
An Evaluation of the Reclipse Tool Suite based
on the Static Analysis of JHotDraw

Technical Report tr-ri-10-322

Markus von Detten, Dietrich Travkin

Software Engineering Research Group
Heinz Nixdorf Institute, Department of Computer Science

University of Paderborn, Paderborn, Germany
[mvdetten|travkin]@upb.de

Version 1.0

Abstract. The detection of software design pattern implementations in
existing code helps reverse engineers to understand the software design
and the original developers’ intentions. In order to automate the tedious
and time-consuming task of finding pattern implementations several re-
search groups developed pattern detection algorithms and reported their
precision and recall values to compare the approaches.
Our research group developed another approach for the detection of soft-
ware patterns, Reclipse, that exhibits some unique features like fuzzy
expressions to better describe patterns and rate the detected pattern oc-
currences. For evaluation, we applied our pattern detection approach to
JHotDraw. In the following, we present and compare our pattern detec-
tion results with those of other approaches.

1 Introduction

During their life cycle software systems have to be adapted to new requirements,
new features have to be added, defects have to be eliminated. These tasks often
involve the adaption of the software design and require knowledge of the current
design. Unfortunately, a system’s design documentation is often not up-to-date or
missing. Thus, before performing any changes to the system, developers usually
have to recover the system design, which is known as reverse engineering [4].

Software design patterns (e.g. [1–3, 5, 7, 10, 11, 16]) are approved solutions
to recurring software design problems. They are documented by experts and
increase flexibility and maintainability by introducing extensible or adaptable
software design so that it is easier to add new features to or adapt software
systems. In order to make such patterns applicable in many situations, indepen-
dently from the programming language or the chosen platform, their descriptions
are kept informal and very general. The most famous and widely used collection
of patterns are the Design Patterns [7] described by the so called gang of four
(GoF): Gamma, Helm, Johnson, and Vlissides.

Since patterns describe the system design and are used to achieve a certain,
well documented goal, the detection of pattern implementations in code can help
to understand the system design and provides hints on the original developers’
intentions.

The manual inspection of code for the purpose of the detection of pattern
implementations is a very tedious and time-consuming task. Several approaches
are aiming at automatically detecting implementations of software patterns (e.g.
[6, 8, 9, 12, 14, 17, 19, 21]) in order to speed up the detection process. Our research
group developed another approach for the detection of pattern implementations.
After introduction of the first ideas [14] by Niere et al., we continuously extended
and improved our approach [21, 22]. The current implementation of our approach
is called Reclipse1 [20, 21].

For the comparison of precision and recall other researchers evaluated their
approaches by applying them to software systems for which the design patterns
contained therein are well documented. One of the software systems which is
most frequently used for such evaluations is JHotDraw2. In order to evaluate
our detection approach and compare our work with that of other researchers,
we used our detection tool, Reclipse, to detect implementations of the gang-of-
four design patterns [7] in JHotDraw. In the following, we present our detection
results for JHotDraw 5.1 and compare them with those of other approaches.

2 The analyzed system: JHotDraw 5.1

JHotDraw is an application framework that supports the development of cus-
tomized drawing editors. It has been continuously developed for many years and
has currently reached version 7.5.1. Because most related work focuses on lower
versions of JHotDraw, we used version 5.1 for our evaluation.

JHotDraw is written in Java. The analyzed version 5.1 consists of 155 classes
and a total of 7993 lines of code (excluding comments).

3 Related Work

We compared our detection results with six other publications and two addi-
tional resources. Table 1 shows the related work we chose for this comparison.
It presents the authors and titles of the publications, the year of publication,
the short hand reference which we use throughout this report to refer to the
publication, and the version of JUnit which was used for the evaluation of a
given approach.

The related approaches can be also be distinguished by their level of detail
regarding the detected pattern occurrences. While most publications only present
the number of detected occurrences for each pattern, some of them explicitly
state which classes constituted which pattern occurrence. This is reflected by
1 http://www.fujaba.de/reclipse
2 http://www.jhotdraw.org

2

the final column Detailed Results. The approaches which report those detailed
results are also referred to in Section 4 in which we present our detected pattern
occurrences.

Title Year Reference Version Detailed
Results

1 J. Dong, Y. Zhao, Y. Sun : Design Pattern Detection
by Template Matching

2008 DSZ08 [6] 6.0 No

2 Y.-G. Guéhéneuc, G. Antoniol : DeMIMA: A Multi-
Layered Approach for Design Pattern Identification

2008 GA08[8] 5.1 No

3 Y.-G. Guéhéneuc, H. Sahraoui, F. Zaidi : Fingerprint-
ing Design Patterns

2004 GSZ04 [9] 5.1 No

4 A. De Lucia, V. Deufemia, C. Gravino, M. Risi : Im-
proving Behavioral Design Pattern Detection through
Model Checking

2010 LDGR10 [12] 5.1 Yes

5 N.Shi, R. Olsson : Reverse Engineering of Design Pat-
terns from Java Source Code

2006 SO06 [17] 6.0 No

6 N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T.
Halkidis : Design Pattern Detection Using Similarity
Scoring

2006 TCSH06 [19] 5.1 Yes

7 D.Riehle : Framework Design: A Role Modeling Ap-
proach

2000 Rie00 [15] 5.1 Yes

8 JHotDraw 5.1 Javadoc 2001 Javadoc 5.1 Yes

Table 1. Related publications to which we compared our detection results

Table 2 shows a comparison of the different detection results. In the first
column the a selection of detected patterns is shown3. The other columns present
the number of detected pattern occurrences for Reclipse and each of the six other
approaches. Note that ’–’ does not signify that a pattern was not found but that
the pattern in question was not considered at all by an approach.

It is noteworthy that the number of detected pattern occurrences varies
widely between the different approaches. While the analysis of Guéhéneuc et
al. [9] (using Fingerprinting) yielded relatively few results, Guéhéneuc and An-
toniol [8] (with the DeMIMA approach) found significantly more pattern occur-
rences.

Tsantalis et al. [19] claim that their approach did only detect true positives
and no false positives. A close look at the detailed results4, however, puts this
statement into question. Many of the results that we detected and, after a manual
inspection, labeled as false positives are reported as true positives by Tsantalis
et al.
3 Reclipse and also some of the other approaches are capable of detected more patterns

than the ones considered in this report. For example, we also used Reclipse to detect
additional Design Patterns (e.g. Bridge, Chain of Responsibility), Anti Patterns [13],
and guideline violations in Matlab/Simulink specifications [18].

4 http://java.uom.gr/∼nikos/pattern-detection.html

3

Pattern Reclipse1 DSZ08 GA081 GSZ04 LDGR10 SO062 TCSH063

Adapter4 67 51 28 1 – ≈ 2 18

Command 5 – 11 1 1 – 18

Composite 1 0 3 1 – ≈ 1 1

Decorator 2 1 13 1 – ≈ 2 3

Observer 5 – 7 2 9 ≈ 5 5

Singleton 2 – 2 2 – ≈ 1 2

State 16 29 21 2 36 ≈ 1 22

Strategy 16 – 21 4 43 ≈ 50 22

Template Method 18 – 31 2 1 ≈ 1 13

Table 2. Related publications to which we compared our detection results

1 The approach does not distinguish State/Strategy patten occurrences.
2 The authors provide only a bar chart to represent their results and report no exact

figures.
3 The approach does not distinguish State/Strategy and Adapter/Command pattern

occurrences, respectively.
4 As JHotDraw is a Java system, all mentions of the Adapter pattern refer to the

Object Adapter pattern variant from [7] (as opposed to the Class Adapter pattern,
which relies on multiple inheritance).

Regarding the number of detected results, Reclipse lies somewhere in the
middle but in contrast to the listed approaches, Reclipse also offers a rating of
the detected occurrences to represent a candidate’s adherence to the pattern
specification. These ratings are shown and discussed in Section 4.

J. Dong, Y. Zhao, Y. Sun : Design Pattern Detection by Template
Matching [DSZ08]

Dong et al. [6] apply a graph comparison approach similar to Tsantalis et al.[19],
but instead of calculating node similarities they determine the overall similarity
of a pattern candidate graph to the corresponding pattern specification graph.
The similarity score is used to rate the candidates quality. Nevertheless, there is
no possibility to specify gradually satisfiable constraints comparable to the fuzzy
constraints used in our specifications. Furthermore, similar to Tsantalis et al., the
adjacency-matrix-based pattern specifications only cover structural properties.
Behavior remains unconsidered and complex software metrics cannot be used.

