
Proceedings of
6th International Fujaba Days

Uwe Aßmann, Jendrik Johannes,
Albert Zündorf (Eds.)

Institut für Software- und Multimediatechnik

TUD-FI08-09 September 2008

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

Uwe Aßmann, Jendrik Johannes, Albert Zündorf (Eds.)

6th International Fujaba Days

Technische Universität Dresden, Germany
September 18-19, 2008

Proceedings

Volume Editors

Prof. Dr. Uwe Aßmann
Technische Universität Dresden
Departement of Computer Science
Institute for Software and Multimedia Technologie
Software Technologie Group
Nöthnitzer Str. 46, 01187 Dresden, Germany
uwe.assmann@tu-dresden.de

DIpl. Medieninf. Jendrik Johannes
Technische Universität Dresden
Departement of Computer Science
Institute for Software and Multimedia Technologie
Software Technologie Group
Nöthnitzer Str. 46, 01187 Dresden, Germany
jendrik.johannes@tu-dresden.de

Prof. Dr. Albert Zündorf
University of Kassel
Chair of Research Group Software Engineering
Department of Computer Science and Electrical Engineering
Wilhelmshöher Allee 73, 34121 Kassel, Germany
zuendorf@uni-kassel.de

Program Committee

Program Committee Chairs

Uwe Aßmann (TU Dresden, Germany)
Albert Zündorf (University of Kassel, Germany)

Program Commitee Members

Uwe Aßmann (TU Dresden, Germany)
Jürgen Börstler (University of Umea, Sweden)
Gregor Engels (University of Paderborn, Germany)
Holger Giese (University of Paderborn, Germany)
Pieter van Gorp (University of Antwerp, Belgium)
Jens Jahnke (University of Victoria, Canada)
Mark Minas (University of the Federal Armed Forces, Germany)
Manfred Nagl (RWTH Aachen, Germany)
Andy Schürr (TU Darrmstadt, Germany)
Wilhelm Schäfer (University of Paderborn, Germany)
Gerd Wagner (University of Cottbus, Germany)
Bernhard Westfechtel (University of Bayreuth, Germany)
Albert Zündorf (University of Kassel, Germany)

Editor’s preface

For more than ten years, Fujaba attracts a growing community of researchers
in the field of software modelling. As its successful predecessors, the 6th
International Fujaba Days offer a premises for Fujaba developers and users
from all over the world to exchange experiences and drive Fujaba’s future
development.

The Software Technology Group of TU Dresden is active in the Fujaba
community since 2005, sharing interests in areas such as UML and MOF
modelling, OCL, and TGGs. Therefore, the group is proud to host the Fujaba
Days 2008.

13 papers were received and accepted for the workshop after a careful
reviewing process by the program committee. The papers are organized into
four sections: Applications, Transforming and Debugging, Tool Integration, and
Components.

The variety of topics shows that there is a growing interest in using Fujaba in
new areas of software modelling and in conjunction with other modelling tools
and environments. We are convinced that this years Fujaba Days will give the
opportunity to drive these ideas forward and enable new fruitful collaborations
among the community.

The PC chairs would like to thank the PC members for their careful work in
reviewing the papers to ensure the quality of the Fujaba Days.

Uwe Aßmann and Jendrik Johannes
Organizers

Table of Contents

Applications
Simple Robotics with Fujaba ..1

Ruben Jubeh and Albert Zuendorf (University of Kassel)
Experiences with Modeling in the Large in Fujaba..5

Bernhard Westfechtel, Thomas Buchmann and Alexander Dotor
(University of Bayreuth)

Fujaba goes Web 2.0 ...10
Nina Aschenbrenner, Jörn Dreyer, Ruben Jubeh and Albert Zuendorf
(University of Kassel)

Transforming and Debugging
Towards a Hybrid Transformation Language:

Implicit and Explicit Rule Scheduling in Story Diagrams15
Bart Meyers and Pieter Van Gorp. (University of Antwerp)

Debugging Triple Graph Grammar-based Model Transformations19
Mirko Seifert and Stefan Katscher (Technische Universität Dresden)

Model Level Debugging with Fujaba...23
Leif Geiger (University of Kassel)

Tool Integration
Fujaba’s Future in the MDA Jungle –

Fully Integrating Fujaba and the Eclipse Modeling Framework?28
Basil Becker, Holger Giese, Stephan Hildebrandt and Andreas Seibel
(Hasso Plattner Institut, Potsdam)

Letting EMF Tools Talk to Fujaba through Adapters...32
Jendrik Johannes (Technische Universität Dresden)

The Fujaba Automotive Tool Suite ...36
Kahtan Alhawash, Toni Ceylan, Tobias Eckardt, Masud Fazal-Baqaie,
Joel Greenyer, Christian Heinzemann, Stefan Henkler, Renate Ristov,
Dietrich Travkin and Coni Yalcin (University of Paderborn)

Hybrid Model Checking with the FUJABA Real-Time Tool Suite.......................................40
Martin Hirsch, Stefan Henkler and Claudia Priesterjahn (University of Paderborn)

Components
Component Story Diagrams in Fujaba4Eclipse ..44

Jörg Holtmann and Matthias Tichy (University of Paderborn)
Towards Software Product Line Testing using Story Driven Modeling48

Sebastian Oster, Andy Schürr and Ingo Weisemöller (University of Darmstadt)
Integration of Legacy Components in MechatronicUML Architectures52

Christian Brenner, Stefan Henkler, Martin Hirsch, Claudia Priesterjahn
(University of Paderborn) and Holger Giese (Hasso Plattner Institut, Potsdam)

Simple Robotics with Fujaba

Ruben Jubeh, Albert Zündorf
University of Kassel, Software Engineering,

Department of Computer Science and Electrical Engineering
Wilhelmshöher Allee 73
34121 Kassel, Germany

[ruben | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

ABSTRACT
Fujaba is not only used for professional software develop-
ment but also for teaching software development. We have
used Fujaba successfully in our education efforts for a long
time. In order to give students a better experience and
feedback, we are preparing programming exercises with a
simple robotic system. We are using the Lego Minstorms
NXT robotics kit for that purpose. It consists of a micro-
controller, motors, several sensors and of course, Lego parts
to build different kinds of robots. The micro-controller can
be either remote controlled by a PC or run deployed soft-
ware. This paper describes how we use Fujaba to develop a
software which controls a simple forklift robot, which solves
the Towers of Hanoi game.

1. INTRODUCTION
Fujaba is used for teaching software development success-
fully at Kassel University. In cooperation with the Gaußschule
Braunschweig we developed a robot programming course
with the predecessor product from Lego, the Mindstorms
Robotics Invention System, which was released in 1998. Al-
though it was possible to control a Lego forklift robot with
Fujaba, the project faced lots of difficulties and obstacles.
For example, the communication between the host PC and
the mindstorms microcontroller was done by a infrared link,
which was slow and unreliable. Furthermore, it was diffi-
cult to have more than one system in a room. More details
can be found in [2]. Now we tried to use the newer Lego
Mindstorms NXT robotics system [4], released in 2006. It
provides improved hardware: a full-featured 32bit micro-
processor, step counter motors, graphical LCD display and
USB and bluetooth connectivity. The heart of the system,
the so called NXT brick containing the micro-controller, can
be either remote controlled by a PC or run deployed soft-
ware. Four sensors and three motors can be connected to
the brick.

Figure 1: Forklift robot

This paper describes how we use Fujaba to develop a soft-
ware which controls a simple forklift robot. Section 2 de-
scribes how we designed our forklift robot.

Figure 2: solve()-Method of Hanoi

At the practical side, our forklift robot should solve the Tow-
ers of Hanoi game. This is a well documented mathematical
game or puzzle which consists of three rods, and a number

1

of disks of different sizes which can slide onto any rod. The
puzzle starts with the disks stacked in order of size on one
rod, the smallest at the top, thus making a conical shape.
The objective of the puzzle is to move the entire stack step
by step to another rod. Only one disk may be moved at a
time. Each move consists of taking the top-most disk from
one of the rods and sliding it onto another rod, on top of
the other disks that may already be present on that rod.
No disk may be placed on top of a smaller disk. In our ap-
proach, we replaced the disks by wooden blocks and don’t
use any rods. The blocks just get piled directly onto each
other. The recursive software solution is very simple, see
Figure 2. The solve()-method gets called recursively, trans-
fer() simply moves the top disc from the source to the target
stack. [1] discusses this recursive solution in detail. To carry
that software solution into the real world, each time a disc
is moved, the robot should drive to that certain block, grab
it, drive to the destination and discard the block.

To keep the control software separately from the concrete
problem, we decided to implement it as software library.
Figure 3 shows the class diagram of our FujabaNxtLib, which
is a Fujaba project. The central class is FNXT which repre-
sents the NXT Brick. The Motor class and the several kinds
of Sensor classes are self explanatory. Each sensor class has
a corresponding listener interface (not shown). The class
FNavigator controls the two driving motors and provides
methods for moving and turning the robot.

Figure 3: Class Diagram of the Fujaba NXT Library

2. THE ROBOT HARDWARE
It turned out that building the forklift itself was quite dif-
ficult. Our early Lego models did not turn properly, were

unstable or had a bad center of gravity. Figure 1 shows our
current forklift robot. We decided to use two chains instead
of wheels so the robot rotates within its footprint. This way,
the software may easily predict the turning, which is neces-
sary for exact navigation. The third motor actuates the fork
via a long chain and cord. The NXT lego motors contain
a step counter: It is possible to turn the motor just a cer-
tain amount of rotation, with the accuracy of one degree.
So, we don’t need a sensor to detect the upper bound for
lifting the fork, we use a fixed constant value and synchro-
nize with the ground. Touching the ground resets the step
counter. The robot uses only two sensors: a light sensor is
mounted just above the ground and can detect changes in
the ground contrast. This can be used mark certain places
for the robot. The sensor is mounted in the front center of
the robot. It can be used to follow the right edge of a black
tape line on the ground: When detecting black, the robot
turns lightly right while driving forward, otherwise left. The
second sensor is mounted on the fork and detects when the
fork touches the ground or when it touches an object while
driving forward. The trigger mechanism at the fork passes
vertical and horizontal force to a single touch sensor. Figure
4 shows the fork sensor mechanism in detail.

Figure 4: Fork sensor mechanics

3. SOFTWARE ARCHITECTURE

Figure 5: Software architecture layers of the Fu-
jaba/NXT system

We are using the LeJOS open source java firmware (see [5]),
which includes a Java virtual machine and a Java Micro-
Edition-like API. The original Lego firmware has to be re-
placed by LeJOS. Additionally, LeJOS provides a remote
control API called ICommand for PCs/Java2SE. We decided
to use the latter, and control the NXT remotely over the
bluetooth connection with software running on a PC host.

