
Reclipse – A Reverse Engineering Tool Suite

Technical Report tr-ri-10-312

Markus von Detten, Matthias Meyer, Dietrich Travkin
Software Engineering Group, Heinz Nixdorf Institute

Department of Computer Science, University of Paderborn, Germany
[mvdetten|mm|travkin]@upb.de

ABSTRACT
Design pattern detection is a reverse engineering methodolo-
gy that helps software engineers to analyze and understand
legacy software by recovering design decisions and thereby
providing deeper insight into software. In this report we
present Reclipse, a reverse engineering tool suite based on
Fujaba. Reclipse provides static and dynamic design pat-
tern detection in combination with a pattern rating that is
used to evaluate the quality of our detection results.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, Reverse Engineering, and
Reengineering ; D.2.11 [Software Engineering]: Software
Architectures—Patterns

General Terms
Languages, Algorithms

Keywords
Design pattern detection, static analysis, dynamic analysis,
detection results rating

1. INTRODUCTION
Due to requests for new features and the discovery of de-

fects, software has to be continuously extended and adapted
during its life cycle. Incomplete documentation often com-
plicates this task and is among the reasons that software
engineers often spend 50 % to 75 % of a system’s total de-
velopment time on maintenance [20].

The tedious and error-prone task of understanding a large
system can be supported by reverse engineering tools that
recover the design of the software by locating implementa-
tions of design patterns as they were published, e.g. in the
seminal book by Gamma et al. [7]. Identifying instances
of these patterns can help the re-engineer to understand a
software system quickly, since the pattern instances hint at
the original developers’ design intentions. The knowledge
of design deficiencies (e.g. bad smells [5] and anti patterns
[3]) and the corresponding recommended refactorings [12]
can guide the reengineering task and thereby speed up the
maintenance process.

Since the publication of numerous design patterns, sev-
eral approaches for their detection in existing software have
been developed, most of which carry out a static analysis
of a software’s source code [1, 4, 8, 9, 18, 19, 22]. uch an

analysis is able to recognize mainly the structural aspects
of a pattern. Some patterns, however, possess characteristic
behavior (only) or are structurally similar to others (as e.g.
Strategy and State [7]). A purely static analysis fails to rec-
ognize or distinguish those patterns or it produces too many
false positives.

Consequently, we developed a pattern detection approach
that integrates a static analysis to recognize structural pat-
tern instances [16] with a subsequent dynamic analysis to
also verify the runtime behavior of the detected instances
[23, 25, 26].

The re-engineer must be able to recognize new patterns
or to adapt the detection to specific characteristics of the
analyzed system. Therefore, we offer a flexible, graphical
specification of structural and behavioral patterns based on
an arbitrary, exchangeable meta-model which keeps our ap-
proach largely language-independent. This also allows us
to apply our approach for the detection of e.g. bad smells
[13, 14] and to detect design guideline violations in Matlab
Simulink models [21].

Static and dynamic analyses are also combined in the ap-
proaches of Hayashi et al. [10] and Heuzeroth and al. [11].
Hayashi et al. however use hard coded patterns, whereas we
employ graphical yet formal pattern specifications. Heuze-
roth et al. use Prolog for the specification of the behavioral
patterns. According to the authors these specification can
become very complex and are hardly maintainable.

There are usually many variants for implementing a sin-
gle design pattern [17]. In order to detect all those variants,
a lot of pattern specifications would be needed. To avoid
this, we allow the re-engineer to specify the invariant struc-
tural core of a pattern and to extend this core by additional
structural elements. Those additional elements are used to
automatically compute a rating of concrete instances: they
need not be present for a pattern instance to be recognized,
but if they are, the instance more closely resembles the spe-
cification and receives a higher rating. This way, less speci-
fications are needed and the rating can be used to sort the
static analysis results according to their completeness.

In this report we present the approach and especially its
implementation as a plug-in for the Eclipse IDE, the Re-
clipse Tool Suite1. We also report on some evaluation re-
sults obtained by using the tool.