Y.-G. Guéhéneuc, G. Antoniol : DeMIMA: A Multi-Layered
Approach for Design Pattern Identification [GA08]

In the DeMIMA pattern detection approach [8] patterns are specified by a set
of constraints describing class relations and software metric ranges. If all con-
straints are satisfied by a pattern candidate, an exact matching is reached. De-
viated pattern instances are detected by (automatically or manually) relaxing

4

the specified constraints whereby an approximate matching is achieved. Similar
to our approach, the weighted number of relaxed constraints is used to calculate
a percentage rating describing the similarity between the pattern specification
and the pattern candidate. Although this is a promising approach, instead of
interactively relaxing constraints, which is time consuming, in our approach, the
mandatory and relaxable constraints are made explicit in the pattern specifi-
cations. Furthermore, in contrast to DeMIMA, we support gradual metric con-
straint satisfaction, thereby avoiding inappropriate thresholds, and providing a
more precise candidate rating.

Y.-G. Guéhéneuc, H. Sahraoui, F. Zaidi : Fingerprinting Design
Patterns [GSZ04]

Guéhéneuc et al. [9] propose to characterize design patterns by a combination
of metric values and thereby obtain “fingerprints” for those patterns which can
be used to identify occurrences of them. However to create the fingerprints,
a machine learning algorithm is used which requires a repository of pattern
examples. The authors evaluated this idea on multiple software systems, among
them JHotDraw 5.1.

A. De Lucia, V. Deufemia, C. Gravino, M. Risi : Improving
Behavioral Design Pattern Detection through Model Checking
[LDGR10]

De Lucia et al. [12] improve their static analysis with dynamic analysis ap-
proaches. Before carrying out the dynamic analysis however, they use a model
checker to sort out false positives that are statically recognizable. For their
evaluation, they also used JHotDraw 5.1 and compared their results to other
approaches. They also provide detailed discussions for some concrete pattern
occurrences.

N.Shi, R. Olsson : Reverse Engineering of Design Patterns from Java
Source Code [SO06]

Shi and Olsson present a static pattern detection approach and compare it to
two other approaches, one of them being Fujaba which was the prototype im-
plementation of our research group’s initial pattern detection approach [14] and
Reclipse’s precursor. They focus on the ability to detect patterns at all and not
so much on single occurrences or the concrete results. Thus, they only provide a
small bar chart to present their detection results. This makes it hard to compare
their results to ours.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T. Halkidis :
Design Pattern Detection Using Similarity Scoring [TCSH06]

Tsantalis et al. [19] compare a graph representing a candidate with a graph
representing a pattern by calculating the similarities of the contained nodes.

5

The most similar nodes are chosen to build pattern candidates. The node sim-
ilarities could be combined to determine the similarity of a candidate and the
corresponding pattern and thereby rate the candidate. Unfortunately, no rating
is provided and the node similarities are not reported to the reverse engineer.
Furthermore, Tsantalis et al. only consider classes and corresponding relations
in their pattern specifications while we also take the behavior into account by
covering statements in method bodies.

They carried out their evaluation on JHotDraw 5.1 and provided detailed re-
sults on an additional web site (http://java.uom.gr/∼nikos/pattern-detection.html)
which complements the evaluation in the paper. Due to structural similarities
of the patterns the authors do not distinguish between Adapter and Command
pattern occurrences and State and Strategy occurrences, respectively.

Furthermore, the authors claim that their approach did only detect true
positives and no false positives. After comparing their results to ours, we (in
accordance with [12]) do not share that view.

Additional Resources

For a detailed comparison of the detected pattern occurrences, we used two ad-
ditional resources. The dissertation of Dirk Riehle and the JHotDraw Javadoc
documentation both provide detailed information about actual pattern imple-
mentations in JHotDraw. In Section 4 these resources are referenced by Rie00
and Javadoc, respectively.

D.Riehle : Framework Design: A Role Modeling Approach [Rie00] In
his dissertation [15], Dirk Riehle presents a role model-based approach for frame-
work development. For its evaluation, he carried out a case study on JHotDraw
which provides extensive information on the contained pattern occurrences in
the JHotDraw system. In contrast to the other referenced approaches, Riehle
did not use an automatic pattern detection tool.

JHotDraw 5.1 Javadoc The Javadoc documentation of JHotDraw explicitly
mentions some of the patterns that were employed during the design of the soft-
ware. We used this resource to validate pattern occurrences detected by Reclipse.

4 Detected Patterns

For each of the following patterns we first show our specification and explain
it briefly. Second, we provide a table which details our detection results for
that pattern and explain our findings. For those patterns for which a lot of
occurrences were detected by Reclipse, we provide an evaluation of a sample of
the most promising (i.e. highest rated) candidates.

The Reclipse pattern specifications are essentially object diagrams that rep-
resent an exemplary object structure which has to be detected for a given candi-
date. Apart from objects and links it also contains subpatterns (black, elliptical

6

nodes) which represent structures that occur in many patterns and are therefore
reusable in lots of specification 5. Their presence is a prerequisite for a pattern
that contains them to be found. Each specification also contains one green, ellip-
tical annotation. This annotation is created if an object structure which matches
the specification is detected. For more information on the pattern detection pro-
cess, we refer the reader to our previous publications [14] [20] [21].

The tables shows the detected pattern occurrences with their ratings and
specifies which classes and methods play characteristic roles in the pattern can-
didate (such as subject and observer in the Observer pattern). In the column
Documented in, we list the related publications which report the same pattern
occurrence. If the authors declared a specific candidate to be a false positive,
this is marked by (FP). The column Evaluation states our own assessment of
the candidate: Is it a true or false positive?

4.1 Adapter

“Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because in-
compatible interfaces.” [7]

sr:SubtypeRelation

om:OverriddenMeth...

nct:NonConcreteType

request:AMethodDeclaration

target:ATypeDeclaration

specificRequest:AMethodDeclaration
sd:SingleDelegation

fuzzy: NOS

adaptee:ATypeDeclaration

:ObjectAdapter

adapter:ATypeDeclaration

spObjectAdapter

«create»«create»«create»«create»«create»«create»«create»«create»

subtype supertype

overridingMethod

superClass

type

bodyDeclarations

caller

«create»

target

bodyDeclarations

callee

«create»

adaptee «create»

adapter

Fig. 1. Reclipse Specification of the Adapter Pattern

5 On example is the overridden method subpattern which occurs in our specifications of
the Adapter, Command, Decorator, Observer, State, Strategy, and Template Method
patterns. The subpattern specifications can be found in the appendix.

7

Specification Our specification of the adapter pattern contains three types: the
adaptee, the target and the adapter which is responsible for mediating between
those two. The adaptee has a specific request method which represents the legacy
interface. The adapter class is a subclass of the target class and overrides the re-
quest method of its super type. This overridden request method simply delegates
the request to the adaptee’s specific request method. This is represented by the
SingleDelegation subpattern.

We added a Fuzzy Metric Constraint to the single delegation because a
correctly implemented delegation should consist of a delegating statement and
(nearly) nothing else. Consequently, we used the following function to rate the
number of statements in the delegation.

µ(x) = 1+ε

1+e
x

compr
with ε = 1, compr = 4

Fig. 2. Fuzzy function for the number of statements in the Adapter pattern’s delegation

This yields a strictly decreasing, exponential function which comes close to
its limit 0 for x ≈ 16 (cf. Figure 2). This means that delegations are rated worse,
the more statements they have, nearing the rating 0 at about 16 statements.

Detection Results It is noteworthy that the structural aspects of the Adapter
pattern are not very unique. The pattern essentially describes a delegation be-
tween two classes (Adapter and Adaptee) where one of those classes also has
a super class (Target). This structure appears frequently in implementations,
often without the intention to be a dedicated implementation of the Adapter
pattern. Thus, the pattern described by Gamma et al. is too unspecific to serve
as a uniquely identifiable structural pattern which is also reflected by the large
number of detected occurrences for other approaches (cf. Table 2).