2

The sensor software components from Lego don’t support
any listener callbacks on changes directly, it is just possible
to ask the sensors for their current value. So, we have to
constantly poll all sensors and create events when the sen-
sor values change. This is necessary because the controlling
software, which runs on the host, needs to react quickly on
events, for example by stopping a motor. Polling the sensors
takes only 10-50ms each time, so the polling is performed
periodically at a fixed interval. Fortunately, this does not
interfere with any control commands. These is a radical
improvement over the old Mindstorms system, which had a
poll latency of 100-200ms per sensor.

We are planning to replace the poll mechanism by a event
notifier running directly on the NXT’s micro-controller, which
call their listeners by active communication from the brick
to the host over the bluetooth connection.

Figure 5 shows the software layers of our architecture. On
top is the concrete application model. It uses the F*-API,
so classes like FNXT, FNavigator, FMotor, FSensor etc.
Each F*-Object has a associated adapter instance, which
either delegates the calls to the ICommand API (Part of
the LeJOS package) or simulates the behavior. This is used
for testing purposes. The ICommand API uses a bluetooth
connection and sends simple byte-array commands to the
LeJOS firmware on the NXT brick. There the commands
are interpreted and mapped to hardware resources.

4. SOFTWARE USAGE AND MODELING
The easiest way to use the Fujaba NXT Library is to start it
in debug mode and use eDOBS to create the initial FXNT
instance. After that, the methods on the individual motor
and sensor instances can be called interactively. Figure 6
shows Eclipse/eDOBS running the library. On the left, you
can see the FNavigator methods. A call to travel() will make
the robot drive immediately and block until it finishes.

Figure 6: Eclipse/eDOBS running the Fujaba NXT
Library

To model the application behavior, both Story or State Dia-
grams are suitable. To simplify matters, we currently use
only story diagrams. Figure 7 shows an example. The
method findInitialPlace() does not require any control flow,

thus it is modeled as just one story activity. However, the
single activity itself contains multiple steps and concurrency:
some methods (forward(), backward()) are asynchronous,
that means the method call immediately returns, but the
robot acts until a contrary method (stop() in that case)
is called. After calling a asynchronous method, we use a
waitFor-Some-Event-method, in this case waitForPressed()/
waitForReleased() on the touch sensor instance. This is a
simplification for easy modeling: instead of implementing a
listener and being forced to handle the event in some other
place of the model, this method blocks until an event of the
desired type occurs. This makes reactive programming a bit
easier, but semantically means that the single activity is di-
vided into two timing states: the robot drives forward until
the sensor hits something, then backwards until the robot is
free again.

Figure 7: Example of a Hanoi method for finding
the blocks

5. PUTTING IT ALL TOGETHER: SOLV-
ING HANOI

Figure 8 shows the class diagram of our Hanoi robot model.
It consists of three Fujaba projects: The FujabaNxtLib pro-
vides the FNXT, ForkLiftRobot and Fork, thus the abstract
modeling to control the hardware. The classes Place, Disc,
Hanoi and Solver come from a abstract Hanoi project which
can be run or debugged independently from any hardware.
The HanoiRobot project, consisting of just HanoiProblem
and RobotSolver, depends on the both projects and con-
nects these. We just need to override Solver.transfer() and
hook in concrete robot commands to move blocks around
there.

Our modeling of the robot-enabled transfer() method is just
a reference, students will be given only the FujabaNxtLib
Library and then should model their own solution.

6. SUMMARY AND FUTURE WORK
We used the new Lego Mindstorms robotics system to imple-
ment a forklift robot which can solve the Towers of Hanoi
game. The application model was implemented using Fu-
jaba. It is easy to implement the robot control software
using standard Fujaba modeling techniques, which makes it
suitable for education. By using Fujaba project dependen-
cies, we were able to develop a Library, so modeling control

3

Figure 8: Class diagram of Hanoi, Robot and NXT

software for more applications than just Hanoi is easy. Tech-
nically, there are many advantages over the old system: the
bluetooth communication is fast and reliable with low la-
tency. On the hardware side, the improved motors with step
counters make programming easy as we don’t need sensors
to detect the motor state anymore. This, and the sensi-
tive fork mechanic free up sensor ports, so the robot can be
easily extended with more functionality. We were surprised
that the navigation of the robot is quite exact, turning and
moving the robot has just a minimal deviation.

We plan to model the forklift as 3D model, so we can sim-
ulate it’s behavior in a physical environment in software.
This should reduce the time for developing and testing soft-
ware. Due the adapter layer in our software architecture,
application models should be able to run in a simulation
environment without the need for any changes.

Furthermore, we plan to adapt the Fujaba code generation
[3]. This requires a set of templates which consider the lim-
ited capabilities of the LeJOS VM, and a runtime library for
sensor event handling.

7. REFERENCES
[1] I. Diethelm, L. Geiger, A. Zündorf. UML im Unterricht:

Systematische objektorientierte Problemlösung mit
Hilfe von Szenarien am Beispiel der Türme von Hanoi.
Erster Workshop der GI-Fachgruppe Didaktik der
Informatik, Bommerholz, Germany, October 2002.

[2] I. Diethelm, L. Geiger, A. Zündorf. Fujaba goes
Mindstorms. Objektorientierte Modellierung zum
Anfassen; in Informatik und Schule (INFOS) 2003,
München, Germany, September 2003.

[3] L. Geiger, C. Schneider, C. Record. Template- and
modelbased code generation for MDA-Tools. 3rd
International Fujaba Days 2005, Paderborn, Germany,
September 2005.

[4] LeJOS, Lego Mindstorms NXT.
http://mindstorms.lego.com/, 2008.

[5] LeJOS, Java for Lego Mindstorms.
http://lejos.sourceforge.net/, 2008.

4

Experiences with Modeling in the Large in Fujaba

Thomas Buchmann
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

thomas.buchmann@uni-
bayreuth.de

Alexander Dotor
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

alexander.dotor@uni-
bayreuth.de

Bernhard Westfechtel
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

bernhard.westfechtel@uni-
bayreuth.de

ABSTRACT
Model-driven software development intends to reduce devel-
opment effort by generating code from high-level models.
However, models for non-trivial problems are still large and
require sophisticated support for modeling in the large. Ex-
periences from a recently launched project dedicated to a
model-driven modular SCM system confirm this claim. This
paper investigates modeling in the large support provided by
the object-oriented CASE tool Fujaba and discusses poten-
tial extensions of Fujaba based on UML package diagrams.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software architectures—
languages; D.2.11 [Software Engineering]: Management—
software configuration management

Keywords
version control, packages, imports

1. INTRODUCTION
Software configuration management (SCM) is the disci-

pline of controlling the evolution of large and complex soft-
ware systems. A wide variety of SCM tools and systems has
been implemented, ranging from small tools such as RCS
[10] over medium-sized systems such as CVS [11] or Subver-
sion [4] to large-scale industrial systems such as ClearCase
[12].

Version control is a core function of any SCM system.
Version control is based on version models, many of which
have been implemented in research prototypes, open source
products, and commercial systems [5]. While there are con-
siderable differences among these version models, it is also
true that similar concepts such as revisions, variants, state-
and change-based versioning appear over and over again.
Unfortunately, version models are usually implicitly con-
tained in implemented systems.

Thus, the SCM domain is characterized by a large num-
ber of systems with more or less similar features incorporat-
ing hard-wired version models which have been implemented
with considerable effort. This observation has motivated us
to set up a project dedicated to a model-driven modular SCM
system (abbreviated as MOD2-SCM [2]):

First, version models are defined explicitly rather than
implicitly in the code. This makes it easier to communicate
and reason about version models. Second, modeling com-
prises both structure and behavior. Furthermore, behavioral
models are executable. Third, productivity is improved by

replacing programming with the creation of executable mod-
els. Fourth, version models are not created from scratch.
Rather, reuse is performed on the modeling level by follow-
ing a product line approach [3]. Finally, the product line is
based on a model library which is composed of reusable and
loosely coupled architectural units.

In MOD2-SCM, we decided to use the object-oriented
modeling language and environment Fujaba [15] because it
supports generation of executable (Java) code from a UML
model. To date, only a few approaches have been dedicated
to model-driven development of versioning systems [14, 13,
7]. However, all of these approaches are confined to struc-
tural models inasmuch as the behavior is hard-coded into
the respective system.

In this paper, we investigate modeling in the large with
and beyond Fujaba. As to be demonstrated, the model cur-
rently being developed in the MOD2-SCM project is fairly
large. Furthermore, the success of the project heavily de-
pends on a carefully designed model architecture with loosely
coupled architectural units [2]: The product line should sup-
port a set of variation points which may be combined in an
orthogonal way as far as possible. To this end, the coupling
between architectural units has to be reduced to a minimum.

2. MODELING IN THE LARGE
In object-oriented modeling, modeling in the large is an

area which has not attracted sufficient attention so far. In
the following, we will first discuss support for modeling in
the large as far as it is provided in the current version of Fu-
jaba. Subsequently, we will show how external tool support
may be used to complement the functionality of Fujaba by
creating package diagrams from generated Java code. Fi-
nally, we will discuss package diagrams in UML 2.0.

2.1 Support in Fujaba 5.1
On a coarse-grained level, Fujaba models are organized

into projects. A project stores a model in a single file. A
model stored as a project may be self-contained, or it may
reference models stored in external projects. These refer-
ences imply dependencies between projects. In this way,
both physical decomposition and model reuse are supported.

Within a project, model elements are created in diagrams.
Class diagrams serve as the primary means for structuring.
When a class is created, it may be assigned to a package in
the dialog window for class editing. Fujaba maintains a tree
view of diagrams and model elements, but packages can be
neither defined nor displayed in the tree view. Furthermore,
Fujaba does not support package diagrams.

5

0..1

0..1

uses

0..n

0..1

«Virtual Path»

has versions

Iterator :) (iteratorOfVersions
String :)Map:context, IProductModelItem:content (addVersion

IProductModelItem :)Map:context, String:vID (retrieveVersion

IVersionSet

«interface»

IVersionSet :) (getVersionSet
Void :)Map:context, IProductModelItem:content (setContent

IProductModelItem :)Map:context (getContent

Void :)String:newID (setVersionID

String :) (getVersionID

AbstractVersion

collapsed

IStorage

«interface»

Figure 1: Excerpt of a Fujaba class diagram

In a class diagram, the owning package of a class is not
displayed. Furthermore, the class diagram itself is not owned
by a package. As a consequence, there is no distinction
between references and declarations of classes, and it is not
obvious from which packages the classes originate.

To some extent, conventions may be used to structure the
model. Such conventions may state e.g. that exactly one
class diagram is introduced for each package, the package
name is used to identify the class diagram, and all external
classes are displayed with collapsed attribute and method
sections. The latter is demonstrated in Figure 1, which
shows an excerpt of the class diagram for maintaining ver-
sion sets (package core.versions, see later). Interface IStorage

was imported from another package.

