and linksin the runtime object-structure and then executing
the depicted modifications. Thus, the exampl e operation millCutting looks up its factory
and seeks for an assembly line al that (1) isin state active, (2) that currently operates a
millcutter, and (3) that has no other shuttle waiting in its queue. In addition, we |ook-up
field f that identifies al’s position. On success, operation millCutting creates the three
new subtasks go, hand_over, and take_over for the millcutting step. Field f is marked as
the shuttle’ s next movement target and the shuttle enqueues itself at the assembly line.
Finally, tasks hand_over and take_over mark the chosen assembly line al as their
resources. Note, that Figure 4 shows only the first task refinement attempt. When the
depicted graph rewrite rule is not applicable, execution proceeds along the [failure]
transition and considersless optimal plan refinements. Otherwise, we proceed along the
[success] transition and operation millCutting terminates and execute the new current go
task.
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Figure 4 Story-diagram of operation millCutting

For each kind of task, such an execution routine is provided. Plan execution starts at the
plan root. It chooses an executable task and calls the corresponding execution routine
and marksthe taks as done. In addition, our model allowsto suspend currently executed
tasks in order to switch to another executable task e.g. for optimization reasons or in
order to react on unforseen difficulties like e.g. the drop-out of an assembly line. Once
a plan is fully executed, it is replaced by a new one and execution starts again. In



addition, a shuttle might keep some
approved plan parts in order to retain
successful execution pathes.

Note, in addition to the shown plan
execution operations that model the
knowledge of our production agents
and their manufacturing strategies,
shuttles also need to control their
sensors and actors like light bars and
their motors and they haveto react on
signals sent from other agents or from
humans, e.g. assigning them new
tasks. This reactive behavior is well
addressed using SDL and statecharts.
Thus, Fujaba provides support for
SDL and statecharts, too. Thistopicis
addressed in the Fujaba tool
demonstration description, which is
part of thisvolume, too [10].

4 Java Code Generation

FUJABA provides agenerator, which
generates Java code out of a
specification. For each classin aclass
diagram the corresponding Java class
is generated in a canonical way.
Attributes are encapsulated and
access methods are generated.
Method declarations are mapped
directly into corresponding Java
method declarations and associations
are mapped to pairs of references and
adequate access methods within the
corresponding classes (for more
details see [2], [3]).

The Java code generation for story
diagrams is divided into two tasks.
First, the control flow is mapped to
imperative control structures like if,
and while statements. To enable this
trandation, story diagrams are
restricted to so-called well-formed
transition structures that correspond
directly to nested branches and loops.

1: public void millCutting () { ...
2: /[ first graph rewriting rule
3:try
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17:
18:
19
20:
21:
22:
23:
24:
25:
26:
27
28:
29:
30:
31:
32
33
34:
35:
36:
37
38:

sdmSuccess = false;
millCutting = this.getCurrent ();
SDM.ensure (millCutting != null);
factory = this.getFactory();
SDM.ensure (factory != null);
Iterator actors = factory.iteratorOfActors ();
while (! sdmSuccess && actors.hasMore ()) {
tmp = actors.next ();
try {
SDM.ensure (tmp instanceof AssemblyLine);
al = (AssemblyLine) tmp;
SDM.ensure (al.getState () == "active");
SDM.ensure (al.getTool () == "millcutter);
SDM.ensure (al.queuelsEmpty ());
f = al.getAt ();
SDM.ensure (f != null);
// match found, execute modifications
this.setCurrent (null);
goto = new Task ("goto");
handOver = new Task ("handOver");
takeOver = new Task ("takeOver");
this.setCurrent (
this.setTarget (f);
al.addToQueue (this);
millCutting.addToSubTasks (goto);
millCutting.addToSubTasks (handOver);
millCutting.addToSubTasks (takeOver);
goto.addToNext (handOver);
handOver.addToNext (takeOver);
handOver.addToResources (al);
takeOver.addToResources (al);
sdmSuccess = true;
} catch (SDM.Exception sdmExcept) { }
} /1 while (actors.hasMore ()

39: } catch (SDM.Exception sdmExcept) { }
40:; if (sdmSuccess)

41: {
42:

return;

43: } else
44: { /I next graph rewrite rule

45:

Figure 5 Java code for graph rewrite rules




Figure 5 shows the Java implementation of the millCutting method of class Shuttle.
Lines 2 to 39 implement the first graph rewrite rule shown in Figure 4. Theif statement
in line 40 realizes the control flow depicted by the success and failure transitions at the
bottom of Figure 4. If the first graph rewrite rule was successful, the first if-branch
terminates the execution. Otherwise, the else branch is executed.