For the Adapter pattern, 67 pattern occurrences were detected by Reclipse.
Table 3 shows a small sample of those detection results. The occurrences at the

8

top of the list effectively are true positives albeit without explicit documentation
by the developers. One main point that sets the detected occurrences apart, be-
sides the NonConcreteType annotation and the satisfaction of the fuzzy expres-
sion, is the rating of the SingleDelegation annotation. The detected delegation
for the lower rated patterns contains many statements and the reference used
therein often lacks proper access methods. But even the low-ranked occurrences
could still be regarded as true positives because they exhibit the core features
of the pattern as explained above.

Another thing to note is a problem with the detection of pattern combina-
tions. Consider results #1 and #2 or #8 and #9, respectively. It it obvious
that the pattern occurrences are just different combinations of the same classes.
The Target role is played by either an interface (Figure, Handle) or an abstract
class that implements it (AbstractFigure, AbstractHandle). Otherwise, the oc-
currences are identical and also receive the same rating.

The occurrences essentially belong to only two Adapter occurrences and just
name different classes for the roles which are somehow distributed over an inher-
itance hierarchy. For occurrences #8 and #9, Rie00 and the JHotDraw Javadoc
take this into account and state that the actual Adapter pattern occurrence is
between Figure (i.e., the interface which ConnectionFigure implements) and Han-
dle. Considering this problem, many of the detected Adapter pattern occurrences
could be merged, so that significantly less occurrences would be reported by Re-
clipse. A possible specification language extension to achieve this is discussed in
Section 5.

9

#
R

at
in

g
R

ol
es

D
o
cu

m
en

te
d

in
E

va
lu

at
io

n
A

da
pt

er
A

da
pt

ee
T

ar
ge

t
1

96
,8

5%
T

ex
tF

ig
ur

e
O

ffs
et

L
oc

at
or

F
ig

ur
e

T
ru

e
P

os
it

iv
e

2
96

,8
5%

T
ex

tF
ig

ur
e

O
ffs

et
L

oc
at

or
A

bs
tr

ac
tF

ig
ur

e
T

ru
e

P
os

it
iv

e
3

96
,8

5%
A

tt
ri

bu
te

F
ig

ur
e

F
ig

ur
eA

tt
ri

bu
te

s
St

or
ab

le
T

ru
e

P
os

it
iv

e
4-

7
95

,3
8%

-9
3,

47
%

..
.

..
.

..
.

8
93

,1
5%

C
on

ne
ct

io
nH

an
dl

e
C

on
ne

ct
io

nF
ig

ur
e

H
an

dl
e

R
ie

00
,

Ja
va

do
c

T
ru

e
P

os
it

iv
e

9
93

,1
5%

C
on

ne
ct

io
nH

an
dl

e
C

on
ne

ct
io

nF
ig

ur
e

A
bs

tr
ac

tH
an

dl
e

R
ie

00
,

Ja
va

do
c

T
ru

e
P

os
it

iv
e

10
-6

7
92

,7
2%

-5
1,

85
%

..
.

..
.

..
.

T
ab

le
3:

D
et

ec
ti

on
R

es
ul

ts
fo

r
th

e
A

da
pt

er
pa

tt
er

n

10

4.2 Command

“Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support un-
doable operations.” [7]

Specification The Command pattern is one of the more complex specifica-
tions. It shows the four types invoker, abstractCommand, concreteCommand and
receiver, where concreteCommand obviously is a subtype of abstractCommand as
specified by the SubtypeRelation annotation. invoker has two methods, setCom-
mand and invoke; receiver has an action method and both commands have an
execute method (to better distinguish the execute methods the abstractCom-
mand’s method is called abstractExecute here). Furthermore, the abstractExecute
method (and by inheritance also the concrete execute method) must not have a
parameter, indicated by the crossed-out param object. invoker.setCommand has a
parameter of the type abstractCommand whereas somewhere in the invoker.invoke
method there is an invocation of the abstractExecute method. The fact that this
invocation is “somewhere” in the invoke method is reflected by the path link
(double-lined arrow) between invoke and the method invocation mi2. Similarly,
the receiver’s action method is called by the command’s execute method and the
concreteCommand’s constructor should be parameterized with the command’s re-
ceiver. Finally, there should be references from invoker to the abstractCommand
and from the concreteCommand to its receiver. References that point the other
way round are explicitly prohibited by the two negative (crossed-out) Reference
annotations ref neg1 and ref neg2.

Detection Results The results for the Command pattern are shown in Table
4. The first two detected occurrences are true positives. However, they might be
considered as the same pattern occurrence with different invoker classes. These
occurrences are also reported by Tsantalis et al. (although there they cannot
be distinguished from the Adapter pattern) and documented in the JHotDraw
Javadoc.

Note that the other detected occurrences are just slightly lower rated than the
true positives due to structural similarities. This indicates that our specifications
should be tuned to better differentiate them from the true positives.

11

n
ct:N

o
n
C
o
n
cre

te
T
y
p
e

re
f2
:R
e
fe
re
n
ce

{w
=
0
.0
}

o
m
:O
v
e
rrid

d
e
n
M
e
th
o
d

re
f1
:R
e
fe
re
n
ce

{w
=
0
.0
}

sr:S
u
b
ty
p
e
R
e
la
tio
n

re
f_n
e
g
2
:R
e
fe
re
n
cere

f_n
e
g
1
:R
e
fe
re
n
ce

m
i:A
M
e
th
o
d
In
v
o
ca
tio
n

p
a
ra
m
:A
S
in
g
le
V
a
ria
b
le
D
e
cla
ra
tio
n

co
n
stru

cto
r:A
M
e
th
o
d
D
e
cla
ra
tio
n

co
n
stru

cto
r: B

o
o
le
a
n
 =
 tru

e

sC
P
a
ra
m
:A
S
in
g
le
V
a
ria
b
le
D
e
cl...

re
ce
iv
e
r:A
T
y
p
e
D
e
cla
ra
tio
na
ctio

n
:A
M
e
th
o
d
D
e
cla
ra
tio
n

e
x
e
cu
te
:A
M
e
th
o
d
D
e
cla
ra
tio
n

a
b
stra

ctC
o
m
m
a
n
d
:A
T
y
p
e
D
e
cla
ra
tio
n

sim
p
le
N
a
m
e
: S
trin

g
 =
 R
e
g
E
xp
: ".*C

o
m
m
a
n
d
" {a

d
d
itio

n
a
l}

se
tC
o
m
m
a
n
d
:A
M
e
th
o
d
D
e
cla
ra
tio
n

:C
o
m
m
a
n
d

in
v
o
k
e
r:A
T
y
p
e
D
e
cla
ra
tio
n

cP
a
ra
m
:A
S
in
g
le
V
a
ria
b
le
D
e
cla
r...

co
n
cre

te
C
o
m
m
a
n
d
:A
T
y
p
e
D
e
cla
ra
tio
n

sim
p
le
N
a
m
e
: S
trin

g
 =
 R
e
g
E
xp
: ".*C

o
m
m
a
n
d
" {a

d
d
i...

a
b
stra

ct: B
o
o
le
a
n
 =
 fa
lse

a
b
stra

ctE
x
e
cu
te
:A
M
e
th
o
d
D
e
cla
ra
tio
n

in
v
o
k
e
:A
M
e
th
o
d
D
e
cla
ra
tio
n

m
i2
:A
M
e
th
o
d
In
v
o
ca
tio
n

sp
C
o
m
m
a
n
d

«
cre

a
te
»

typ
e

re
fe
re
n
cin

g
C
la
ss

re
fe
re
n
ce
d
C
la
ss

o
ve
rrid

in
g
M
e
th
o
d

o
ve
rrid

d
e
n
M
e
th
o
d

re
fe
re
n
ce
d
C
la
ss

re
fe
re
n
cin

g
C
la
ss

su
p
e
rtyp

e

su
b
typ

e

re
fe
re
n
cin

g
C
la
ss

re
fe
re
n
ce
d
C
la
ss

re
fe
re
n
cin

g
C
la
ss

re
fe
re
n
ce
d
C
la
ss

m
e
th
o
d
B
in
d
in
g

p
a
ra
m
e
te
rs

p
a
ra
m
e
te
rs

b
o
d
yD

e
cla

ra
tio
n
s

typ
e

p
a
ra
m
e
te
rs

b
o
d
yD

e
cla

ra
tio
n
s

typ
e

«
cre

a
te
»

re
ce
ive

r

b
o
d
yD

e
cla

ra
tio
n
s

b
o
d
yD

e
cla

ra
tio
n
s

«
cre

a
te
»