2.2 Reverse Engineering with eUML
To complement the modeling facilities of Fujaba, we used

the eUML plugin of Eclipse to generate a package diagram
from the Java code created by the Fujaba compiler. The
package diagram for the model in its current state of evolu-
tion is displayed in Figure 2. eUML distinguishes between
different kinds of dependencies, resulting e.g. from imports,
specializations, instantiations, and method calls in the Java
code. The eUML user may configure the kinds of dependen-
cies displayed in the diagram.

While the eUML package diagram is helpful, it still suffers
from several limitations. First, since it is reverse engineered
from the generated Java code, it cannot be used for design-
ing the model architecture up front. Second, the resulting
graph is rather dense since it also includes “secondary” de-
pendencies (e.g., to call a method, the class of a parameter
may have to be imported, as well). Third, the diagram dis-
plays implementation-level dependencies, i.e., dependencies
in the generated code, which may differ from conceptual de-
pendencies.

Let us give an example for the latter: In Figure 1, a ver-
sion set (interface IVersionSet of package core.versions) makes
use of a storage (interface IStorage of package core.storage).
This association is introduced in the package core.versions:
The storage stores a set of versions using deltas, but it is
independent of the way how the version set is organized

on a conceptual level. On a conceptual level, core.versions

depends on core.storage but not vice versa. However, for a
bidirectional association Fujaba generates methods for nav-
igation at both ends, introducing cyclic dependencies in the
generated code1.

2.3 UML 2.0 Package Diagrams
Let us briefly recall the concepts which UML 2.0 offers

for structuring large models [8, 9]: A model may be struc-
tured into hierarchically organized packages. Each model
element is owned by exactly one package. Private elements
are not accessible from other packages, while public elements
are visible. Each package defines a namespace in which the
names of declared model elements have to be unique. Public
model elements from other packages may always be refer-
enced through their full qualified names. A model element
from an enclosing package may be referenced without qual-
ification unless it is hidden by an inner declaration.

Apart from nesting, UML 2.0 introduces the following
relationships between packages: Imports merely serve to
extend the set of those elements which may be referenced
without qualification. UML 2.0 distinguishes between pub-
lic and private imports, which are denoted by the stereo-
types <<import>> and <<access>>, respectively. A private
import makes the imported elements visible only in the im-
porting package, while a public import simultaneously adds
those elements to its exported namespace. Public imports
are transitive; this property does not hold for private im-
ports. Apart from nesting and imports, UML 2.0 offers
package merges, which will not be discussed in this paper.

Figure 3 shows a UML package diagram for the current
MOD2-SCM model. Please note the differences to the eUML
diagram of Figure 2: First, the UML diagram visualizes
nesting of packages. Second, only conceptual relationships
are shown (e.g., core.versions imports core.storage but not vice
versa). Finally, the number of relationships is significantly
reduced due to the transitivity of public imports.

There are fundamental differences between imports in UML
2.0 and imports in modular programming languages such as
Modula-2 and Ada. In these languages, each — separately
compiled — program unit (called module in Modula-2 and
package in Ada) may reference only its own local declara-
tions unless the namespace is extended by an import. De-
pending on the kind of import, imported elements may be
referenced with or without qualification. Furthermore, an
imported element may only be used but not modified. In
contrast, the UML 2.0 standard states ([8], p. 143): “An
element import . . . works by reference, which means that it
is not possible to add features to the element import itself,
but it is possible to modify the referenced element in the
namespace from which it was imported.” For example, an
imported class may be inserted into a class diagram of the
importing package and extended with attributes, methods,
and associations; these extensions apply to the imported
package where the imported class is declared.

Altogether, in UML 2.0 the rules for referencing and mod-
ifying elements are liberal and make it convenient to access
external elements. Unfortunately, these rules may threaten
the modularity of a UML model. In the case of an undisci-
plined modeling process, it is fairly easy to create an archi-

1While we could have used a unidirectional association in
this example, it would be far too restrictive to enforce uni-
directional cross-package associations in general.

6

de
.u

bt
.a

i1
.m

od
pl

.v
er

si
on

ed
_i

te
m

s.
co

m
pl

ex
ite

m
de

.u
bt

.a
i1

.m
od

pl
.v

er
si

on
s.

fla
t

de
.u

bt
.a

i1
.m

od
pl

.c
or

e.
de

lta

de
.u

bt
.a

i1
.m

od
pl

.s
to

ra
ge

.c
om

pl
ex

de
.u

bt
.a

i1
.m

od
pl

.v
er

si
on

s.
cv

s

de
.u

bt
.a

i1
.m

od
pl

.c
on

fig
ur

e.
se

rv
er

de
.u

bt
.a

i1
.m

od
pl

.c
or

e.
ve

rs
io

ns
de

.u
bt

.a
i1

.m
od

pl
.c

or
e.

st
or

ag
e

de
.u

bt
.a

i1
.m

od
pl

.c
or

e.
pr

od
uc

t

de
.u

bt
.a

i1
.m

od
pl

.c
on

fig
ur

e.
fa

ct
or

ie
s

de
.u

bt
.a

i1
.m

od
pl

.v
er

si
on

ed
_i

te
m

s.
si

ng
le

ite
m

de
.u

bt
.a

i1
.m

od
pl

.v
er

si
on

s.
ba

se
de

.u
bt

.a
i1

.m
od

pl
.s

to
ra

ge
.d

el
ta

de
.u

bt
.a

i1
.u

til
.fi

le
Sy

st
em

de
.u

bt
.a

i1
.m

od
pl

.c
or

e.
ve

rs
io

ne
d_

ite
m

s

de
.u

bt
.a

i1
.v

er
si

on
.c

vs
.w

sm
an

ag
er

Figure 2: eUML package diagram extracted from generated Java code

7

product

storage delta

«import»

«import»

core

versions

versioned
items

«import»

«import»

«import» «import» «import»

«import» «import»

versioned items

base

versions

flat cvs complex

storage

delta

«import»

complex
item single item

«import»«import»

factories

«import» «import» «import» «import» «import» «import» «import»

server

«import»

configure

modpl

fileSystem

util

«import»

«import»

«import»

wsmanager

cvs

Figure 3: UML package diagram using nesting and public imports

8

tecture with tightly coupled packages — which would violate
the goals we pursue in the MOD2-SCM project.

In particular, there is no guarantee that a package dia-
gram such as shown in Figure 3 shows the actual depen-
dencies between packages in the architecture. First, it is
possible to reference external elements without imports by
using fully qualified names; the implied dependencies would
not be displayed in a package diagram showing only import
relationships. Second, public imports are transitive. Thus,
when importing some package, all packages of the transi-
tive closure of public imports are visible, as well. A package
diagram with public imports does not tell which of these
packages are actually referenced.

For example, in Figure 3 the package configure.server im-
ports configure.factories and thus may reference all packages
below. If the actual dependencies were so comprehensive,
we would have to be concerned about the modularity of the
system. Figure 2 shows that only a few dependencies em-
anate from the server package. Still, there is one dependency
on the package versions.cvs which appears to be suspicious:
Why should a configurable server depend on a specific ver-
sion model such as the CVS model?

This example demonstrates that the package diagram with
public imports appears to be elegant, but is too imprecise:
There is no way around inspecting all actual dependencies
emanating from a package. To support such analyses, pri-
vate imports would be more useful: As Java imports, private
imports are not transitive, forcing the client to explicitly im-
port all packages on which it depends. Of course, private
imports imply a much denser diagram similar to the one
shown in Figure 2.

3. CONCLUSION
In this paper, we reported on experiences with model-

ing in the large in Fujaba, referring to a recently launched
project for developing a model-driven product line for SCM
systems. Our experiences indicate that reverse engineer-
ing of the model architecture with an external tool is not
sufficient and thus improved support for modeling in the
large in Fujaba itself is urgently needed. We also discussed
UML 2.0 package diagrams as a notation for model archi-
tectures, focusing on package imports (the fairly complex
concept of package merge goes beyond the scope of this pa-
per, see e.g. [6]). Please note that package diagrams are
available in MOFLON [1], which has been built on top of
Fujaba. However, MOFLON currently supports only pub-
lic imports, while our experiences demonstrate that private
imports are needed, as well.

To conclude, we give a few suggestions for extending Fu-
jaba with support for modeling in the large: First, the tree
view should be revised such that it allows to define a package
hierarchy. Second, not only model elements such as classes
and associations, but also class and story diagrams should
be assigned uniquely to one package. Third, a graphical
editor for package diagrams should be offered (supporting
nesting of packages as well as public and private imports).
Fourth, model elements may be referenced only where they
are visible. In addition, we recommend to implement some
restrictions which deviate from the UML 2.0 standard: First,
qualified references should be disallowed to avoid hidden de-
pendencies. Second, it should be prohibited to modify im-
ported elements.

4. REFERENCES
[1] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.

MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In
A. Rensink and J. Warmer, editors, Model Driven
Architecture - Foundations and Applications: Second
European Conference, volume 4066 of LNCS, pages
361–375, Heidelberg, 2006. Springer.

[2] T. Buchmann, A. Dotor, and B. Westfechtel.
MOD2-SCM: Experiences with co-evolving models
when designing a modular SCM system. In
Proceedings of the 1st International Workshop on
Model Co-Evolution and Consistency Management,
Toulouse, France, Oct. 2008.

[3] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, Boston, Massachusetts,
2005.

[4] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version Control with Subversion. O’Reilly &
Associates, Sebastopol, California, 2004.

[5] R. Conradi and B. Westfechtel. Version models for
software configuration management. ACM Computing
Surveys, 30(2):232–282, June 1998.

[6] J. Dingel, Z. Diskin, and A. Zito. Understanding and
improving UML package merge. Software and Systems
Modeling, Dec. 2007. Online First.

[7] J. Kovŝe. Model-Driven Development of Versioning
Systems. PhD thesis, University of Kaiserslautern,
Kaiserslautern, Germany, Aug. 2005.

[8] Object Management Group, Needham, Massachusetts.
OMG Unified Modeling Language (OMG UML),
Infrastructure, V 2.1.2, formal/2007-11-04 edition,
Nov. 2007.

[9] Object Management Group, Needham, Massachusetts.
OMG Unified Modeling Language (OMG UML),
Superstructure, V 2.1.2, formal/2007-11-02 edition,
Nov. 2007.

[10] W. F. Tichy. RCS – A system for version control.
Software: Practice and Experience, 15(7):637–654,
July 1985.

[11] J. Vesperman. Essential CVS. O’Reilly & Associates,
Sebastopol, California, 2006.

[12] B. A. White. Software Configuration Management
Strategies and Rational ClearCase. Object Technology
Series. Addison-Wesley, Reading, Massachusetts, 2003.

[13] E. J. Whitehead, G. Ge, and K. Pan. Automatic
generation of hypertext system repositories: a model
driven approach. In 15th ACM Conference on
Hypertext and Hypermedia, pages 205–214, Santa
Cruz, CA, Aug. 2004. ACM Press.

[14] E. J. Whitehead and D. Gordon. Uniform comparison
of configuration management data models. In
B. Westfechtel and A. van der Hoek, editors, Software
Configuration Management: ICSE Workshops SCM
2001 and SCM 2003, volume 2649 of LNCS, pages
70–85. Springer, 2003.