2. THE APPROACH
Figure 1 shows our pattern detection process. In a first

step, a static analysis searches the source code of a software

1http://www.fujaba.de/reclipse

Source

Code

Behavioral

Patterns

Traces

Pattern

Candidates

Accepted / Rejected

Pattern Candidates

Static

Analysis

Dynamic

Analysis

Document

Process Step

Data Flow

Program

Execution

Traces
Structural

Patterns

Figure 1: The pattern detection process

system for instances of structural patterns.Before analysis,
the source code is parsed into an abstract syntax graph rep-
resentation. Based on this representation, implementations
of structural patterns, that are previously specified by the
re-engineer, are searched. The structural patterns are speci-
fied graphically and formally by means of graph transforma-
tion rules. The result of the static analysis is a set of code
fragments that comply with the structural pattern specifi-
cations. We call these fragments pattern candidates.

A dynamic analysis is used to confirm or reject the candi-
dates depending on their runtime behavior. The candidates’
expected behavior is described with formal behavioral pat-
terns based on UML 2.0 sequence diagrams. Each behavioral
pattern corresponds to a structural pattern and references
its elements, e.g. object types and methods.

After detecting the pattern candidates in the static anal-
ysis step, the software system under analysis is executed,
and the candidates’ behavior is traced. Note that not the
complete program behavior is traced but only that of the
candidates. This drastically reduces the search space for
the dynamic analysis.

A number of traces is generated for each candidate. The
traces are then compared to the behavioral patterns and it
is evaluated how many of a candidate’s traces conform to
the pattern. Based on the number of conform traces, the
re-engineer can decide if a candidate is an actual pattern
instance (i.e. a true positive) or a false positive.

2.1 Static Analysis
Throughout this report we use the Observer pattern to

explain our pattern detection approach. Gamma et al. de-
scribe the Observer pattern’s intent as follows:

”Define a one-to-many dependency between ob-
jects so that when one object changes state, all
its dependents are notified and updated automat-
ically.” [7]

The state changing object is usually called Subject while
the dependent objects are referred to as Observers.

Structural Pattern Specification and Detection
Formally, a structural pattern specification defines a graph
transformation rule. An inference algorithm [16, 15] applies
the different rules to the abstract syntax graph represen-
tation of a software and thus tags pattern candidates with
annotations.

Figure 2 shows our structural specification of the Observer
pattern in an extended version of the notation introduced by
Niere et al. [16, 15]. We use special UML object diagrams to
specify an object structure (displayed in black), which has

to be found in the abstract syntax graph representation of
a software system. Thus, the object types refer to a meta-
model for the abstract syntax of object-oriented code, in this
case Java.

The structure to be found contains two classes: subject-

Class and observerClass. Note that the object names in
the pattern specification are variables that are matched to
real objects during the detection process. The subjectClass
has the methods register, which takes an observerClass

object as parameter, and notify. The observerClass has
an update method.

The ellipses are so-called annotations and refer to sub-
patterns which are specified in other diagrams. Annota-
tions represent instances of subpatterns. In this case the
annotations indicate that the subject class’ notify method
must implement a delegation to the observer class’ update
method. The OverridingMethod annotation concreteUp-

date states that the method update should be overidden2.
The MultiReference annotation reference expresses that
a subject references arbitrarily many observers.

Finally, the Observer annotation that is displayed in green
and marked with �create� is created when the depicted
structure is found. The annotation tags the structure as
candidate for the Observer pattern.

Pattern Variants and Rating of Pattern Candidates
In order to enable the recognition of different variants of a
pattern with a single specification, we introduce the concept
of additional constraints. They allow us to specify conditions
whose satisfaction is desired but not mandatory to consti-
tute an actual pattern instance.

In case of the Observer pattern, the subjectClass and
observerClass should be abstract and subclassed to reduce
the coupling between the concrete classes [7]. Since this is
often neglected in practice, we mark those constraints in
the pattern specification as {additional}. This way, we
recognize both, Observer candidates with abstract and non-
abstract classes. If the classes are abstract in a candidate,
however, that candidate more closely resembles the pattern’s
intended structure. Consequently, such a candidate receives
a higher rating than others.

In addition, when subclassing is used, the observer’s up-

date method should be overridden multiple times. This is
specified by the set annotation concreteUpdate, displayed
as a stacked ellipse. The set annotation is additional, indi-
cated by its dashed border. With the additional expression
SIZE ≥ 1 we want to rate candidates higher, for which the
set contains at least one element, i.e. the update method is
overridden at least once.