co
m
m
a
n
d

b
o
d
yD

e
cla

ra
tio
n
s

«
cre

a
te
»

in
vo
k
e
r

b
o
d
yD

e
cla

ra
tio
n
s

m
e
th
o
d
B
in
d
in
g

Fig. 3. Reclipse Specification of the Command Pattern

12

#
R

at
in

g
R

ol
es

D
o
cu

m
en

te
d

in
E

va
lu

at
io

n
C

om
m

an
d

R
ec

ei
ve

r
In

vo
ke

r
1

10
0%

C
om

m
an

d
D

ra
w

in
gV

ie
w

C
om

m
an

dB
ut

to
n

T
C

SH
06

,
Ja

va
do

c
T

ru
e

P
os

it
iv

e
2

10
0%

C
om

m
an

d
D

ra
w

in
gV

ie
w

C
om

m
an

dM
en

u
T

C
SH

06
,

Ja
va

do
c

T
ru

e
P

os
it

iv
e

3
93

,9
4%

T
oo

l
D

ra
w

in
gV

ie
w

D
ra

w
A

pp
lic

at
io

n
Fa

ls
e

P
os

it
iv

e
4

93
,9

4%
T

oo
l

D
ra

w
in

gV
ie

w
D

ra
w

A
pp

le
t

Fa
ls

e
P

os
it

iv
e

5
93

,9
4%

C
on

ne
ct

or
L

oc
at

or
C

ha
ng

eC
on

ne
ct

io
nH

an
dl

e
Fa

ls
e

P
os

it
iv

e
T

ab
le

4:
D

et
ec

ti
on

R
es

ul
ts

fo
r

th
e

C
om

m
an

d
pa

tt
er

n

13

4.3 Composite

“Compose objects into tree structures to represent part-whole hierar-
chies. Composite lets clients treat individual objects and compositions
of objects uniformly.” [7]

a9:NonConcreteType

a15:OneToManyAssociation

{w=0.1}

a14:SubtypeRelation

a16:MultiNeighborCall

{w=0.0}

componentOperation:AMethodDeclaration

abstract: Boolean = true {additional}

CompositeClass:ATypeDeclaration

abstract: Boolean = false {additional}
ComponentClass:ATypeDeclaration

:Composite

compositeOperation:AMethodDeclaration

abstract: Boolean = false {additional}

spComposite

«create»

type

manyone

supertypesubtype

calleeClass

caller

callerClass

callee

bodyDeclarationsbodyDeclarations

«create»

composite
«create»

component

Fig. 4. Reclipse Specification of the Composite Pattern

Specification The Composite specification contains two types, one of which
represents the component class and the other the composite class. Between those
two a subtype relationship has to exist and, according to [7], the composite class
should have a one-to-many reference to its children. Because this reference can
be realized in many different ways, we marked it as additional in our specifica-
tion, as shown by the dashed border of the OneToManyAssociation annotation.
Both, composite and component should contain a method (compositeOperation
and componentOperation, respectively) which, in case of the composite, has to
call that same method on all the composite’s children. This fact is represented
by the MultiNeighborCall between the two methods. The OneToManyAssocia-
tion is a very complex subpattern which in turn consists of several subpatterns
itself. Thus, the detection of this subpattern means matching over 70 single el-
ements. This leads to the OneToManyAssociation totally dominating the Com-
posite pattern’s rating. Thus, we lowered the OneToManyAssociation’s weight
to 0.1, thereby reducing its impact on the Composite rating.

Detection Results For the Composite pattern one candidate was detected.
The rating of the candidate is somewhat low because it does not fulfill all of
the specified constraints. According to our specification of the composite pat-
tern a one-to-many association between the composite (CompositeFigure in this

14

case) and its components (Figure) is expected. This means that the composite
knows all its children and each of those knows its parent in return. The later is
not true in the detected pattern occurrence. Figure has no to-one reference to
CompositeFigure. Furthermore the class CompositeFigure is abstract which also
deviates from our specification. Hence, the rating for this pattern occurrence is
rather low.

Rating Roles Documented in Evaluation

Composite Component

1 45,98% CompositeFigure Figure Rie00, TCSH06 True Positive
Table 5. Detection Results for the Composite pattern

15

4.4 Decorator

“Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.”
[7]

leaf:ATypeDeclaration

concreteDecorator:ATypeDeclaration

subr3:SubtypeRelation

subr2:SubtypeRelation

om:OverriddenMethod callee:AMethodDeclaration

decoratorClass:ATypeDeclaration

subr1:SubtypeRelation

:Decorator

componentClass:ATypeDeclaration

operation:AMethodDeclaration

sr2:SingleReference

{w=0.0}

sr1:SingleReference

{w=0.0}

del:Delegation

a1:AbstractType

a2:AbstractType

spDecorator
«create»«create»«create»

subtype

subtype

subClass

supertype supertype

overriddenMethod

bodyDeclarations

callee

bodyDeclarations

referencingClass

subtype

«create»

decorator

referencedClass

type

supertype

«create»

component

referencedClass

referencingClass

type

caller

Fig. 5. Reclipse Specification of the Decorator Pattern

Specification Similar to the Composite pattern, this pattern specification con-
tains a component class. It is subclassed by a decoratorClass. There may be more
subclasses of the componentClass which are called leaves in the context of this
pattern. Subclasses of the decoratorClass are called concreteDecorators. The dec-
oratorClass has an operation which is overridden by the concreteDecorator classes
and, on being called, delegates to a method (callee) of the componentClass. In
contrast to the composite pattern, there is no one-to-many reference between the
decorator and the componentClass but one decorator knows exactly one compo-
nent (via the SingleReference) and vice-versa. Both, componentClass and decora-
torClass should be abstract classes as signified by the AbstractType annotations.

Detection Results We detected two occurrences of the Decorator pattern. The
first one, rated with nearly 93% is a true positive and also documented by Riehle,
Tsantalis et al., and in the JHotDraw Javadoc. The second occurrence was also
reported by Tsantalis et al. [19].It is a false positive that receives a lower rating
than the other occurrence for several reasons. The most important points are
the absence of a reference from the detected component (Tool) to the decorator
class (SelectionTool) and the fact that neither of both classes is abstract.

16

Rating Roles Documented in Evaluation

Decorator Component

1 92,92% DecoratorFigure Figure Rie00, TCSH06, Javadoc True Positive

2 85,44% SelectionTool Tool TCSH06 False Positive
Table 6. Detection Results for the Decorator pattern

4.5 Observer

“Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated auto-
matically.” [7]

nct1:NonConcreteType nct2:NonConcreteType

mr:MultiReference

{w=2.0}

mnc:MultiNeighborCall

{w=3.0}

f:Field

notify:AMethodDeclaration

observerClass:ATypeDeclaration

simpleName: String = RegExp: ".*(l|L)istener" {additional}

:Observer

update:AMethodDeclaration

subjectClass:ATypeDeclaration

register:AMethodDeclaration

om:OverriddenMethod

fuzzy: SIZE

SIZE ≥ 1

spObserver
«create»«create»«create»«create»«create»

type type

overriddenMethod

referencedClass referencingClass

field

accessMethod

callee

caller

elements

owningClass

bodyDeclarations

bodyDeclarations

«create»

observer
«create»

subject

bodyDeclarations

Fig. 6. Reclipse Specification of the Observer Pattern

Specification The Observer pattern consists of the two types observerClass and
subjectClass. Both are usually abstract classes or interfaces which is represented
by the two NonConcreteType annotations. Because one subject can have multi-
ple observers, there is a MultiReference between them. The observerClass has an
update method while the subjectClass has a notify method and a register. The
register method accesses the collection which represents the MultiReference be-
tween subjectClass and observerClass to register new observers with the subject.
The update method is responsible for notifying all observers so there has to be
a MultiNeighborCall between update and notify which calls the method on all
elements that are accessible via the MultiReference.

The Observer pattern usually is used to allow multiple different observer
classes to observe a given subject class. The pattern specification describes the
abstract observer class which should then be subclassed by many concrete ob-
servers. This is reflected in the specification by the set annotation Overridden-

17

Method. The update method has to be overridden at least once (specified by
the constraint SIZE ≥ 1 in the OverriddenMethod annotation). To rate those
pattern occurrences higher which have more concrete observer implementations,
we also added a fuzzy set rating function to the OverriddenMethod annotation.
This function is a strictly increasing exponential function with limit 1 and can
be described by the formula

µ(x) = 1
1+e(−x+∆X

compr)
, with∆X = 5, compr = 2

The resulting function is depicted in Figure 7. It converges to a rating of one
for about 10 overriding methods.