[15] A. Zündorf. Rigorous object oriented software
development. Technical report, University of
Paderborn, Germany, 2001.

9

Fujaba goes Web 2.0

Nina Aschenbrenner, Jörn Dreyer, Ruben Jubeh, Albert Zündorf
University of Kassel, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

[nina.aschenbrenner | jdr | ruben | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

ABSTRACT
The latest research activities of the Fujaba group of Kassel
University led to challenges in development of new web tech-
nologies enabling end users to wrap services into web gad-
gets and to combine them into complex web applications.
Web applications running inside a webbrowser bring new
requirements to the traditional desktop application devel-
opment process. Since web applications usually don’t come
to life using model based approaches or Story Driven Mod-
elling the Fujaba Toolsuite has to be adopted to fulfil the
new requirements.

The Fujaba group of Kassel wanted to get all the help we
are used to get from Fujaba in ordinary application develop-
ment for our web applications, too. Thus, we are developing
a new code generation for the generation of Google Web
Toolkit compliant Java code that will then be compiled into
JavaScript running on web browsers. In addition, we develop
tool support for building the GUIs of such web applications.
And, on the server side, we develop technologies to facilitate
service development with Fujaba. This paper reports on the
design of these new Fujaba web components.

1. INTRODUCTION
Since March 2008 the Fujaba group at Kassel University

participates in the European Project FAST: Fast and Ad-
vanced Storyboard Tools. This project aims at the develop-
ment of a new visual programming language and tools that
will facilitate the development of complex front-end gad-
gets. A gadget in this opinion is a small web application
that is designed to run inside a so called mashup platform.
Some of these platforms like Yahoo Pipes[9], iGoogle[6] or
Microsofts Popfly[8] are widely used in the present. Since
one of the project partners has already devolped a mashup
platform, the so called EzWeb platform [3], the Fujaba team
at Kassel tries to support gadgets for this platform at first
and focuses its research on the specific needs of EzWeb web
gadgets. Since Kassel sees gadgets as kind of web applica-
tion, the research regarding Fujaba and the development of
web applications with Fujaba is not only focused on gadgets
needed for FAST, but on what we call Web 2.0 applications
in general. These applications and their development differ
from the standard desktop applications known to be gen-
erated with Fujaba. There are many challenges that have
to be addressed to get applications running over the web in
the way we want them to. The main problem is the lack
of possibilities you have on the client. Since the applica-
tions are intended to run inside a web browser the client
side has to be JavaScript. The old way of web applica-

tions were web formulars on client side which communicate
with the server and are completely blocked while waiting for
server responses. Web 2.0 applications in our manner will
be Ajax applications, meaning that the whole communica-
tion between client and server will be asynchronous giving
the user possibilities to interact with the application even
when waiting for server responses. Another problem you
have in the development of web applications is the distribu-
tion of data, or more specifically replication of data models
between the server and one or multiple clients. In the do-
main of web applications developing client side code is done
by hand coding JavaScript for the browser. The Fujaba
team at Kassel wanted to have all the opportunities known
from standard software development processes: code gener-
ation, model based development and story driven modelling
to benefit the development of web applications and gadgets.
Thus, we chose to adapt Fujaba and its tools to suffice the
new needs.

Figure 1 shows the architecture of what we call Web 2.0
application. On the client side a web browser may show
some web gadgets. We propose to program these web gad-
gets as model view controller patterns, i.e. to separate the
representation and the data model. The representation may
employ some domain object model of the web page shown to
the user. Note, our reference architecture for Web 2.0 appli-
cations is somewhat unconventional. Usually, the client has
only view data and the server has the model data and the
application logic. In our reference architecture, the applica-
tion logic, i.e the business rules and model transformations
are to a large extent executed on the web clients based on the
model data available on that client. For GUI operations we
develop a dedicated version of Fujaba Story Diagrams that
will provide DOM rewrite rules within concrete syntax, cf.
section 2. The application logic is based on an application
data model. This application data model and its operation
may be developed with usual Fujaba story diagrams. In or-
der to deploy the resulting Java code on a web browser, we
will use Google Web Toolkit technology [4], cf. section 3.
Synchronization between DOM and application data model
is done via the usual property change based event mecha-
nisms.

For the development of (web) services we will use stan-
dard Story Driven Modeling technologies. Note, some ser-
vice models and some application models may overlap. In
these cases, we develop the data model only once and deploy
it on client and on server side, equally. For certain applica-
tions it may suffice to copy (parts of) the server data to the
client where the data is visualized and exploited using the

10

Figure 1: Reference Architecture for Web 2.0 Ap-
plications

user interface mechanisms described above. Then, modified
data may be copied back to the server in order to make it
persistent or in order to share it with other client instances.
Therefore, we will provide data replication mechanisms and
persistency mechanisms described in section 2.

Next, the problem of service orchestration is addressed
by exploiting new Web 2.0 mashup technologies and by a
dedicated work flow support service that we develop within
the FAST project, cf. section 5.

Figure 2: Tutor Management Application

As running example of our approach we modeled a web
enabled homework management system for students and tu-
tors. As first feature, the homework management system
allows to manage courses, students and tutors. Only the
lecturer staff is allowed to do so. This is shown in Figure
2. As second feature, the homework management system
supports the grading of students’ homeworks. As shown in
Figure 3, we award the student homework with points. A
certain amount of points are required to pass the course.
Security requirements have to be considered to implement
that feature, however this is not in our focus at this stage
of work. As third feature, it should be possible for students
to submit their homework directly via web interface in our
system, for example by filling out multiple choice question-
naires, entering answer text or even uploading programming
source code. The submitted homeworks should be reviewed

Figure 3: Student Assignments Application

and corrected by our tutors. After correcting a homework,
the tutor enters the results directly into the system, and
students can view their homework results.

Not all of the above requirements need to be fulfilled for
this example. It is sufficient to hold the data model on the
server, for example. The homework management system
in the design described above is more similar to traditional
web applications, even if the communication between client
and server will be asynchronous. For development of the
Fujaba tools needed for new Web 2.0 applications it is a
good example, because it will lead to less complex client side
code. It will need persistency of the data, user management,
multi-user capabilitiy and GUI operations, so we can test
new Fujaba tools with it. For more complex examples, we
will go for the ToDo list gadget developed in terms of the
FAST project, cf. 5 which will then be inteded to run inside
the EzWeb platform and which will have a client side data
model, on top.

2. GUI AND DOM OPERATIONS

Figure 4: DOM Modeling in Fujaba

The Graphical User Interface (GUI) of our application is
realized using up-to-date AJAX (Asynchronous JavaScript
and XML) technologies. In oder to avoid any direct JavaScript
programming, we use the Google Web Toolkit. It provides a
Java API with GUI Widgets as abstraction of HTML, CSS
and JavaScript browser technologies. Thus, creating and
modifying the GUI are just manipulations in a Java object
structure representing the DOM (Document Object Model)

11

in the client browser. The GWT maps those operations to
JavaScript calls modifying the HTML document tree. Tra-
ditionally, Fujaba Story Diagrams are used to graphically
model application behaviour [1], [10]. We are currently try-
ing to adopt these diagrams to also model the GUI in Fujaba.
Figure 4 shows an example of specifying a simple login form
in Fujaba, along with the concrete syntax preview on the
right side.

Figure 5: Application Flow Modeling in Fujaba

Changes to the current GUI (layout and data) will be usu-
ally performed when a user action occurs. This can be a click
on a button, entering text or any other mouse- or keyboard
related event. These events will be handled locally in the
client. To model the client behavior, we plan to extend the
Story Diagram or State Diagram transitions to react on user
input events. Figure 5 shows the modeling of such a GUI
state change: Initially, the application display a login form.
When pressing enter in the text fields, which is mapped to
the submit event, the application state switches to the main
menu or displays an error message.

3. CLIENT SIDE APPLICATION MODEL
For our example assignment management application, the

application model is pretty simple, cf. Figure 6.
This application model is specified with Fujaba. Then, we

generate Java code for the implementation of the described
data. This implementation shall be used to represent run-
time data on the client side, i.e. within the client’s web
browser. Therefore, we use Google’s Web Toolkit (GWT)
[4] to compile the generated Java code into JavaScript code
that is deployed on the web client. Using GWT has the ad-
vantage that the template based code generation of Fujaba
needs only minimal adaption. Actually, we only need to

Figure 6: Assignment Management Model

adapt the container classes deployed for the implementation
of to-many associations. To implement these associations
data structures are needed to manage a set of neighbour-
ing objects. GWT supports the standard Set implementa-
tions of the Java Collection API which does not support
concurrent modification of its contents. Therefore, Fujaba
traditionally uses its own Collection classes. Since GWT is
not able to compile this and other Fujaba specific classes
into JavaScript we will need to use GWT containers where
they are needed. The only thing to do for this is provid-
ing new templates for the code generation. In addition to
the Java-to-JavaScript compilation, the GWT approach has
the advantage, that a special GWT browser allows debug-
ging of client side code. Thus, with the usage of GWT, we
will be able to generate code from Story Diagrams including
graph rewrite rules and to do design level debugging of the
execution of such rewrite rules for web clients.

To enable the model view controller pattern for connect-
ing the clients DOM based GUI with the clients application
data model, we need a property change management infras-
tructure. In [2] the CoObRA framework was presented as
a generic property change and replication mechanism which
we now have adapted to the specific needs of web application
development. Thus, there will be a CoObRA component on
our web clients that provides undo redo for the web appli-
cation and that may be used to send change protocols from
the clients to the services. The latter mechanism enables
CoObRA based data replication mechanism and team col-
laborations. Thus, in our example application, multiple tu-
tors may work with the assignment management application
concurrently. Each tutor may enter the grades for his or her
students and these changes are then replicated / committed
to the assignment management service where this data is
then replicated to other tutors. Thus, each tutor sees the
progress of the overall work and whether some student has
already been graded for a certain assignment by some team

12

mate.
The infrastructure for property changes and for CoObRA

like change protocols are current work.

4. SERVICE DEVELOPMENT
On the server side, we deploy a server data model and

a persistency component. In simple cases the server data
model is the same data model as the application data model.
This will e.g. hold for our assignment management service
and for our tutor management service. This data model is
generated from the same Fujaba model that is used for the
generation of the application data model. As can be seen
from our reference architecture, the client can have applica-
tion logic and data model, too. However, in some applica-
tions, the client may load only a certain part of the whole
data, e.g. for performance or security reasons. In this case
some operations that require access to the whole data stor-
age may be deployed on server side. In addition, the server
needs to manage which clients are currently online and which
client has loaded which part of the overall data. In case of
a data update the server has to compute which clients have
replicas of the corresponding data fragments and thus re-
quire an update notification.

In general, the server component needs to provide some
support for the access protocols used to communicate with
the web clients e.g. a simple object access mechanism.