In a second task, the code for activities is generated. Activities, that contain just Java
code are copied one-to-one. For graph rewrite rules we employ translation mechanisms
asdescribed in[2], [12]. In Figure 5, lines 2 to 39 show the generated Java code for the
first graph rewrite rule. The execution starts with binding objects to the variables
specified inthe rule. For example, in line 6 the variable millCutting is bound to an object
which is accessable viaan current link from the this object. Line 7 checks whether line
6 actually retrieved an object and throws an exception, otherwise. This exception is
caught within the catch-statement at line 39. Note, variable sdmSuccess is set to false
in line 5 and thus it signals that the execution of the first graph rewrite rule has failed
until itisset totrueinline 36. Line 36 isreached only when all SDM.ensure clausesare
passed, successfully. While line 6 looks-up a to-one association, the link from variable
this to variable al belongs to ato-many assoctiation, cf. Figure 3. Thus, we need aloop
(line 10 to 12) to look up all reachable neighbors until we reach one that meets al
reguirements: we arelooking for an assembly line (line 14) which isactive (line 16) and
which operates a millcutter (line 17) and which has an empty queue (line 18). Once all
participants are identified, we execute the del etions (line 22) and create new objects and
links (line 23 to 35) and finally we signal success of the rewrite step (line 36). Note, that
thelatter abortsthewhileloopinline 11. See[3] for more details on the code generation
for graph rewrite rules.

The important properties of the generated Java code are, that it operates on usual main
memory object structures and that it uses only small library functions like predefined
container classes and the rule execution is programmed built-in, it does not rely on an
additional rule interpreter. Thus, the resulting code is not very resource demanding. In
addition, it is 100% pure platform independant Java code that does not use any native
methods. Altogether, these features enable us to use Fujaba for the generation code for
embedded systems.

5 Simulating the specification

Our approach to specify production control systems already allows to construct very
flexible production agents that allow very small lot sizes and that may manufacture
different goods in paralel. These production agents are able to deal with unforseen
situations, like assembly line drop-outs. They form a decentralized control system that
is not threatened by the drop-out of a single central production control computer. Still,
we have to meet the requirement of being able to switch to new products without long
down-times caused by system tests. To meet this requirement, we propose to test
production processes beforehand with Fujaba's graphical debugging and simulation
environment, called DOBS (Dynamic Object Browsing System), cf. Figure 6. The
DOBS environment allows to visualize (Java) runtime object structures and to invoke
methods on objects, interactively. For parameterized methods, appropriate user dialogs
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Figure 6 Simulating the sample factory example

are created, dynamically. In addition, DOBS is able to deal with the (re)active objects
generated by Fujaba, that run their own thread and thus may change their state or
execute methods, autonomously. Thereby, DOBS may serve as afirst smple graphical
user interface allowing to test a story diagram specification. For example, the user may
initiate a production process and then e.g. simulate the drop-out of a certain assembly
line and analyse the reaction of the running production agents. On the contrary, during
the simulation one might recognize some bottlenecks and try to solve the problem by
adding more assembly lines or shuttles, interactively. Another option is to reshape the
floor layout or to move some assembly lines around in order to shorten distances.
Deletion and addition of floor elements might also be used to simulate walls, doors, and
pillars. Finaly, one might even "edit" the task net of some production agents in order
to test alternative production plans.

6 Conclusions and Future Work

This paper shows the applicability of graph rewrite techniques within the area of
embedded systems. Due to our experiences within the ISILEIT project, graph rewrite
rules are an ideal means for the specification of the general behavior of flexible
production agents. The high level of abstration provided by graph rewrite systems



allows us to model the *world’ our production agents are living in and the knowledge
they need to execute their tasks, very easily. The experiences drawn from the Dynamite
project enabled us to provide our production agents with very flexible manufacturing
plans. However, to turn embedded systems into an application area for graph rewrite
systems, several properties of the Fujaba approach were very important. First, the UML
like notation employed by Fujaba facilitated the communication of story diagram
specifications to the other ISILEIT project partners, significantly. Note, a number of
these partners stem from fields like electrical and mechanical engineering. Second,
todays embedded systems have certain resource restrictions. This topic is well
addressed by the Fujaba code generation strategies, which produce simple Java code
using usual main-memory object structures. We expect that Java will become availabe
for wide spectrums of embedded systems, soon. Then, the 100 % pure Java code
generated by Fujaba will be executable on the quite heterogenous hardware platforms
employed in the area of embedded systems.

One unexpected advantage of graph rewrite techniques and of the code generation
strategies of Fujabaistheir quite defensive programming style. As Figure 5 shows, our
code checks thorougly all kinds of conditions required for the execution of a graph
rewrite step by using numerous SDM.ensure clauses. Thisresultsin very reliable code
that deals correctly with many kinds of unforeseen situations. During the simulations
with our dynamic object browsing system DOBS, our engineering partners were
impressed by the robustness of the application. One can delete assembly lines or even
fields without causing system crashes of running production agents. It is possible to
reconfigure the factory layout while the production agents are active and they still react
reasonably. Once a new factory configuration is (partly) established, the production
agents easily adapt to the changed setting and continue to produce goods. We hope to
be able to transfer this robustness and reliability and flexibility from the smulations to
real embedded systems. Thisis current work.

FUJABA has been developed since November 1997. The current 'release’ version
provides editors for UML class diagrams, UML activity diagrams and object structure
rewriterules. In addition it comprises a code generator and abasic consistency analyser.
Ascurrent work FUJABA isenhanced by statechartsand SDL. For both languages, first
versions of editors, consistency analysers, and code generators are available and in their
testing phases, now. DOBS, the Dynamic Object Browsing System, has become part of
FUJABA in the beginning of 1998. Extensions of Dobs up to a graphical simulation
environment are also current work and are scheduled for 2000.
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