Fig. 7. Fuzzy set rating function for the size rating of the Overridden Method anno-
tation

Detection Results For the Observer pattern five occurrences were found in
the code. All these occurrences were also reported by Tsantalis et al. as well as
de Lucia et al. Two additional candidates (6 and 7) that were reported in related
work were not detected by Reclipse and seem to be not real implementations of
the Observer pattern, after all.

Occurrence #1 received the highest rating but nevertheless appears to be
a false positive. Its structure is a nearly perfect match of our specification but
the method which is detected as the Observer’s update method is only a getter
(isExecutable()) in reality. A dynamic analysis with Reclipse would probably
reveal this candidate to be a false positive without further manual examination
(cf. Section 6).

Occurrence #2 possesses the same structural features as candidate #1 (thus
fulfilling the same constraints) but receives a slightly lower rating. This is because
the methods detected to play the role of the update method for the two candi-

18

dates is overridden a different number of times. For candidate #1 the method is
overridden five times, while it is only overridden once for candidate #2.

Occurrence #3’s rating is significantly worse than the rating of the first two
occurrences because the supposed notify method accesses another field than the
supposed register method. This strongly suggests that the occurrence is a false
positive.

The fourth occurrence receives a mediocre rating, because it does not iterate
over the collection of “Observers” in the alleged notify method.

Occurrence #5 seems to be part of the mechanism of occurrence #2.
Three more false positives were detected as Observer occurrences. They have

also been reported by others and their structure is to some extent similar to the
Observer pattern. Further explanations are given in the Comments column of
the table. The table also lists two more false positives which were detected by
other approaches but not by Reclipse.

The Observer pattern, being a pattern with a very distinctive behavior, lends
itself well to an additional behavioral analysis to separate true from false posi-
tives. Reclipse possesses this capability which has been discussed and evaluated
in other publications [20] [22] [23] but is not the focus of this report.

19

#
R

at
in

g
R

ol
es

D
o
cu

m
en

te
d

in
E

va
lu

at
io

n
Su

b
je

ct
O

bs
er

ve
r

1
96

,9
6%

C
om

m
an

dM
en

u
C

om
m

an
d

L
D

G
R

10
(F

P
),

T
C

SH
06

(F
P

)
Fa

ls
e

P
os

it
iv

e

2
91

,3
3%

St
an

da
rd

D
ra

w
in

g
D

ra
w

in
gC

ha
ng

eL
is

t-
en

er
R

ie
00

,
Ja

va
do

c,
L

D
G

R
10

,
T

C
SH

06
T

ru
e

P
os

it
iv

e

3
63

,1
8%

St
an

da
rd

D
ra

w
in

gV
ie

w
P

ai
nt

er
L

D
G

R
10

(F
P

),
T

C
SH

06
(F

P
)

Fa
ls

e
P

os
it

iv
e

4
61

,5
2%

C
om

po
si

te
F

ig
ur

e
F

ig
ur

e
L

D
G

R
10

(F
P

),
T

C
SH

06
(F

P
)

Fa
ls

e
P

os
it

iv
e

5
61

,5
2%

St
an

da
rd

D
ra

w
in

gV
ie

w
F

ig
ur

e
L

D
G

R
10

(F
P

),
T

C
SH

06
(F

P
),

T
C

SH
06

-W
eb

Fa
ls

e
P

os
it

iv
e

6
–

(n
ot

fo
un

d)
F

ig
ur

e
F

ig
ur

eC
ha

ng
eL

is
te

ne
r

L
D

G
R

10
T

ru
e

N
eg

at
iv

e
7

–
(n

ot
fo

un
d)

C
on

ne
ct

or
C

on
ne

ct
io

nF
ig

ur
e

Ja
va

do
c,

L
D

G
R

10
6

T
ru

e
N

eg
at

iv
e

T
ab

le
7:

D
et

ec
ti

on
R

es
ul

ts
fo

r
th

e
O

bs
er

ve
r

pa
tt

er
n

6
re

p
o
rt

ed
a
s

C
o
n
n
ec

to
rF

ig
u
re

20

4.6 Singleton

“Ensure a class only has one instance, and provide a global point of
access to it.” [7]

getter:StaticGetMethod

fuzzy: NOS

additional

publicConstructor:AMethodDeclaration

visibility: Integer = AMethodDeclaration.PUBLIC

constructor: Boolean = true

constructor:AMethodDeclaration

{w=2.0}

visibility: Integer = AMethodDeclaration.PRIVATE

constructor: Boolean = true

additional

:Singleton

singletonClass:ATypeDecl...

instanceField:AFieldDeclaration

static: Boolean = true

visibility: Integer = AFieldDeclaration.PRIVATE {additional}

a5:Field

spSingleton

«create»

returnedField

class

bodyDeclarations

bodyDeclarations

«create»

singleton

«create»

instance

bodyDeclarations

type

declaration

Fig. 8. Reclipse Specification of the Singleton Pattern

Specification The singleton pattern describes a singletonClass which has a
static instanceField of the that exact same type. The instanceField’s visibility
should be private (marked as additional because, based on our experience, this
is often violated in implementations). The singletonClass should also contain a
static get method through which the instanceField can be accessed. Addition-
ally, the singletonClass’s constructor should be private, which is specified by the
corresponding method declaration in the additional fragment.

We imposed a Fuzzy Metric Constraint on the get method to reflect the fact
that get methods should have few lines of code. We used basically the same
function as for the fuzzy metric expressions for the Adapter and Command pat-
terns but changed the parameter compr to 2. This makes the functions converge
earlier and therefor requires the set method to have even fewer statements than
the delegations in the Adapter and Command patterns.

µ(x) = 1+ε

1+e
x

compr
with ε = 1, compr = 2

This yields a strictly decreasing, exponential function which reaches its limit
0 for x ≈ 8 (cf. Figure 9). This means that methods which have been identified

21

Fig. 9. Fuzzy function for the number of statements in the Singleton pattern’s get
method

as get methods are rated worse, the more statements they have, converging to
rating 0 at about 8 statements.

Detection Results Both Singleton occurrences that were detected are true
positives but deviate slightly from our specification which is why their ratings
lie below 100%. Clipboard adheres very much to the specification with the only
exception of the visibility of the attribute which holds the Singleton instance. The
specification states the desired visibilty as private whereas the actual visibilty is
package.

In case of Iconkit, the rating is even lower because the class contains a public
constructor. Nevertheless it is documented by the developers to be an imple-
mentation of the Singleton pattern.

The fuzzy rating of the get method is 1.0 in both cases as the get method
implementations contain only one statement each.

Rating Roles Documented in Evaluation

Singleton

1 95,85% Clipboard TCSH06, Javadoc True Positive

2 82,52% Iconkit TCSH06, Javadoc True Positive
Table 8. Detection Results for the Singleton pattern

22

4.7 State / Strategy

State : “Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.” [7]

Strategy : “Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary independently
from clients that use it.” [7]

nct:NonConcreteType
del:Delegation

setter:SetMethod

{w=0.2}

setState:AMethodDeclaration

constructor: Boolean = false

static: Boolean = false

simpleName: String = RegExp: "set.*" {additional}

stateParam:ASingleVariableDeclaration

contextParam:ASingleVariableDeclaration

:Statecontext:ATypeDeclaration

request:AMethodDeclaration

NOS >= 1

fuzzy: NOS

stateClass:ATypeDeclaration

simpleName: String = RegExp: ".*(s|S)tate.*" {additional}

handle:AMethodDeclaration

abstract: Boolean = true {additional}

concreteStates:OverriddenMethod

{w=0.5}

fuzzy: SIZE

SIZE ≥ 1

spState

«create»

type

overriddenMethod

superClass

callee

callerClass

caller

calleeClass

setMethod

parameters

bodyDeclarations

type

type

parameters

«create»

state

«create»

context

bodyDeclarations
bodyDeclarations

Fig. 10. Reclipse Specification of the State Pattern

Specification The State pattern is specified as follows. There is a stateClass
and a context. The context has a request method which, whenever it is called,
delegates to the stateClass’s handle method. The context may pass itself as a
parameter to the handle method as indicated by the additional contextParam
object. The context also has a setState method to set the current state which
takes an object of type stateClass as parameter. In addition, the stateClass and its
handle method should be overridden more than once. This is specified constraint
SIZE ≥ 1 in the OverriddenMethod annotation set.