In addition, the server needs a persistency component in
order to store data e.g. for recovery purposes. Here we use
the standard CoObRA mechanisms. Note, these CoObRA
mechanisms allow direct storage of each change for recovery
as well as a transaction concept grouping change sets for
consistency purpose as well as a cvs like update / commit
usage.

Using these mechanisms, the generation of simple (data
replication) services becomes quite simple. Just generate
it from the Fujaba model. However, note that such services
have a certain scaling problem. CoObRA based applications
/ services keep the whole runtime data in main memory and
are thus restricted to data model sizes that fit into 2 gigabyte
main memory on 32 bit Java virtual machines. This should
not easily become a problem for our assignment service or
for the tutor service. However, one would not run a banking
service or a web shop on this limited data size. To over-
come this scaling problem, we think of a combination of a
CoObRA mechanism coordinating the data replication and
a relational database for management of large data volumes.
This is future work.

5. SERVICE ORCHESTRATION
As mentioned before, within the FAST EU project the

University of Kassel takes part in the development of tools
to support complex web gadgets. In our own research we try
to develop a ToDo list gadget with the help of the Fujaba
adoptions described in this paper. The ToDo list gadget
may be used to organize multiple services, cf. Figure 7.

The idea is that a number of steps is defined where each
step refers to some service via an URL. This allows to visit
one service after the other. Next, each step may be equipped
with named input and output data ports, e.g. for the depar-
ture and destination airport for some flight booking service.
Via such data ports, the mashup platform may retrieve data
as e.g. the flight arrival time from one service and forward

Figure 7: ToDo List Gadget for Service Orchestra-
tion

it to another service. Together with some means for the au-
tomation of todo item execution, this may help to organize
and to orchestrate multiple services within a common work
flow. The emerging software can be run either as stand alone
web application, or inside the mashup platform. Combining
client side application model, multi user execution with data
replication, automated todo item execution and data persis-
tency the web based workflow management system can be
seen as complex Web 2.0 application nearly entirely devel-
oped with Fujaba. One major step with this application will
be the deployment inside EzWeb as mashup platform, since
it is not used, maybe not even intended for gadgets as com-
plex as our workflow example. The main difference between
traditional gadgets and ours is not only its complexity, but
also the fact that the workflow management system not only
uses web services inside the todo item, it needs is own ser-
vices in the background to establish persistency and data
replication via the CoObRA mechanism. These new ideas
have to be carafully transported to EzWeb together with
possibilites which enable the end-user to wrap the services
they want to use inside their workflow, which means produc-
ing tools to help the user to define in and out ports of the
todo item in an easy way. For this purpose the Kassel Uni-
versity team currently tries to develop so called Clipboards
to enable point and click mechanisms to do this. These tech-
nologies are in a very early stage and will be issued in detail
in future publications.

6. SUMMARY AND FUTURE WORK
Honestly, most of the described ideas are current and fu-

ture work. Currently, we have a prototype of a ToDo List
gadget that has been build according to the reference ar-
chitecture. Because the GUI building mechanisms are not
yet ready to be used, we built the user interface by hand.
The data replication and persistency were at first built upon
a foreign GWT library called jstm4gwt [7]. Many parts of
this library had to be adopted, because the property change
mechnisms didn’t work as expected and so we have adopted
the CoObRA mechanisms for GWT earlier than expected to
get rid of this library. Currently we are moving our appli-
cation from the jstm4gwt version to a new one that will use

13

the CoObRA mechanism. Nevertheless, we could already
prove that web based workflow handling is possible with the
jstm4gwt version.

To get the GUI development more comfortable, besides
the enhanced Fujaba Story Diagrams we plan to develop a
GUI designer which will support standard GWT and GWT-
Ext [5] Widgets for the programming of user interfaces. The
GUI designer is planned as plugin for Fujaba4Eclipse and
will enable the user to graphically design the GUI. As a
reference we will try to use the former Eclipse plugin Vi-
sual Editor, which was able to built SWT and Swing GUIs
inside Eclipse in a visual way. Out of the graphical repre-
sentation the sourcecode was generated. The Fujaba GWT
GUI designer will not generate sourcecode directly out of the
graphical Widget representations, it will generate the appro-
priate classes and objects that will be displayed in Fujaba
classdiagrams and Story Diagrams.

For further enhancement of the Web 2.0 application de-
velopment process we plan to extend Fujaba in a way to
automatically generate the GWT Module definition, entry
class and .html host website when a web application is the
intended target. Solving the problems stated in the intro-
duction with well known software engineering principles will
yield new tools and frameworks in the Fujaba Toolsuite con-
text raising the software development process for web appli-
cations to a model centric level, yet unknown.

7. REFERENCES
[1] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.

Story diagrams: A new graph rewrite language based
on the unified modeling language. In Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation. Paderborn, Germany, 1998.

[2] C. Schneider. CoObRA: Eine Plattform zur Verteilung
und Replikation komplexer Objektstrukturen mit
optimistischen Sperrkonzepten. PhD thesis, 2007.

[3] EzWeb. http://ezweb.morfeo-project.org/, 2008.

[4] The Google Web Toolkit.
http://code.google.com/webtoolkit, 2008.

[5] GWT-Ext. http://code.google.com/p/gwt-ext/, 2008.

[6] iGoogle. http://www.google.com/ig, 2008.

[7] XSTM. http://www.xstm.net/, 2008.

[8] Microsoft popfly. http://www.popfly.com/, 2008.

[9] Yahoo Pipes. http://pipes.yahoo.com/pipes/, 2008.

[10] A. Zündorf. Rigorous object oriented software
development. Habilitation Thesis, University of
Paderborn, 2001.

14

Towards a Hybrid Transformation Language:
Implicit and Explicit Rule Scheduling in Story Diagrams

Bart Meyers
University of Antwerp
Antwerpen, Belgium

bart.meyers@student.ua.ac.be

Pieter Van Gorp
University of Antwerp
Antwerpen, Belgium

pieter.vangorp@ua.ac.be

ABSTRACT
Transformation rules can be controlled explicitly using lan-
guage constructs such as a loop or a conditional. This ap-
proach is realized in Fujaba’s Story Diagrams, in VMTS,
MOLA and Progres. Alternatively, transformation rules can
be controlled implicitly using a fixed strategy. This approach
is realized in AGG and AToM3. When modeling transforma-
tion systems using one approach exclusively, particular as-
pects could have been expressed more intuitively using the
other approach. Unfortunately, most (if not all) transfor-
mation languages do not enable one to model the control of
some rules explicitly while leaving the control of other rules
unspecified. Therefore, this paper proposes the extension
of Story Diagrams with support for implicit rule scheduling.
By relying on a UML profile and on higher order transforma-
tions, the language construct is not only executable on the
MoTMoT tool, but on any tool that supports the standard
UML syntax for Fujaba’s Story Diagrams.

Keywords
Transformation Languages, Rule Scheduling, Higher Order
Transformations, Language Engineering

1. INTRODUCTION
Transformations are critical in model-driven development.
Since homemade modeling languages may be defined and
integrated at any time in the development process of a soft-
ware system, transformations have to be tailored accordingly
to integrate these new languages before they can actually
be used. Therefore, a highly expressive transformation lan-
guage is very useful, because it facilitates defining the needed
transformations.

When defining transformation languages, certain choices are
made. The language can be imperative (i.e., operational) or
declarative [8, Chapter 2]. Explicit rule scheduling mecha-
nisms (e.g., conditionals) tend to be called imperative since
they enable one to model the execution of transformation
rules in terms of the state of the transformation system.
Languages with implicit rule scheduling (such as AGG) tend
to be called declarative due to the absence of an explicit state
concept. There is no better choice in this matter. For certain
problems implicit rule scheduling feels more intuitive, some-
times explicit rule scheduling turns out to be convenient.
Therefore, this paper introduces a language construct for
the integration of implicit rule scheduling in an imperative
language. The integrated language is hybrid (imperative as
well as declarative) with regards to rule scheduling.

Figure 1: Control flow of a transformation from class
diagrams to a relational database schema.

The remainder of this paper consists of the following: Sec-
tion 2 motivates the need for the hybrid transformation
language by means of an example. Section 3 describes a
higher order transformation for mapping hybrid transfor-
mation models to fully imperative transformation models in
ordinary Story Diagrams. This defines a compiler for the
new language construct. Section 4 presents related work
and Section 5 discusses future work. Finally, Section 6 sum-
marizes with a conclusion.

2. IMPLICIT RULE SCHEDULING
Consider the example of Figure 1, which represents a simpli-
fied model transformation from class diagrams to relational
database schemata. This example has been used for compar-
ing transformation languages before [1]. Figure 1 displays
a story diagram that applies explicit rule scheduling exclu-
sively. Throughout this paper, the UML profile for story
diagrams is used. The benefits of using a profile rather than
metamodels are discussed in Schippers et al. [6].

In the UML profile, rules (annotated class diagrams) are em-
bedded in a control flow (annotated activity diagrams) by
using a tag named transprimitive whose value points to the
UML package containing the transformation rule (i.e., clas-
ses and associations annotated with�create�,�destroy�,
etc. [8]). In effect, the value of the transprimitive tag states
which rewrite rule needs to be executed when the transfor-
mation system is in a particular state. Fujaba realizes the
same semantics but differs syntactically by visually embed-
ding the rewrite rules instead of referring to their name.

15

Figure 2: Example of the usage of the new language
construct.

In Figure 1, the first rule that has to be executed checks
whether there are tables in the database. If some tables ex-
ist in the database, the algorithm ends since otherwise ex-
isting data may be corrupted by the simple transformation.
If not, the actual creation of schema elements is started:
first, classes are transformed to tables. Next, class attributes
must be transformed. There are two types of attributes: ob-
ject references and primitive values. It turns out that the
transformation of the two kinds of attributes can be mod-
eled elegantly with two transformation rules. Attributes of
a simple data type t become columns of type t. Object
attributes of class T become columns of type integer con-
taining key references to the primary unique ID column of
table T. Additionally, a foreign key constraint is added to the
database. Therefore, in Figure 1, all data fields are trans-
formed, and then all object fields are transformed.

Having to express the transformation of attributes in two se-
quentially executed rules decreases the quality of the trans-
formation model in several ways. First, one has to impose an
order on these two rules, which is useless and has no mean-
ing. This is a clear case of over-specification. Secondly, the
transformation of all attributes is conceptually one action,
and should be modeled as such.

Alternatively, one could have modeled the transformation
using implicit rule scheduling. However, in that case, the
”no tables exist” test (this kind of sanity checks are rather
common at the start of model transformations) could not
have been scheduled before the other rules without having to
rely on hand-written code or other tool-specific approaches.
This is a reason why modeling in a language using explicit
rule scheduling is a good choice for this problem.