We use the information given by the satisfaction of ad-
ditional constraints to separate reliable from less reliable
results. This is done automatically by rating each pattern
candidate with a value on a percental basis that relates the
number of constraints satisfied by a candidate to the total
number of constraints in the corresponding pattern specifi-
cation. The more constraints are satisfied the higher is the
rating value.

Additionally, weights can be used to increase or decrease
the impact of a constraint’s (dis)satisfaction. The rating
quantifies the degree of a pattern candidate’s compliance to

2According to Gamma et al. the observer and subject classes
are intended to be subclassed by concrete observers and sub-
jects that implement their own specific behavior.

stereotype:UMLStereotype

name: String = "interface"

notify:UMLMethod

«create»
:Observer

subjectClass:UMLClass

abstract: Boolean = true {additional}

register:UMLMethod p:UMLParam

observerClass:UMLClass

abstract: Boolean = true {additional}

update:UMLMethod

reference:MultiReference

delegation:Delegation

concreteUpdate:OverridingMethod
SIZE ≥ 1 {additional}

sp Observer

stereotypes

caller

methods

overridden

«create»
observer

«create»
subject

methods

referencingClass

param

paramType

methods

referencedClass

callee

Figure 2: Observer structural pattern

bp Observer

s:subjectClass oSet:observerClass

loop (1,*)loop (1,*)

loop (1,*)loop (1,*)

loop (1,*)loop (1,*)

eacheach

notify()

update()

register(o:observerClass)

Figure 3: Observer behavioral pattern

its specification and helps the reverse engineer to distinguish
true from false positives. Moreover, a threshold can be set
in order to display only pattern candidates with a rating
higher than the threshold.

2.2 Dynamic Analysis
Figure 3 illustrates the expected behavior of the Observer

pattern in the syntax defined by Wendehals et al. [24, 23,
25]. It shows one object s of the type described by the sub-

jectClass node in Figure 2 and a set of observer objects
oSet. The object types and message names refer to iden-
tifiers from the structural pattern specification (cf. Figure
2).

Objects of the type observerClass call the register meth-
od of the subjectClass to register themselves for the sub-
ject’s updates and are therefore considered as members of
the set oSet. This can happen 1 to arbitrarily many times as
specified by the loop fragment. The following loop fragment
indicates that whenever s calls its notify method the up-

date method of each object in the set has to be called. The
whole pattern is enclosed in another loop fragment because
the specified behavior may be repeated several times. If an
Observer candidate fails to show this behavior, it is proba-
bly a false positive (or a variation of the design proposed by
Gamma et al. [7] that does not match our specification).

The dynamic analysis is based on traces of the pattern
candidates identified by the static analysis. To obtain these
traces, the system under analysis is executed and method
calls between instances of classes that are part of a candidate
are recorded. In the Observer example only methods that
have been identified as candidates for the methods register,
update and notify are traced.

During the analysis step, the traces are compared to the
corresponding behavioral patterns. For this purpose, a spe-
cial automaton is automatically generated for each behav-
ioral pattern. If a trace matches the pattern, it is accepted
by the automaton and rejected otherwise [26].

If the majority of a candidate’s traces match the behav-
ioral pattern, it is likely that the candidate is an actual de-
sign pattern implementation. If most of the traces for a can-
didate do not match the behavioral pattern, it is assumed
to be a false positive.

3. EVALUATION RESULTS
We used our prototype implementation in the Reclipse

Tool Suite to evaluate the approach by analyzing e.g. Java’s
Abstract Window Toolkit (AWT) [15], the Java Generic Li-
brary (JGL) [15], Eclipse’s Standard Widget Toolkit (SWT)
[14, 25] and JHotDraw 6.0 beta 1 [14].

In order to be able to compare our results with those of
other approaches [8, 9, 22] we also performed an analysis of
JUnit 3.8.23 the results of which we chose to present here.

The analyzed version consists of 93 Java classes (including
test and example files). Our pattern catalog contains 8 GoF
patterns and 12 (auxiliary) subpatterns.

Table 1 shows our analysis results. For each pattern, col-
umn ”# Cand.” contains the number of pattern candidates
found by the static analysis, the column ”# TP” lists the
number of true positives (TP) for each pattern, while col-
umn ”Rating” shows the lowest and the highest rating that
the pattern candidates received.