For the OverriddenMethod annotation we used the same fuzzy set rating
function as for the Observer pattern (cf. Section 4.5, Figure 7).

As the Strategy pattern is structurally similar to the State pattern the two
specifications are nearly identical. There is also a context class with a request
method which delegates to the algorithmMethod of the strategyClass (instead
of the handle method of the stateClass). The set method in that case is called
setStrategy and takes a strategyClass as parameter. The algorithmMethod may
take the context as a parameter and should be overridden more than once.

23

Detection Results Due to the structurally identical specifications, we could
not distinguish State and Strategy pattern occurrences. To do this Reclipse sup-
ports a behavioral analysis which extends the structural analysis but also takes
runtime behavior into account. [20] [21] [22] [23]

Table 9 shows a selection of our results for the State/Strategy pattern. The
highest rated result is an actual Strategy pattern implementation as documented
in the JHotDraw Javadoc. Pattern occurrence #3 is also a true positive. Accord-
ing to other publications, the role of the context in these two cases is played by
the class DrawingView which is an interface implemented by the class Standard-
DrawingView.

Pattern occurrence #2 is in our opinion a true positive that is not docu-
mented as a pattern implementation. Its structure is almost identical to the
structure of occurrence #1, hence the high rating. We manually inspected the
code and found out that a PolyLineFigure has up to two LineDecorations that
determine how a line’s ends are to be drawn. When drawing the line’s ends the
drawing operation is delegated to the LineDecorations if available. Depending
on which LineDecoration is set for a line’s end the shape of the line end differs.
Classes implementing the interface LineDecoration implement the draw operation
and determine the shape. All these facts together qualify the pattern occurrence
#2 to be a Strategy pattern implementation.

The remainder of the detected occurrences consists of false positives, albeit
with a lower rating. It is noteworthy that all occurrences detected by Reclipse
were also reported by Tsantalis et al.7

7 http://java.uom.gr/∼nikos/pattern-detection.html

24

#
R

at
in

g
R

ol
es

D
o
cu

m
en

te
d

in
E

va
lu

at
io

n
C

on
te

xt
St

at
e/

St
ra

te
gy

1
74

,3
2%

St
an

da
rd

D
ra

w
in

gV
ie

w
P

ai
nt

er
T

C
SH

06
,

R
ie

00
,

Ja
va

do
c

T
ru

e
P

os
it

iv
e

(S
tr

at
eg

y)
2

71
,8

2%
P

ol
yL

in
eF

ig
ur

e
L

in
eD

ec
or

at
io

n
T

C
SH

06
T

ru
e

P
os

it
iv

e
(S

tr
at

eg
y)

3
69

,4
5%

St
an

da
rd

D
ra

w
in

gV
ie

w
P

oi
nt

C
on

st
ra

in
er

T
C

SH
06

,
R

ie
00

,
Ja

va
do

c
T

ru
e

P
os

it
iv

e
(S

tr
at

eg
y)

4
66

,9
1%

St
an

da
rd

D
ra

w
in

gV
ie

w
D

ra
w

in
gE

di
to

r
T

C
SH

06
Fa

ls
e

P
os

it
iv

e
5

61
,8

8%
St

an
da

rd
D

ra
w

in
gV

ie
w

D
ra

w
in

g
T

C
SH

06
Fa

ls
e

P
os

it
iv

e
6-

16
58

-
44

%
..

.
..

.
T

C
SH

06
Fa

ls
e

P
os

it
iv

es
T

ab
le

9:
D

et
ec

ti
on

R
es

ul
ts

fo
r

th
e

St
at

e
pa

tt
er

n

25

4.8 Template Method

“Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses redefine certain steps of
an algorithm without changing the algorithm’s structure.” [7]

hookMethod:AMethodDeclaration

abstract: Boolean = true

abstractClass:ATypeDeclaration

abstract: Boolean = true

:TemplateMethod

templateMethod:AMethodDeclaration

abstract: Boolean = false

om:OverriddenMethod

{w=0.5}

fuzzy: SIZE

SIZE ≥ 1

icm:InternalMethodCall

{w=0.5}

spTemplateMethod

«create»«create»«create»

caller

callee

overriddenMethod

bodyDeclarations

«create»

hookMethod

bodyDeclarations

«create»

abstractClass

«create»

templateMethod

Fig. 11. Reclipse Specification of the Template Method Pattern

Specification Template Method is a relatively simple pattern. It contains an
abstractClass with the actual templateMethod and several abstract hookMethods.
The templateMethod should call the hookMethods as indicated by the Internal-
MethodCall. Those should also be overridden by subclasses of the abstract class.

For the OverriddenMethod annotation we used the same fuzzy set rating
function as for the Observer pattern (cf. Section 4.5, Figure 7).

Detection Results Table 10 shows all 18 candidates we detected in a condensed
form. Reclipse detected one occurrence of the Template Method pattern for each
combination of the three roles Abstract Class, Template Method, and Hook
Method. This is problematic, when one template method contains several hook
methods (which is common for this pattern). Consider candidates 15 to 18.
Reclipse detected four occurrences for the method paint in class PaletteButton.
The hook methods paintBackground, paintNormal, paintPressed, and paintSelected
are all called in paint, so this would be one occurrence of the Template Method
pattern with four hook methods. A possible extension of Reclipse to handle these
cases is discussed in Section 5.

26

Tsantalis et al. [19] reported all of our detected Template Method occurrences
on their web site. If Reclipse’s problems described in the last paragraph are
considered, our detection results for this pattern match those of Tsantalis et al.
completely.

27

#
R

at
in

g
R

ol
es

D
o
cu

m
en

te
d

in
E

va
lu

at
io

n
A

bs
tr

ac
t

C
la

ss
T

em
pl

at
e

M
et

ho
d(

s)
H

oo
k

M
et

ho
d

1-
4

82
,8

4%
A

bs
tr

ac
tF

ig
ur

e
si

ze
,

co
nt

ai
ns

P
oi

nt
,

in
va

lid
at

e,
ce

nt
er

di
sp

la
yB

ox
Ja

va
do

c,
L

D
G

R
10

,
T

C
SH

06
T

ru
e

P
os

it
iv

e

5
82

,0
5%

A
bs

tr
ac

tF
ig

ur
e

di
sp

la
yB

ox
ba

si
cD

is
pl

ay
B

ox
Ja

va
do

c,
L

D
G

R
10

,
T

C
SH

06
T

ru
e

P
os

it
iv

e

6
81

,1
2%

A
bs

tr
ac

tF
ig

ur
e

m
ov

eB
y

ba
si

cM
ov

eB
y

Ja
va

do
c,

L
D

G
R

10
,

T
C

SH
06

T
ru

e
P

os
it

iv
e

7
75

,4
6%

A
bs

tr
ac

tH
an

dl
e

di
sp

la
yB

ox
lo

ca
te

T
C

SH
06

T
ru

e
P

os
it

iv
e

8-
9

59
,9

1%
C

ha
ng

eC
on

ne
ct

io
nH

an
dl

e
so

ur
ce

,
in

vo
ke

St
ar

t
ta

rg
et

T
C

SH
06

T
ru

e
P

os
it

iv
e

10
-1

1
59

,9
1%

C
ha

ng
eC

on
ne

ct
io

nH
an

dl
e

in
vo

ke
E

nd
,

in
-

vo
ke

St
ep

se
tP

oi
nt

T
C

SH
06

T
ru

e
P

os
it

iv
e

12
59

,9
1%

C
ha

ng
eC

on
ne

ct
io

nH
an

dl
e

in
vo

ke
St

ar
t

di
sc

on
ne

ct
T

C
SH

06
T

ru
e

P
os

it
iv

e
13

59
,9

1%
C

ha
ng

eC
on

ne
ct

io
nH

an
dl

e
in

vo
ke

E
nd

co
nn

ec
t

T
C

SH
06

T
ru

e
P

os
it

iv
e

14
56

,6
5%

A
ct

io
nT

oo
l

m
ou

se
D

ow
n

ac
ti

on
T

C
SH

06
T

ru
e

P
os

it
iv

e
15

-1
8

56
,6

5%
P

al
et

te
B

ut
to

n
pa

in
t

pa
in

tB
ac

kg
ro

un
d,

pa
in

tN
or

m
al

,
pa

in
tP

re
ss

ed
,

pa
in

tS
el

ec
te

d

T
C

SH
06

T
ru

e
P

os
it

iv
e

T
ab

le
10

:
D

et
ec

ti
on

R
es

ul
ts

fo
r

th
e

T
em

pl
at

e
M

et
ho

d
pa

tt
er

n

28

5 Lessons Learned

The evaluation of our detection results showed that our specification language
lacks a possibility to specify sets of objects. This is becomes apparent for example
for the Command or the Template Method patterns. The problem exists for all
pattern specifications which contain an abstract level that can be concretized
multiple times, e.g., a template method which contains multiple hook methods.
In this case, Reclipse will detect one pattern occurrence for each combination
of elements, i.e. instead of reporting just one Template Method occurrence with
four hook methods it will report four occurrences with one hook method each
(cf. pattern occurrences #15 to #18 in Table 10).