2.1 A new language construct
It turns out that both implicit and explicit rule scheduling
are needed to model the example of Figure 1 in a decent way.
Therefore, this paper introduces a new language construct
for story diagrams that allows implicit rule scheduling. Con-
sider Figure 2 as an example of the usage of this new con-
struct. Analogue to the transprimitive tag definition, a new
UML tag definition transprimitiveND is proposed that can
be used for the state that transforms attributes. However,
a transprimitiveND state can reference more than one UML
Package and chooses non-deterministically in which order
the packages are executed, hence “ND” in the name.

More general, consider a set of rules that can be executed in

Figure 3: Fully imperative equivalent of Figure 2.

any order. Such rules need to be executed until all of them
fail to match. Every time a rule of this set is evaluated,
it is executed, and all the other rules of the set have to be
checked again in the next iteration, because applying a rule
to a model can change the model.

2.2 The fully imperative equivalent
The new construct must be transformed to an equivalent
which is solely written in plain story diagrams. Otherwise,
our contribution would probably only become supported by
our own tool. Such an imperative equivalent for the exam-
ple from Figure 2 is shown in Figure 3. After the Transform

classes to tables state, the initialize state is entered,
where some variables that will be used are declared. The
�code� stereotype denotes that the state corresponds to
(Java) code instead of a transformation rule. More in de-
tail, an integer n is set to 2, as there are two rules (Data
fields to columns and Object fields to foreign keys)
that can be executed. A list ignored is initialized, which will
represent the rules that must be ignored because they didn’t
match in the current model state.

After the initialize state, a rule is chosen non-determinis-
tically in the choose pattern id state, also a code state. In
fact, a random number generator produces an integer rang-
ing from 1 to n, which represents the randomly chosen rule.
Moreover, this generated integer must not be contained in
the ignored list. According to this random number, one of
the transprimitive states which represent the actual trans-
formation rules is entered.

If the rule matches, the �success� transition is followed.
This transition leads to a state that ensures that ignored is
cleared, as the ignored rules must be evaluated again because
the state of the model might have changed. Then, a new rule
can be chosen in the choose pattern id state for execution.

If the rule didn’t match, it would be useless that this rule
would be coincidentally chosen in the next iteration, so the

16

Figure 4: Prototype that is put into the input model.

rule is added to the ignored list. As long as there are rules
available for execution, a new rule can be chosen for the next
iteration. If there are no rules left for execution, i.e. they
are all in ignored, the algorithm ends. The end state does
nothing, but is added in order to end the equivalent with a
transition without a guarding expression.

This results in an equivalent for unconstrained implicit rule
scheduling, which schedules all the rules with equal prior-
ity. This algorithm can easily be extended to support con-
strained rule scheduling, like the use of priorities [2] (as re-
alized in AToM3) or layers [5] (as realized in AGG).

3. HIGHER ORDER TRANSFORMATION
In this section, a higher order transformation is proposed
that transforms applications of the introduced new language
construct to plain story diagrams.

The higher order transformation consists of a main loop that
sequentially transforms each transprimitiveND state in the
input model. Such states are transformed to their imper-
ative equivalents as in Figure 3. These equivalents will be
very similar to one another. Therefore, the common part is
bundled into a separate generic prototype model, given in
Figure 4. Starting from this prototype will avoid verbose
rewrite rules in abstract syntax form. To use the prototype
in the input model, it has to be moved to there. Roughly
speaking, this is done in the following steps: first, the proto-
type model file is read. Secondly, all the states of the proto-
type model are moved to the input model. Thirdly, all the
transitions of the prototype model are moved to the input
model. Fourth, the target of some transitions is reassigned.
And fifth, the source of some transitions is reassigned.

Interestingly, the second, third, fourth and fifth step can be
executed independently. So in theory, a transprimitiveND
state could be used to control the rewrite rules for these
steps. Doing so would emphasize the similarity between
these steps, thus improving the structure and readability of
the overall transformation model. However, we have not yet
bootstrapped the higher order transformation [4]. Instead,
it is modeled using plain story diagrams (i.e., the language
without the transprimitiveND construct).

Once a prototype is created in the input model, the (Java)
code in the initialize code state must be changed in order
to initialize n with the actual number of rules. Then, for each
rule of the transprimitiveND state, a new perform pattern

state has to be created, with its according transitions. Fig-
ure 5 represents a slightly simplified version of the pattern in
the higher order transformation that performs this task. A

new state performState and transitions from choose pat-

tern id and to clear ignore list and no match, ignore

pattern are created.

When each rule of the transprimitiveND state is added in
a transprimitive state, a few elements, including the origi-
nal transprimitiveND state must be removed from the input
model. Once we bootstrap the higher order transformation,
we will model this behavior using a transprimitiveND state
with one rewrite rule for each element that needs to be re-
moved. When all transprimitiveND states are transformed,
the transformation completes.

4. RELATED WORK
The imperative realization from Section 2.2 executes rules
sequentially, in a random order. Alternatively, one could ex-
ecute the rules in parallel. It seems intuitive to rely on UML
Fork and Join elements to model the parallel nature of a
transformation system explicitly. However, neither version
of Fujaba nor MoTMoT generates any code aimed at parallel
execution (thread creation, synchronization, ...). Therefore,
a higher order transformation approach such as the one pre-
sented in Section 3 does not seem to be applicable. Instead,
one would have to extend the core of a particular story di-
agram tool. On the other hand, the use of standard UML
elements (see Section 2.1) does apply. Instead of relying on
UML activity diagrams as a standard language for control-
ling the application of rewrite rules, Syriani and Vangheluwe
rely on DEVS [7].

The non-determinism of implicit rule scheduling can lead
to unexpected results: in many cases, one rule for example
creates elements that are used by another one and deleted
by yet another rule. Since such dependencies can be intro-
duced accidentally, dedicated analysis support is desirable in
transformation tools that support languages with implicit
rule scheduling. For example, the AGG tool offers a so-
called Critical Pair Analysis (CPA [3]). To be applicable on
the proposed hybrid language, CPA algorithms need to take
into account nodes that are already bound from previously
executed rules in a control flow.

5. FUTURE WORK
As an easy extension to this paper, the algorithm can be
extended to support priorities or layers, as briefly stated in
Section 2.2. Support for layers can be realized in another
higher order transformation by putting together all rules of
the same priority in transprimiveND states, then ordering
them according to their priorities or layers. The higher or-
der transformation from this paper can then transform the
resulting model to a plain story diagram. In the case of pri-
orities, the execution engine needs to re-evaluate all rules
upon each iteration again, starting from rules with the low-
est priority. Although this can be realized again using a
higher order transformation, the one presented in this paper
produces quite a different control structure.

The current realization aims at true nondeterminism by us-
ing random numbers. In some cases however, the order of
the rules is irrelevant. More specifically, one may not care if
the same order is used at all times. In these cases, the ran-
dom number generator is nothing but a performance bottle-
neck. Therefore, we may extend our approach with another,

17

Figure 5: The rule in the higher order transformation that adds a perform pattern state and its transitions.

much simpler higher order transformation that imposes a
particular order on the rules instead of guaranteeing ran-
domness.

This paper discusses an algorithm for a transprimitiveND
state in combination with a �loop� stereotype. Without
a �loop�, the transprimitiveND state ensures that all the
rules are executed at most one time. A �success� tran-
sition will be followed if all rules did match once, and a
�failure� transition will be followed if any of the rules did’t
match. As an example, suppose that in Figure 2, besides
the No tables exist state, many other sanity checks have
to be passed before the actual transformation can be done.
All these checks could be referenced in one transprimitiveND
state, avoiding a cascading effect of states with �success�
and �failure� transitions, which could easily become very
verbose and confusing.

This paper presents a transformation language that is hybrid
with regards to rule scheduling. It is our ongoing work to
realize a language that is hybrid with regards to other con-
cerns, like execution direction and change propagation [8],
too.

6. CONCLUSION
This paper discusses a standard syntax, the informal seman-
tics and working tool support for a new language construct
that allows users to use implicit rule scheduling in story di-
agrams. We illustrated its relevance and meaning by means
of a toy example. As a more realistic example, we indi-
cated where the language construct could even improve the
readability and conciseness of its own compiler (i.e., that of
its supportive higher order transformation). As a generic
technique, this paper illustrated how profiles and higher or-
der transformations enable language engineers to contribute
new language contructs to a variety of tools (any version of
Fujaba, MoTMoT, ...) without writing code specific to the
editor or code generator of a particular tool.

7. REFERENCES
[1] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model

transformations in practice workshop. In J.-M. Bruel,
editor, Satellite Events at the MoDELS 2005
Conference, volume 3844 of LNCS, pages 120–127,
2005.

[2] S. M. Kaplan and S. K. Goering. Priority controlled
incremental attribute evaluation in attributed graph
grammars. In J. Dı́az and F. Orejas, editors,
TAPSOFT, Vol.1, volume 351 of Lecture Notes in
Computer Science, pages 306–336. Springer, 1989.

[3] L. Lambers, H. Ehrig, and F. Orejas. Efficient conflict
detection in graph transformation systems by essential
critical pairs. Electron. Notes Theor. Comput. Sci.,
211:17–26, 2008.

[4] O. Lecarme, M. Pellissier, and M.-C. Thomas.
Computer-aided production of language
implementation systems: A review and classification. In
Software: Practice and Experience, volume 12, pages
785–824, 1982.

[5] J. Rekers and A. Schürr. Defining and parsing visual
languages with layered graph grammars. Journal of
Visual Languages and Computing, 8:27–55, 1997.

[6] H. Schippers, P. Van Gorp, and D. Janssens. Leveraging
UML profiles to generate plugins from visual model
transformations. Electronic Notes in Theoretical
Computer Science, 127(3):5–16, 2004. Software
Evolution through Transformations (SETra). Satellite
of the 2nd Intl. Conference on Graph Transformation.

[7] E. Syriani and H. Vangheluwe. Programmed graph
rewriting with DEVS. In M. Nagl and A. Schürr,
editors, International Conference on Applications of
Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science, Kassel, 2007.
Springer.

[8] P. Van Gorp. Model-driven Development of Model
Transformations. PhD thesis, University of Antwerp,
2008.

18

Debugging Triple Graph Grammar-based Model
Transformations

Mirko Seifert
Technische Universität Dresden

Software Technology Group
Dresden, Germany

mirko.seifert@inf.tu-dresden.de

Stefan Katscher
Technische Universität Dresden

Software Technology Group
Dresden, Germany

stefan.katscher@inf.tu-dresden.de

ABSTRACT
Model Driven Software Development heavily relies on ex-
pressive and formally founded model transformations. In
this field, Triple Graph Grammars (TGGs) have not only
been applied to practical problems, but shown that their
formal grounding allows sophisticated analysis of transfor-
mation rules. However, creating a set of correct rules for a
given transformation problem is not easy. Practical trans-
formations inherently induce complex rule sets. Hence, de-
velopers of such model transformations need assistance to
find faults in their rules.
This paper surveys existing debugging methods, derives a
set of concepts that generally supports the localization and
elimination of bugs and transfers these concepts to model
transformations. In particular the peculiarities of Triple
Graph Grammars will be addressed and essential ingredi-
ents for sophisticated debug support will be presented.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Design

Keywords
Triple Graph Grammars, Debugging

1. INTRODUCTION
Since the early days of computer science human errors be-
came manifest in software of all kinds. The search for defects
in programs has become a common activity of every software
developer’s life. Even though modern development tools sig-
nificantly reduce the average number of bugs, producing zero
defect software is still not practically achievable. Addition-
ally, the ever growing complexity of today’s software systems
intensifies this problem.
Over the last decade, Model-Driven Software Development
(MDSD) has been promoted as one promising way to tackle
this complexity, targeting reduced effort and error rates in
modern software systems. The idea is to use models to raise
the level of abstraction in software design. The motivating
assumption is that reducing the amount of information pro-
vided by developers is accompanied by lower defect rates.
MDSD replaces effort previously spent on coding programs
in high level programming languages with other activities.
Creating and transforming models, as well as generating
code from them form the main activities within MDSD.