We detected 1 candidate each for Composite and Deco-
rator, 5 Template Method candidates, 17 Command candi-
dates, and 10 Observer candidates.

The Composite candidate is a true positive that was doc-
umented by JUnit’s designers Gamma and Beck [2]. It was
also detected by other approaches [8, 4, 22, 9].

The Decorator candidate was also detected by those other
approaches. It is not explicitly documented but the names of
the participating classes (Test and TestDecorator) and their
implementation reveal that the candidate is a true positive.

Since the structure of the Template Method pattern is
rather simple, we could confirm the candidates to be true
positives by manual inspection. The template method de-
scribed by Gamma and Beck [6] was not detected because
the final implementation deviates heavily from the actual
Template Method pattern.

Due to their complex structure the Command and Ob-
server candidates were harder to verify by manual inspec-
tion. We used the dynamic analysis to further analyze these
patterns. The ”Dynamic Analysis” column shows the num-
ber of accepted and rejected candidates respectively.

We found 17 candidates for Command pattern implemen-
tations with varying ratings. The highest rated candidate
with 74 % had indeed a structure that was very similar to

3www.junit.org

Pattern # Cand. # TP Rating Dynamic Analysis Precision
lowest highest accepted rejected excl. dyn. incl. dyn.

Composite 1 1 83 % 83 % – – 100 % –
Decorator 1 1 91 % 91 % – – 100 % –
Template Method 5 5 100 % 100 % – – 100 % –
Command 17 0 47 % 74 % 0 17 0 % 100 %
Observer 10 1 38 % 81 % 1 9 10 % 100 %

Table 1: Analysis results

the Command pattern. Its behavior however did not match
the expected pattern, so our dynamic analysis rejected it
as a false positive. The other candidates were equally re-
jected. Our manual inspection confirmed the Command pat-
tern candidates to be false positives.

The ten Observer candidates, that were detected, received
ratings between 38 % and 81 %. All candidates share cer-
tain similarities with the Observer pattern, but our manual
inspection revealed that most of them are false positives.
The lower rated candidates implement a to-one-reference
between the alleged subject and the observer instead of the
required to-many-reference. The dynamic analysis accepted
only the candidate with the highest rating as an actual Ob-
server instance. This complies with our manual inspection.

Contrary to the findings reported by Tsantalis et al. [22],
we could not find instances of the State / Strategy pattern
in JUnit. Other analyses support this result [8, 9].

For each listed pattern in Table 1 we also determined the
achieved precision. Here, we distinguish the precision of the
purely static analysis, excluding the results of the dynamic
analysis (column ”excl. dyn.”), and the precision achieved by
combining the static and dynamic analysis results (column
”incl. dyn.”). Since the dynamic analysis rejects pattern can-
didates that do violate the behavioral patterns, the number
of false positives is significantly reduced. In this case, we
reach an overall precision of 100 % for the JUnit example.
However, we still have to apply our dynamic analysis ap-
proach to bigger software systems to yield statistically more
relevant results.

The runtime of the static analysis heavily depends on the
number of specified patterns and, of course, on the size of
the analyzed system. The analysis of JUnit took 4 seconds
for the parsing of the code and 14 seconds for the static
pattern detection. The dynamic analysis for a trace with
700 method calls took less than one second. These results
were obtained on a Core 2 Duo P8600 CPU with 2.4 GHz
and 4 GBytes of RAM.

4. CONCLUSIONS AND FUTURE WORK
In this report we presented our reverse engineering ap-

proach and the corresponding tool Reclipse which has been
under development in our research group since 1999. The
major advantages compared to other approaches are the
combination of static and dynamic analysis for the detection
of (design) patterns in the source code of a software system
as well as its flexible, yet formal way of structural and be-
havioral pattern specification, that enables the re-engineer
to extend and adapt the specifications.

Furthermore, the approach allows to specify several struc-
tural variants of a pattern at once by means of additional
elements which are likewise used to automatically rate de-

tected pattern candidates.
We presented some evaluation results showing that our

approach and its implementation are mature and efficient
enough to be applied to real systems. The large number of
candidates that were rejected by the dynamic analysis may
indicate that our structural specifications of the Command
and Observer patterns are too imprecise and hence yield so
many false positives. On the other hand, it illustrates the
usefulness of the dynamic analysis as a means of distinguish-
ing true from false positives.