sp TemplateMethod

abstractClass:ATypeDeclaration

abstract: Boolean = true

templateMethod:AMethodDeclaration

abstract: Boolean = false

hookMethod:AMethodDeclaration

abstract: Boolean = true

:OverriddenMethod

{w = 0.5}

:OverriddenMethod

{w=0.5}

fuzzy: SIZE

SIZE ≥ 1

:OverriddenMethod

{w = 0.5}
:InternalMethodCall

{w=0.5}
:TemplateMethod

set

overriddenMethod

callee

caller

bodyDeclarations

<<create>>

templateMethod

<<create>>

hookMethod

<<create>>

abstractClass

bodyDeclarations

Fig. 12. The Template Method specification with a Set Fragment

This could be remedied by the introduction a special language construct
which expresses that a certain subgraph of the pattern specification can occur
multiple times. In the style of the already existing additional fragments, this Set
Fragment is used in Figure 12 to express that a template method can have more
than one hook method.

Another topic is the improvement of our pattern specifications. Specifying
patterns is an iterative process. The quality of a given specification can only be
assessed by looking at the detection results and going back to change details,
add or remove constraints and manipulate weights. During the evaluation that
is presented in this report, we continuously adapted our specifications. Still,
changing some of the weights could further improve the ratings and separate
true and false positives more clearly.

29

Furthermore, it should be assessed if and how this “fine-tuning” is affected
by the analyzed system, i.e., are the pattern specifications in that exact form
applicable to other systems or is the fine-tuning system specific.

6 Conclusions and Future Work

In this report, we presented an evaluation of a static pattern detection approach
which uses additional specification elements, metrics and fuzzy expressions to
rate the detection result. The rating reflects a detected pattern occurrence’s
adherence to the pattern specification and helps distinguishing true from false
positives.

We applied our approach to the JHotDraw framework and compared the
detection results to those of other approaches. It shows that we were able to
detect a lot of true positives which were also described in other publications.
In addition, the true positives for the most part achieved a higher rating than
the false positives. Thus our approach provides a useful guidance for the reverse
engineer in assessing the results of a static pattern detection. Instead of leaving
him with just a set of equal results, we rank the detected pattern occurrences
and thereby propose which occurrences are most like to be true positives.

It was already mentioned in the report that Reclipse also comes with a dy-
namic analysis to judge the static detection results based on the behavior [20]
[21] [22] [23]. This potential could be applied to the results in this report in order
to see which of the false positives can be ruled out that way.

Acknowledgments

We would like to thank Marie Christin Platenius for her help in carrying out our
evaluation.

References

1. D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns – Best Practices and Design
Strategies. Core Design Series. Prentice Hall, Sun Microsystems Press, 2 edition,
2003.

2. F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Ar-
chitecture – A Pattern Language for Distributed Computing, volume 4 of Software
Design Patterns. John Wiley and Sons, Ltd, 2007.

3. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture – A System of Patterns, volume 1 of Software De-
sign Patterns. John Wiley and Sons, Ltd, 1996.

4. E. J. Chikofsky and J. H. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, January 1990.

5. J. O. Coplien and D. C. Schmidt, editors. Pattern Languages of Program Design,
volume 1 of Software Patterns Series. Addison-Wesley, 1995.

30

6. J. Dong, Y. Sun, and Y. Zhao. Design Pattern Detection by Template Matching. In
Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC’08),
pages 765–769, Fortaleza, Brazil, 2008. ACM Press.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

8. Y.-G. Guéhéneuc and G. Antoniol. DeMIMA: A Multilayered Approach for Design
Pattern Identification. IEEE Transactions on Software Engineering, 34(5):667–684,
2008.

9. Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi. Fingerprinting Design Patterns. In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04),
pages 172–181, Delft, The Netherlands, 2004. IEEE Computer Society.

10. R. S. Hanmer. Patterns for Fault Tolerant Software. Software Design Patterns.
John Wiley and Sons, Ltd, 2007.

11. M. Kircher and J. Prashant. Pattern-Oriented Software Architecture – Patterns
for Resource Management, volume 3 of Software Design Patterns. John Wiley and
Sons, Ltd, 2004.

12. A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi. Improving behavioral design
pattern detection through model checking. In Proceedings of the 14th European
Conference on Software Maintenance and Reengineering (CSMR ’10), Madrid,
Spain, 2010.

13. M. Meyer. Musterbasiertes Re-Engineering von Softwaresystemen (Pattern-based
Reengineering of Software Systems). PhD thesis, University of Paderborn, 2009.
In German.

14. J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh. Towards Pattern-
Based Design Recovery. In Proceedings of the 24th International Conference on
Software Engineering (ICSE’02), pages 338–348, Orlando, USA, 2002. ACM Press.

15. D. Riehle. Framework Design: A Role Modeling Approach. PhD thesis, ETH Zrich,
2000.

16. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Soft-
ware Architecture – Patterns for Concurrent and Networked Objects, volume 2 of
Software Design Patterns. John Wiley and Sons, Ltd, 2000.

17. N. Shi and R. A. Olsson. Reverse Engineering of Design Patterns from Java Source
Code. In Proceedings of the 21st International Conference on Automated Software
Engineering (ASE’06), pages 123–134, Tokyo, Japan, 2006. IEEE Computer Soci-
ety.

18. I. Stürmer and D. Travkin. Automated Transformation of MATLAB Simulink and
Stateflow Models. In Pre-Proc. of the 4th Workshop on Object-oriented Modeling
of Embedded Real-Time Systems, volume tr-ri-07-286, pages 57–62. University of
Paderborn, 2007.

19. N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. Design Pat-
tern Detection Using Similarity Scoring. IEEE Transactions on Software Engi-
neering, 32(11):896–909, 2006.

20. M. von Detten, M. Meyer, and D. Travkin. Reclipse - A Reverse Engineering Tool
Suite. Technical report, Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, 2010.

21. M. von Detten, M. Meyer, and D. Travkin. Reverse Engineering with the Re-
clipse Tool Suite. In Proceedings of the 32nd International Conference on Software
Engineering (ICSE 2010), Cape Town, South Africa, 2010.

22. M. von Detten and M. C. Platenius. Improving Dynamic Design Pattern Detection
in Reclipse with Set Objects. In Proceedings of the 7th International Fujaba Days,
pages 15–19, Eindhoven, The Netherlands, 2009.

31

23. L. Wendehals. Struktur- und verhaltensbasierte Entwurfsmustererkennung (Struc-
tural and Behavioral Design Pattern Detection). PhD thesis, University of Pader-
born, 2007. In German.