Obviously, these new types of activities are not error-free
by default. Due to the shift from code-centric development
to model-driven processes, new kinds of defects arise. Er-
roneous source code is replaced by invalid, inconsistent or
incomplete models, faulty model transformations or even
buggy code generators. Consequently new methods and
tools are needed to detect and remove defects.
If we focus on model transformations solely, we can spot a
variety of existing approaches [2]. Both declarative and op-
erational languages have been proposed and implemented.
Among the former category, TGGs [7] provide a sophisti-
cated way to specify and execute different model transfor-
mation tasks. Based on a formal grounding TGGs support
bidirectional transformations, as well as model synchroniza-
tion and integration.
However, having a well-founded and powerful formalism does
not guarantee the correctness of concrete model transforma-
tions. Faulty transformation results can occur due to erro-
neous input models, a defect set of transformation rules or
even a faulty implementation of the formalism. The contri-
bution of this paper is to elaborate on existing approaches
for debugging, derive a set of debugging principles or con-
cepts and transfer them to the domain of model transfor-
mations. This will generate a set of requirements for model
transformation debugging tools. Furthermore, TGGs will be
examined with respect to their specific needs when debug-
ging them. Thus, the paper tackles the detection of faults
in transformation rule sets.
The remainder of this paper is organized as follows: Sec-
tion 2 defines basic terms, recapitulates existing methods
to debug imperative programs and derives the general con-
cepts that are needed to support debugging activities. Sec-
tion 3 shortly describes TGGs, in particular how they oper-
ate and highlights differences to other model transformation
approaches that are important with respect to debugging.
The main contribution of this paper can be found in Sect. 4,
where we apply the concepts identified in Sect. 2 to model
transformations and TGGs in particular. We conclude with
a short outlook on future work in Sect. 5.

2. DEBUGGING CONCEPTS
Debugging is usually defined as the process of locating and
fixing bugs (i.e., errors) in programs. To be more precise,
errors are implementation mistakes made by humans which
cause software to deviate from its expected behavior. Errors
can cause a program to reach a state different from the cor-
rect one. If a program is in such a state, we say that there is
a fault. Faults are not necessarily exposed to users because

19

programs may detect or compensate them either intention-
ally or by coincidence. If a fault is indeed propagated to the
peripherals of a software (i.e., users or other systems) it is
called failure. In this case, the expected result of a compu-
tation differs from the actual one.
Debugging was invented in the early sixties with the emerg-
ing of assembler languages. To localize erroneous behavior
the concept of breakpoints was established and simulators
were used to execute programs in a controlled environment.
This allowed developers to stop the execution at particu-
lar instructions, which were considered to be relevant to the
defect in a program. The developers inspected the current
state of the program and tried to localize the instructions
that were responsible for the failure. Later on hardware
manufacturers picked up the idea and designed processors
with built-in breakpoint support. This concept evolved over
the last decades, but the general idea can still be found in
almost every modern debugger.
The common goal of all debugging methods is to ease the
localization of errors in programs. Thus, the power of a
debugging technique is its ability to narrow the set of po-
tential causes for a bug to the minimum. Traditional man-
ual debugging with breakpoints is not very competitive in
this sense, because developers must guess the locations of
errors. Nonetheless, breakpoints are supported by almost
all debugging tools for mainstream programming languages.
However, these tools do not only provide support for con-
trolling the execution of software, but allow to inspect and
change the state of programs. Values of variables can be dis-
played and manipulated. Some tools even provide informa-
tion about changes made to a program’s state, for example
by highlighting variables that have changed since the last
stop of the execution.
To improve the assistance for manual debugging techniques
researchers sought ways to allow developers faster access to
potential causes for invalid program states. A technique
called program slicing [8] was invented to determine parts of
a program that are related to a given variable. The terms
forward and backward slicing differentiate between slicing
techniques to determine parts of a program that influence
the value of a specific variable and parts that are influenced
by such a value.
Inspecting a program’s state is essential to find the point in
time where a fault appears first. To relieve developers from
determining this point by trial and error, a method called
Omniscient Debugging [6] was introduced that records a
program’s state over time. Thus, a complete history for
a single program run can be obtained and inspected.
More sophisticated approaches push the detection and local-
ization of errors a little bit further. Static analysis tools save
the effort of actually executing programs and localize poten-
tial and actual errors by solely looking at source or binary
code. Based on symbolic execution [5] or abstract inter-
pretation [1] tools can detect errors automatically. Other
approaches define common bug patterns and try to detect
these in suitable representations of programs [4].
From all previously mentioned methods and tools that sup-
port debugging we can derive a couple of general concepts
(see Fig. 1). A program’s state and its execution are the
central objectives of debugging. In order to understand a
program’s behavior one must be able to control both. But,
control by itself is not sufficient. To affect something in
a meaningful way information about the program’s logic

EXECUTION STATE

VISUALIZE

CONTROL

PAUSE MODIFY

CHANGESITUATION DEPENDENCY

Figure 1: General concepts for debugging methods

and its current state is needed. Thus, visualizing the situa-
tion, changes to the situation, and dependencies is essential.
Almost all approaches mentioned earlier, implement one or
more of these concepts. Breakpoints allow to control a pro-
gram’s execution. Debuggers that allow manipulations to
the memory of a program enable control of the program’s
state. Program slicing is used to determine dependencies
between logic and data. Omniscient Debugging visualizes
all situations a program encounters during a run.
The concepts shown in Fig. 1 abstract from specialized de-
bug methods for textual or imperative languages. Rather,
they provide general requirements for debugging tools. In
Sect. 4 we will apply these concepts to model transforma-
tions and TGGs.

3. TRIPLE GRAPH GRAMMARS
TGGs were introduced by Andy Schürr [7] as an extension of
Pair Grammars, providing a declarative way to express the
relationship between two graphs. TGGs use three graphs,
because in addition to the two graphs that are related (left
and right graph), the third graph holds information about
this relation. More precisely the third graph describes which
nodes correspond to each other and is therefore called cor-
respondence graph.
Based on the general notion of graph grammars, each TGG
production has a left and a right-hand side. Both sides con-
sist of three graphs, which can be connected. Since TGG
rules are usually non-deleting (i.e., they only add nodes) it
is common to visualize both rule sides in one graph.
The default form of TGG rules describes the relation be-
tween elements of both graphs (left and right) rather than
what has to be done to transform one to another. Thus, this
form is called the relational form. In order to perform a spe-
cific model transformation the rules must be converted to an
operational form. Depending on the kind of transformation
(left to right, right to left, synchronization or integration)
the type of some nodes in the rule is changed. To trans-
form from left to right, elements of type create of the left
graph are changed to be required. Thus, the transforma-
tion engine searches matches for these elements in the left
graph and creates elements in the right graph. Due to space
limitations we must refer to [7] for more details.

4. DEBUGGING TRANSFORMATIONS
To apply the concepts from Sect. 2 to declaratively speci-
fied model transformations one must highlight some impor-
tant differences to classic debugging. First of all, there is
no predefined notion of an execution step. Imperative pro-
gramming languages have an operational semantics that is

20

executed by some real or virtual machine. Usually instruc-
tions form the smallest unit of execution and consequently
serve as the atomic execution steps. Even though, the un-
derlying machine may perform multiple actions to execute
one instruction, debugging abstracts from this detail.
To define a meaningful notion of execution step for model
transformations, we must consider that transformation en-
gines play the role of a virtual machine. The actual instruc-
tions executed by a transformation engine to find matches
or to apply a rule are irrelevant to debug a transformation.
A logical execution step must rather relate to some concept
in the transformation language (e.g., nodes, links or con-
straints). We will present a set of such logical execution
steps shortly in Sect. 4.1.
Another difference posed by some transformation languages
is their graphical syntax. Textual syntax usually implies
some order of reading, which often corresponds to the order
of execution. Graphical rules have no such advantageous
predefined order. Furthermore, finding meaningful visual-
izations for graphical structures is harder than for textual
ones. This paper will not give a complete set of visualiza-
tion methods that can be used in this context, but Sect. 4.2
and 4.3 will at least provide some starting points.
In addition to the specifics of general model transforma-
tions in the debugging context, TGGs have some properties
which require special treatment. In contrast to imperative
model transformation languages or basic graph transforma-
tion, TGG rules cannot be applied directly. An operational
form of all rules must be derived from their original rela-
tional specification. As a consequence, debugging must in-
corporate this special preprocessing step.
Furthermore, the visualization cannot solely incorporate two
independent models (source and target model), but must
handle all three related models and the links between them.
Existing editors for models can therefore not be applied as
easy as in the general case.
A last property of TGGs that is important to debugging
is non-determinism. Performing transformation based on
TGGs in the most general form involves non-deterministic
choices. Users trying to debug a transformation specification
should have assistance to know about the choices available
to the engine, see which choice is picked and be able to affect
this non-deterministic decision if they want to.
This section gives more information about our notion of an
execution step (Sect. 4.1) and explains how state (Sect. 4.2),
change (Sect. 4.3) and dependencies (Sect. 4.4) should be vi-
sualized to support debugging activities.

4.1 Execution Steps
To obtain a natural notion of an execution step we use the
basic elements of the TGG formalism (e.g., nodes, links,
constraints, assignments). A step of execution must obvi-
ously involve at least one of them. For example, nodes must
be matched, constraints are evaluated and assignments are
performed. But, most elements are incorporated in different
steps (e.g., nodes are matched, created and deleted). Thus,
an execution step consists of a number of subjects (the in-
volved elements) and a context (the action performed using
the elements). We call this aggregation a debug event. Ex-
amples for events are: creating a node, matching a link in a
rule to a link in a model, or changing the type of a node in
a rule from create to required.
Figure 2 shows a simplified meta model for debug events.