In the future, we plan to apply the dynamic analysis on
larger software systems than JUnit to yield statistically more
relevant results. Furthermore, we want to facilitate the us-
age of fuzzy values in metric constraints. We also want to
integrate the concept of additional constraints into the be-
havioral patterns and intend to provide better support for
the interpretation of dynamic analysis results.

5. ACKNOWLEDGMENTS
We would like to thank Jörg Niere, Lothar Wendehals and

Marie Christin Platenius for their conceptual work on the
approach and their help in implementing Reclipse.

APPENDIX
A. EXAMPLE SESSION

In this example session we present the Reclipse Tool
Suite by stepping through the reverse engineering process
illustrated in Figure 1. We chose the JUnit 3.8.2 framework
for the analysis since its design is documented by its de-
velopers [2] and several reverse engineering approaches were
already evaluated on the same framework [4, 8, 9, 22].

For the example session we assume that we are re-en-
gineers trying to get familiar with the JUnit framework
by recovering its design. For that purpose structural and
behavioral patterns are specified, a static analysis is per-
formed, and, in cases of unassured pattern candidates, com-
plemented by a dynamic analysis in order to reveal the pat-
tern candidates as actual pattern instances, i.e. true posi-
tives, or as false positives.

A.1 Software Pattern Specification
In order to automatically detect software pattern instances

in source code we have to formally specify the pattern’s
structure and, where reasonable, its behavior. For that pur-
pose Reclipse provides the required editors. The structural
pattern in Figure 2, for example, is specified using the struc-
tural pattern specification editor illustrated in Figure 4. The
behavioral pattern in Figure 3 is created with another editor.

We described the structural and behavioral Observer pat-
terns in Sections 2.1 and 2.2.

Figure 4: Observer structural pattern specification in Reclipse

Figure 5: Delegation structural subpattern Figure 6: MultiReference structural subpattern

As shown in Figures 2 and 4 the structural Observer pat-
tern specification is based on other patterns like Delegation
(Figure 5) and MultiReference (Figure 6). Such common,
auxiliary subpatterns can be re-used to specify other, more
complex patterns that also require the presence of a delega-
tion or multi-reference implementation. In this example we
use a set of 20 design patterns and subpatterns to perform
a static analysis on the JUnit code.

After finishing the structural and behavioral pattern spe-
cifications, these can be saved as a so-called pattern catalog.
In Figure 4 an excerpt of the structural patterns contained
in our catalog is listed in the Project Explorer view on the
left. Once specified, such a catalog can be re-used by other
re-engineers without having to be familiar with the struc-
tural and behavioral pattern specification languages.

In order to prepare a catalog with structural patterns for

re-use, Reclipse generates pattern detection algorithms for
the specified patterns. The resulting code can then be used
for the static analysis.

In the code generation step, Reclipse translates the pat-
tern specifications into a formal model describing the struc-
ture and behavior of the code to be generated. Based on
this model pattern detection algorithms for the specified pat-
terns, so-called annotation engines, are generated, compiled,
and saved in a jar file. Given an element of the abstract syn-
tax graph, an annotation engine tries to match the specified
pattern starting with the given element and, in case of suc-
cess, creates an annotation object in the abstract syntax
graph in order to tag the matched graph (i.e. a code frag-
ment that complies to the pattern specification) as a pattern
candidate.

The inference algorithm decides where in the abstract syn-

Figure 7: Parsing an Eclipse Java project’s source code

tax graph, that represents the software under analysis, to
apply which of the generated pattern detection algorithms.

In case of behavioral patterns no code has to be generated,
they are just written to an independently usable xml file.

A.2 Static Analysis
Before analyzing source code, the code is parsed to create

the abstract syntax graph representation that is needed to
use our pattern detection technique.

For this example, we created a Java project in Eclipse
and placed the JUnit 3.8.2 code there. This code is parsed
by importing the files into the project’s source folders as
illustrated in Figure 7. The result is a file containing a model
of the code structure.