A Subpattern Specifications

type:ATypeDeclaration

:NonConcreteType

spNonConcreteType

«create»«create»«create»

«create»

type

Fig. 13. The NonConcreteType subpattern (abstract)

type:ATypeDeclaration

abstract: Boolean = true

:AbstractType

spAbstractType extends NonConcreteType

«create»«create»«create»«create»«create»«create»

«create»

type

Fig. 14. The AbstractType subpattern (extends NonConcreteType)

32

o1:ATypeDeclaration

:SubtypeRelation

o2:ATypeDeclaration

spSubtypeRelation

«create»«create»«create»«create»

«create»

supertype

«create»

subtype

Fig. 15. The SubtypeRelation subpattern (abstract)

:DirectGeneralization

superClass:ATypeDeclaration

subClass:ATypeDeclaration

spDirectGeneralization extends SubtypeRelation

«create»

«create»

supertype

«create»

subtype

superclassType

Fig. 16. The DirectGeneralization subpattern (extends SubtypeRelation)

a36:SubtypeRelati...

a35:SubtypeRelati...

subClass:ATypeDeclaration

:IndirectGeneralization

superClass:ATypeDeclaration

intermediateClass:ATypeDeclaration

sp IndirectGeneralization extends SubtypeRelation

«create»

subtype

supertype

subtype

supertype

«create»

subtype

«create»

supertype

Fig. 17. The IndirectGeneralization subpattern (extends SubtypeRelation)

33

referenced:ATypeDeclaration a10:Field referencing:ATypeDeclaration

:Reference

spReference

«create»

«create»

referencedClass «create»

field

«create»

referencingClass

Fig. 18. The Reference subpattern (abstract)

additional
getter:GetMethodreadMethod:AMethodDeclaration

additional

additional

setter:SetMethodwriteMethod:AMethodDeclaration

additional

referencingClazz:ATypeDeclaration

{ allow self assocs: maybe referencingClazz == referencedType }

referencedType:ATypeDeclaration

simpleName: String ≠ "Float"

simpleName: String ≠ "Integer"

simpleName: String ≠ "Character"

simpleName: String ≠ "Byte"

simpleName: String ≠ "String"

simpleName: String ≠ "Long"

simpleName: String ≠ "Double"

simpleName: String ≠ "Boolean"

simpleName: String ≠ "Short"

:SingleReference referencingField:Field

spSingleReference extends Reference

«create»

getMethod

returnedField

bodyDeclarations

setMethod

setField

bodyDeclarations

«create»

referencingClass owningClass

«create»

referencedClass type

«create»

field

Fig. 19. The SingleReference subpattern (extends Reference)

referencing:ATypeDeclaration

:MultiReferen...

referenced:ATypeDeclarationa11:Field

{ allow self-references: maybe referencing == referenced }

access:AMethodDeclaration param:ASingleVariableDeclaration

a13:ContainerWriteAccessMethod

{w=0.0}

SIZE ≥ 2

spMultiReference extends Reference

«create»

containerField containerContentTypecontainingClass

bodyDeclarations

owningClass

«create»

referencingClass

«create»

accessMethod

«create»

field

«create»

referencedClass

type

parameters

Fig. 20. The MultiReference subpattern (extends Reference)

34

toOneReference:SingleReference

toManyReference:MultiReference

:OneToManyAssociation

toManyClass:ATypeDeclaration

toOneClass:ATypeDeclaration

toManyField:Field

toOneField:Field

spOneToManyAssociation

«create»

field referencedClass

fieldreferencedClass

«create»

many

«create»

one

owningClass owningClass

Fig. 21. The OneToManyAssociation subpattern

a9:SubtypeRelation

{ equal signatures: overridden.getFullName().equals(overriding.getFullName()) }

o143:AType

superClass:ATypeDeclaration

:OverriddenMethod

overridden:AMethodDeclaration

visibility: Integer ≠ AMethodDeclaration.PRIVATE

overriding:AMethodDecl...subClass:ATypeDeclaration

spOverriddenMethod

«create»«create»«create»

supertype

subtype
returnType2

returnType2

bodyDeclarations

«create»

superClass

«create»

overridingMethod

«create»

overriddenMethod

«create»

subClass

bodyDeclarations

Fig. 22. The OverriddenMethod subpattern

35

f:Field

o147:AMethodDeclaration

abstract: Boolean = false

simpleName: String = RegExp: "set.*" {additional}

static: Boolean = false

visibility: Integer ≠ AMethodDeclaration.PRIVATE

constructor: Boolean = false

fuzzy: NOS

fieldType:AType

assignParameterToVariable:AAssignment o153:AExpressionContext

field:AFieldDeclaration

o151:AExpressionContext

containingClass:ATypeDeclaration

o154:AVariableAccess

:SetMethod

methodParameter:ASingleVariableDeclaration

o152:AVariableAccessvariable:AVariableDeclarationFragment

{ c: maybe containingClass == fieldType }

spSetMethod

«create»«create»«create»

owningClass

fragment

«create»

setField

parametersbodyDeclarations

«create»

setMethod

type

type

leftHandSide

rightHandSide

expression

fragments

expression

«create»

class

variableBindingReference

variableBindingReference

Fig. 23. The SetMethod subpattern

field:Field

:StaticGetMethod

returnStmt:AReturnStatement

declaration:AVariableDeclarationFragment

containingClass:ATypeDeclaration

parameter:ASingleVariableDeclaration

fieldType:AType

access:AVariableAccess

{ c: maybe fieldType == containingClass }

getter:AMethodDeclaration

visibility: Integer ≠ AMethodDeclaration.PRIVATE

constructor: Boolean = false

abstract: Boolean = false

static: Boolean = true

simpleName: String = RegExp: "(get|is).*" {additional}

fuzzy: NOS

spStaticGetMethod

«create»

type

fragment

owningClass

«create»

returnedField

«create»

getMethod

«create»

class

variableBinding

bodyDeclarations

parameters

returnType2

Fig. 24. The StaticGetMethod subpattern

36

callerClass:ATypeDeclaration calleeClass:ATypeDeclaration
caller:AMethodDeclaration

:Delegation

callee:AMethodDeclaration

spDelegation

«create»«create»«create»«create»

«create»

callerClass

«create»

calleeClass

«create»

caller
«create»

callee

Fig. 25. The Delegation subpattern (abstract)

returnType:AType

additional

callerParam:ASingleVariableDeclaration paramType:AType calleeParam:ASingleVariableDeclaration

additional

additional

calleeParam2:ASingleVariableDeclarationcallerParam2:ASingleVariableDeclaration paramType2:AType

additional

additional

calleeParam3:ASingleVariableDeclarationparamType3:ATypecallerParam3:ASingleVariableDeclaration

additional

a10:SingleReference

{w=0.0}

{ c3: maybe callerClass == calleeClass }

callerClass:ATypeDeclaration

o140:AMethodInvocation

calleeClass:ATypeDeclaration
caller:AMethodDeclaration

fuzzy: NOS

NOS >= 1

:SingleDelegation

callee:AMethodDeclaration

{ equal names: caller.getName().equals(callee.getName()) {additional} }
{ c1: maybe returnType == callerClass }

{ c2: maybe returnType == calleeClass }

spSingleDelegation extends Delegation

«create»«create»«create»

returnType2 returnType2

type

parameters

type

parameters

type

parameters

type

parameters

type

parameters

type

parameters

referencingClass referencedClass

bodyDeclarations

«create»

callerClass

methodBinding

bodyDeclarations

«create»

calleeClass

«create»

caller

«create»

callee

Fig. 26. The SingleDelegation subpattern (extends Delegation)

37

:InternalMethodCall

clazz:ATypeDeclaration

caller:AMethodDeclaration callee:AMethodDeclaration

o56:AMethodInvocation

sp InternalMethodCall

«create»

«create»

callee
«create»

caller

«create»

clazz

bodyDeclarationsbodyDeclarations

methodBindingReference

Fig. 27. The InternalMethodCall subpattern

:Field

clazz:ATypeDeclaration fieldDeclaration:AFieldDeclaration variableDeclaration:AVariableDeclarationFragment

fieldType:AType

{ c: maybe clazz == fieldType }

spField

«create»«create»

«create»

owningClass «create»

declaration

«create»

fragment

«create»

type

bodyDeclarations fragments

type

Fig. 28. The Field subpattern

38

a19:MultiReferen...

{w=0.0}

a1:Field

o1:AVariableDeclarationFragment o2:AVariableAccess

calleeClass:ATypeDeclaration

loop:ALoopStatement

caller:AMethodDeclaration

:MultiNeighborCall

callerClass:ATypeDeclaration callee:AMethodDeclaration

methodCall:AMethodInvocation

spMultiNeighborCall

«create»

referencingClass referencedClass

field

fragment

«create»

elements

variableBinding

bodyDeclarations

«create»

calleeClass

«create»

caller

bodyDeclarations

«create»

callee
«create»

callerClass

methodBinding

Fig. 29. The MultiNeighborCall subpattern

39