The parser creates an abstract syntax graph which repre-
sents all Java syntax elements, including the statements in
method bodies, in an object structure based on our meta-
model. Classes, methods, method calls, and statements, for
example, are represented by UMLClass, UMLMethod, Method-
CallNode, and StatementNode objects, respectively. After
parsing, the code’s structure (class and method declarations,
etc.) can be displayed in a UML class diagram as illustrated
in Figure 84.

Using the generated pattern detection code and the ab-
stract syntax graph, we ran a structural analysis. The re-
sults, i.e. all created annotations, are displayed in a hierar-
chical list (cf. Figure 9). Here the roles that are played by

4In this case the figure also contains annotations that depict
detected pattern candidates. These are only available after
static analysis.

the annotated elements can be seen. For example, the se-
lected Observer annotation rated with 80.83 % is created by
annotating the class TestListener in the role observer and
the class TestResult in the role subject (cf. Figures 8 and
9). In addition the matched subpatterns used to create the
Observer annotation are displayed in the view (cf. Figure 9).
These are represented by other annotations, namely Delega-
tion, MultiReference and several OverridingMethod annota-
tions.

The Observer annotation’s rating of 80.83 % means that
most of the weighted constraints specified in the structural
Observer pattern specification and its subpatterns are satis-
fied by the detected pattern implementation. Thus, assum-
ing our pattern specification is correct, we can be confident
that the detected pattern implementation is actually an in-
stance of the Observer pattern.

When going through the pattern detection results, it can
be helpful to see the context of a detected pattern (e.g.
neighboring classes) so that the overall design of the system
under analysis can be reproduced stepwise. For this purpose
we also display user-selected annotations in class diagrams
representing the source code. In Figure 8, for example, two
Observer annotations depict code fragments that comply to
the structural Observer pattern specification. The annota-
tion in the middle of the figure represents the already men-
tioned Observer instance where the class TestListener plays
the observer role while TestResult takes the subject role.
This is the same annotation that is selected in the annota-
tions view in Figure 9. While the annotations view displays
all annotations, the reverse engineer can filter certain anno-

Figure 8: Structural analysis results – detected Observer illustrated in a class diagram

Figure 9: Structural analysis results – annotations view

Figure 10: Structural analysis results – a detected Observer with its matching

tation types in the class diagrams so that it is not cluttered
with irrelevant subpattern annotations.

The Observer pattern instance in Figures 8 and 9 is rated
with 80.83 % which means that some of the specified con-
straints are not satisfied. If the rating of any matched pat-
tern is less than 100 % the reverse engineer might want to
know which of the specified constraints are not satisfied by
the pattern candidate. For this reason the candidate can
be inspected in three additional views which can be seen on
the right in Figure 10. Here all satisfied and unsatisfied con-
straints as well as the concrete attribute and rating values
are displayed.

The lower right view shows the pattern specification en-
riched with information about constraint satisfaction. Each
node and expression counts as constraint. All unsatisfied
constraints are marked gray. For example, none of the classes
playing the subject or observer role are abstract. Thus,
the additional attribute constraints of the nodes subject-

Class and observerClass in the pattern specification view
are grayed out.

The view on the right in the middle in Figure 10 dis-
plays the abstract syntax graph using an extended UML
object diagram notation. Here all elements representing the
pattern candidate are shown. Note that the object names,
which represent pattern roles, and their position correspond
to those in the pattern specification so that a reverse en-
gineer can easily relate the pattern roles to the matched
elements. The concrete names and values of the matched
elements are displayed using object attributes. In order to

keep the view simple, we only display the nodes and at-
tributes that are referred to in the corresponding structural
pattern specification. In addition we also illustrate the name
attributes, if available, so that one can relate the nodes in the
abstract syntax graph view to concrete code fragments, like
classes, methods and parameters. In Figure 10 you can see
that the abstract attributes of both matched classes have
the value false, i.e. the classes are not abstract. Further-
more, you can see the subpatterns’ rating values. Both, the
MultiReference and the Delegation annotations are com-
pletely matched (all constraints are satisfied) and thus are
rated with 100 %. In case of the set node you can see that
there are 4 instances of the OverridingMethod annotation.

The third view in the upper right corner of Figure 10 il-
lustrates the matched pattern instance as a class diagram.
Again, this diagram only contains classes, methods, attri-
butes, and annotations that correspond to the pattern candi-
date currently displayed. Unmatched elements are omitted
in this view. Thus, this view is usually an excerpt of the class
diagram representing the parsed code of the system under
analysis which is displayed in the middle of Figure 10. The
class diagram view closes the semantic gap between the pat-
tern specification and the matched pattern which are based
on abstract syntax and the analyzed system displayed in
concrete syntax as a class diagram.

Using these three additional views, a reverse engineer can
view the matched patterns and corresponding subpatterns.
By inspecting the unsatisfied constraints, he can find out
why a pattern was not completely matched and decide if

Figure 12: Tracer execution

Figure 13: Dynamic analysis

Figure 11: Tracer configuration

he is facing a new pattern implementation variant not suf-
ficiently covered by the pattern catalog, whether a deviant
pattern implementation was found, or whether there is a
false positive. If necessary the reverse engineer can adapt
his pattern specifications according to his insight and re-
peat the static analysis. This way, our pattern candidate
rating and the inspection possibilities increase the traceabil-
ity and flexibility of our approach so that, by adaption or
extension of pattern specifications, new pattern variants can
be detected.

A.3 Dynamic Analysis
Another way to check the reliability of a pattern candi-

date detected in the static analysis is to perform a behav-
ioral analysis by executing the source code, tracing the an-
notated methods corresponding to the candidate, and com-
paring their runtime behavior with the previously specified
behavioral patterns. Obviously, this additional analysis step
is only applicable for patterns that exhibit a distinct observ-
able behavior, e.g. the patterns Observer, State, Strategy, or
Chain of Responsibility [7].

In this example, we specified and analyzed the runtime
behavior of the Observer candidate introduced in Section
A.2.

The expected runtime behavior of an Observer candidate
is specified with a behavioral pattern based on UML 2.0 se-
quence diagrams. It is explained in Section 2.2 and depicted
in Figure 3.

We implemented a tracer that can be executed using a
special run configuration in Eclipse where the pattern can-
didates, that are to be traced, and the main class of the
analyzed system can be chosen along with some other pa-
rameters (see Figure 11). The methods to be traced are au-
tomatically determined based on the static analysis results
and the behavioral pattern specifications. The software is
started and the reverse engineer can either interact with it
for a while, or a test suite for the system can be executed
to automatically trigger the desired behavior. In the exam-
ple session we executed a sample test suite that is included
with JUnit. During system execution the tracer monitors

and displays the executed methods (see Figure 12).
After execution has terminated the collected traces are

analyzed. Each trace belongs to a given pattern candidate
and starts with a so-called trigger method call, i.e. a method
call that was specified at the beginning of the corresponding
behavioral pattern.

There are three possible conclusions for each trace: A
Trace can completely comply to the specification and will be
accepted, it can violate the behavioral pattern and will be
rejected, or it can be incomplete (i.e. the behavioral pattern
is not violated, but some method executions are still missing,
possibly due to early program termination) and thus the
trace would be neither accepted nor rejected (displayed as
not accepted).

The results of a trace for the exemplary Observer can-
didate are displayed in Figure 13. The traced method call
sequence is displayed at the bottom of the window as a se-
quence diagram. The behavioral analysis results are dis-
played on the right where the number of accepted and re-
jected traces as well as those not accepted can be seen.

Based on this additional information a reverse engineer
can confirm or reject a pattern candidate. In our example,
the Observer pattern candidate has 1 accepted trace, no re-
jected traces and 6 traces that were not accepted. Hence the
candidate is likely to be an actual pattern implementation.

B. REFERENCES
[1] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and

N. Jussien. Instantiating and Detecting Design
Patterns: Putting Bits and Pieces Together. In
Proceedings of the 16th IEEE Conference on
Automated Software Engineering (ASE’01), pages
166–173, San Diego, USA, 2001. IEEE Computer
Society Press.

[2] K. Beck and E. Gamma. JUnit A Cook’s Tour. Java
Report, 4(7), 1999.

[3] W. Brown, R. Malveau, H. McCormick, and
T. Mombray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and
Sons, Inc., New York, NY, USA, 1998.

[4] J. Dong, Y. Sun, and Y. Zhao. Design Pattern
Detection by Template Matching. In Proceedings of
the 23rd Annual ACM Symposium on Applied
Computing (SAC’08), pages 765–769, Fortaleza,
Brazil, 2008. ACM Press.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[6] E. Gamma and K. Beck. Contributing to Eclipse -
Principles, Patterns, and Plug-Ins. The Eclipse Series.
Addison-Wesley, Boston, MA, USA, 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[8] Y.-G. Guéhéneuc and G. Antoniol. DeMIMA: A
Multilayered Approach for Design Pattern
Identification. IEEE Transactions on Software
Engineering, 34(5):667–684, 2008.

[9] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi.
Fingerprinting Design Patterns. In Proceedings of the
11th Working Conference on Reverse Engineering
(WCRE’04), pages 172–181, Delft, The Netherlands,
2004. IEEE Computer Society.

[10] S. Hayashi, J. Katada, R. Sakamoto, T. Kobayashi,
and M. Saeki. Design Pattern Detection by Using
Meta Patterns. IEICE - Tranactions on Information
Systems, E91-D(4):933–944, 2008.

[11] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe.
Automatic Design Pattern Detection. In Proceedings
of the 11th International Workshop on Program
Comprehension (IWPC’03), pages 94–103, Portland,
USA, 2003. IEEE Computer Society Press.

[12] J. Kerievsky. Refactoring to Patterns. Addison-Wesley,
2004.

[13] M. Meyer. Pattern-based Reengineering of Software
Systems. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE’06),
pages 305–306, Benevento, Italy, 2006. IEEE
Computer Society.

[14] M. Meyer. Musterbasiertes Re-Engineering von
Softwaresystemen (Pattern-based Reengineering of
Software Systems). PhD thesis, University of
Paderborn, 2009. In German.

[15] J. Niere. Inkrementelle Entwurfsmustererkennung
(Incremental Design Pattern Detection). PhD thesis,
University of Paderborn, Germany, 2004. In German.

[16] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), pages
338–348, Orlando, USA, 2002. ACM Press.

[17] J. Niere, J. P. Wadsack, and L. Wendehals. Handling
Large Search Space in Pattern-Based Reverse
Engineering. In Proceedings of the 11th International
Workshop on Program Comprehension (IWPC’03),
pages 274–279, Portland, USA, 2003. IEEE Computer
Society Press.

[18] N. Pettersson and W. Löwe. A Non-conservative
Approach to Software Pattern Detection. In 15th

IEEE International Conference on Program
Comprehension (ICPC’07), pages 189–198,Banff,

Canada, 2007. IEEE Computer Society.

[19] N. Shi and R. A. Olsson. Reverse Engineering of
Design Patterns from Java Source Code. In
Proceedings of the 21st International Conference on
Automated Software Engineering (ASE’06), pages
123–134, Tokyo, Japan, 2006. IEEE Computer Society.

[20] I. Sommerville. Software Engineering. Addison Wesley,
7th edition, 2004.

[21] D. Travkin and I. Stürmer. Tool Supported Quality
Assessment and Improvement in MATLAB Simulink
and Stateflow Models. In Postproceedings of the 4th

Workshop on Object-Oriented Modeling of Embedded
Real-Time Systems (OMER 4), Paderborn, Germany,
2008.

[22] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design Pattern Detection Using
Similarity Scoring. IEEE Transactions on Software
Engineering, 32(11):896–909, 2006.

[23] M. von Detten and M. C. Platenius. Improving
Dynamic Design Pattern Detection in Reclipse with
Set Objects. In Proceedings of the 7th International
Fujaba Days, pages 15–19, Eindhoven, The
Netherlands, 2009.

[24] L. Wendehals. Specifying Patterns for Dynamic
Pattern Instance Recognition with UML 2.0 Sequence
Diagrams. In Proc. of the 6th Workshop on
Software-Reengineering (WSR’04), volume 24 of
Softwaretechnik-Trends, pages 63–64, Bad Honnef,
Germany, 2004.

[25] L. Wendehals. Struktur- und verhaltensbasierte
Entwurfsmustererkennung (Structural and Behavioral
Design Pattern Detection). PhD thesis, University of
Paderborn, 2007. In German.

[26] L. Wendehals and A. Orso. Recognizing Behavioral
Patterns at Runtime using Finite Automata. In
Proceedings of the 4th ICSE Workshop on Dynamic
Analysis (WODA’06), pages 33–40, Shanghai, China,
2006. ACM Press.