Link Constraint Preprocessing Modification

Rule Assignment Matching Creation

subjects

0..*

context

1..1

Node Subject Event DeletionContext Application

Figure 2: Meta model for debug events

This meta model is incomplete, because for practical use
special subtypes (e.g., correspondence nodes) must be intro-
duced. Nevertheless, the introduction of an artificial event
concept is necessary to obtain meaningful units of execution.
The implications of using such a scheme are manifold. First
of all, transformation engines must explicitly create events
and deliver them to debugging tools. This implies changes
to existing engines, which do not have debugging facilities
yet. In the best case these changes can be applied nonin-
vasively (e.g., using AOP). For most existing engines some
adaptation of the existing implementation will be needed.
Our experience gained while extending our own prototypi-
cal implementation of a TGG engine showed that the effort
needed is comparable with an extension of an existing ap-
plication with detailed logging. Having said that, we must
note that a common meta model for debugging TGGs can
enable the independent creation of debug tools. These can
in turn be used in conjunction with multiple TGG engines.
As one can also tell from Fig. 2, we make heavy use of inher-
itance. This decision is driven by the need for extensibility.
Introducing new special kinds of debug events should not in-
validate existing debuggers. Rather, the event model should
allow tools to handle general types of events and thereby
process unknown events all the same.
Now that we defined some notion of an execution step, we
can make use of it. Foremost, debug events can be used
to define breakpoints and stop the execution of a transfor-
mation. Specifying constraints (e.g., on event types) allows
for conditional breakpoints. This provides very fine grained
control over the execution of a transformation. We can stop
when model elements of a certain type are created, when
the type of a specific rule node is changed, or basically when
a complete match for a certain rule was found. Thus, we
transferred one of the concepts mentioned in Sect. 2.
Furthermore, events can be collected and stored. Thus, om-
niscient debugging [6] can be applied to model transforma-
tions [3]. But, in contrast to recording state for imperative
programs, an abstracted notion of the execution is used.
This reduces the memory requirements, which is a serious
problem for this debugging method. Filters that specify the
debug events to be recorded can further relax this limitation.
In any case, we obtain detailed information on the execu-
tion of a transformation. We have even used debug events
to inspect a TGG implementation itself rather than a set
of transformation rules. The events created while running
test cases can be compared to expected values and indicate
errors in the implementation itself.

4.2 State Visualization
Traditional debuggers support state visualization by provid-
ing users with a view on the memory used by a program. As
TGGs operate on models and use rules, the state of a trans-

21

EVENTS MODELS
RULES

VISUALIZE

ELEMENT CREATION
ATTRIBUTE MODIFICATION

MATCHING STATUS
CONSTRAINT EVALUATION

TRACES
EVENTS HISTORY

MATCHING HISTORY

CONTROL

BREAKPOINTS EDITORS

Figure 3: Elements for debugging TGGs

formation is the state of all involved models plus the rules.
The involved models can be visualized using their existing
graphical editors. However, visualization must incorporate
the correspondence model. Coupling two existing editors
(for the left and right model) with a third one (for the cor-
respondence model) is probably a good option to do so.
Likewise, transformation rules must be available to users.
But, rules must not be shown only, but adapted according
to their current matching state. Assigning special color to
matched elements is probably an intuitive way to provide
this information to users. Changing the color of matched
elements can also be applied to model elements.

4.3 Change Visualization
Visualizing changes that occur during a transformation is
important to find defects in rule sets. Based on the events
defined in Sect. 4.1, we can mark all model elements that
were modified or added. Furthermore, accumulating a list
of all modification events provides a history of all changes
and the order they were applied in. This modification trace
gives detailed information about the concrete effects of a
rule set.

4.4 Dependency Visualization
Similar to the previously mentioned program slicing [8] de-
pendencies can provide important clues about the location
of defects. Knowing the set of possible causes for a certain
effect can drastically reduce the effort needed for debugging.
Speaking about model transformations, different kinds of de-
pendencies are present. Newly created model elements de-
pend on a set of elements in the source model. They also
depend on the presence of a specific rule that matched these
elements. If constraints are used they must be added to the
set of dependencies as well.
To obtain all these dependency information we recommend
to create traces for all new elements. These traces should
contain details about the matched rule, the matched ele-
ments and checked constraints. Luckily, all this information
is already present in the list of events created during a trans-
formation run. Traces are basically an abstraction over the
sequence of events that provide distilled information about
dependencies. Using colors and existing editors for models
and rules, can again support this visualization graphically.

Finally, a summary of all ideas mentioned above, can be
found in Fig. 3. We replaced the concepts identified in
Sect. 2 with their concrete counterparts for the context of
model transformations.

5. CONCLUSION AND FUTURE WORK
After analyzing existing debugging methods and tools, we
have derived a set of general concepts that are needed to
support debugging activities. Controlling and visualizing
the execution and the state of a process is important to find
defects. We applied these concepts to model transformations
by introducing debug events as a natural notion of execution
step. We provided a simple meta model for debug events and
explained how they support both control and visualization
of a transformation’s execution. Furthermore we collected
a set of requirements on visualizing the state of a transfor-
mation (i.e., the involved models and rules). Some of the
presented concepts can be applied to model transformations
in general, others are specific to TGGs. Furthermore, we are
convinced that agreement on a common debug event model
can enable transformation independent debugger implemen-
tation.
In the near future we plan to finish the implementation of
the mentioned concepts. This will allow us to gain practi-
cal experience and to validate the presented ideas. As the
graphical syntax of TGG rules has some disadvantages (e.g.,
no predefined reading order), we want to create a textual
counterpart. This implies other disadvantages (e.g., a syn-
tactical gap between the models and rules that transform
them). Thus, we will compare both syntaxes with respect
to their usability for debugging activities.

6. ACKNOWLEDGMENTS
This work has been partially funded by the German Ministry
for Education and Research in the SuReal project.

7. REFERENCES
[1] P. Cousot and R. Cousot. Abstract interpretation: a

unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[2] K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In OOPSLA 2003
Workshop on Generative Techniques in the context of
Model Driven Architecture, oct 2003.

[3] M. Hibberd, M. Lawley, and K. Raymond. Forensic
Debugging of Model Transformations. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, editors,
MoDELS, volume 4735 of LNCS, pages 589–604.
Springer, 2007.

[4] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92–106, 2004.

[5] J. C. King. Symbolic Execution and Program Testing.
Communication of the ACM, 19(7):385–394, 1976.

[6] B. Lewis. Debugging Backwards in Time. The
Computing Research Repository, cs.SE/0310016, 2003.

[7] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In E. W. Mayr, G. Schmidt,
and G. Tinhofer, editors, Proceedings of 20th
International Workshop on Graph-Theoretic Concepts
in Computer Science, Herrsching, Germany, volume 903
of LNCS. Springer Verlag, 1994.

[8] M. Weiser. Program Slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

22

Model Level Debugging with Fujaba

Leif Geiger
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

leif.geiger@uni-kassel.de

ABSTRACT
This paper presents an approach how story diagrams can
be debugged on model level. Therefor it presents a tech-
nique how a model-code mapping can be created, how that
mapping can be used with normal Java debuggers to en-
able model-based debugging and how integration with Fu-
jaba4Eclipse works. Additionally it shows how this model-
based debugging can be best combined with eDOBS for an-
alyzing object structures in a debugging session.

1. INTRODUCTION
Fujaba enables the developer to specify his whole applica-
tion on model level. For the structural aspects Fujaba of-
fers class diagrams whereas for behaviour specification graph
transformation in so-called story diagrams are used. From
such models Fujaba automatically generates executable Java
code. Normally the developer does not need to look at the
source code since everything can be done in the model. If the
developer discovers that his application does not show the
wanted behavior or a test fails, he has to find the bug. This
is normally done using debugging techniques. Since now the
debugging needs to be done on source code level since Fu-
jaba has no support for model-based debugging. Debugging
on generated source code is especially difficult for develop-
ers who have no idea how the code generation works, e.g.
students which are new to Fujaba. But also for experienced
developers debugging on model-level would higher the ab-
straction level and therefor increases productivity and lowers
the possibility of mistakes. This paper presents our solution
and implementation for model-based debugging in Fujaba.

2. MODEL-CODE MAPPING
There exist two possible solutions to make model based de-
bugging possible. The first one would be to interpret the
model and visualize the results. Therefor one would need an
interpreter for Fujaba’s story diagrams. It would be hard to
verify if the interpreter always has the same behavior as the
generated Java code. Additionally one would not be able to
use all the existing debugging tools that are e.g. integrated
into eclipse. The second possibility would be to debug the
generated code using a standard Java debugger and map the
results back to model level. This approach is chosen in this
paper.

For the chosen approach one first need a mapping which
allows for a given line in the Java source code to find the
model element which has generated this line of code. There-
for we integrate into the CodeGen2 code generator. Code-

Gen2 translates the model to an intermediate token layer,
which is then optimized for code generation (e.g. a control
flow analysis is performed). Afterwards for every token a
template responsible for that token type is applied which
finally results in the Java code written to file. See [1] for
details on the code generation.

Each time CodeGen2 applies a template for a token, the gen-
erated code is now wrapped by a start and a end comment.
This comments refers to an object of the type DLRToken

using a unique identifier. That DLRToken stores references
to the model elements that were associated with the token
which generates that certain peace of code.

Listing 1 shows the source code of a simple State class.
This code contains the generated comment for model-based
debugging. One can see that the whole code is associated
with a DLRToken with the unique identifier 6. This token
represents the source code, that was generated for a file (an
object of class UMLFile) in the Fujaba model. The code
of the class was generated by a DLRToken with ID 7, the
method visit() by ID 9, etc.

1 /∗ s t a r t id=6∗//∗
2 ∗ genera ted by Fujaba − CodeGen2
3 ∗/
4 package de . u n i k a s s e l . s t a t e c h a r t . model ;
5

6

7 /∗ s t a r t id=7∗/public class State
8 {
9 /∗ s t a r t id=8∗/

10 private St r ing name ;
11

12 public void setName (St r ing value)
13 {
14 this . name = value ;
15 }
16

17 public St r ing getName ()
18 {
19 return this . name ;
20 }
21 /∗end id=8∗//∗ s t a r t id=9∗/
22 public boolean v i s i t ()
23 {
24 /∗ s t a r t id=10∗/
25 /∗ s t a r t id=12∗/return true ;
26 /∗end id=12∗//∗end id=10∗/}
27 /∗end id=9∗/
28 public void removeYou ()
29 {

23

30 }
31 }
32 /∗end id=7∗/
33 /∗end id=6∗/

Listing 1: Source code example with comments

Such source code may now be changed by some external
tools like e.g. the eclipse code formatter or the EMF code
generator with might generate additional constructs into the
class. Afterwards the source code is reread and a tree of
DLRToken is created according to the comments found in
the file. Afterwards the file is written back without the
comments. Figure 1 shows such a tree for the file of Listing
1.

The d0 object of the singleton class DLRTool has a list with
all open projects for which code was generated. Here this is
just the project represented by the object d1. From there the
tree is created by the children links. Every token in the tree
knows the line of code where the code generated for that to-
ken starts and the line where it ends. Additionally it stores
the character offset and the character length of the code
block. Every token also has a comment attribute which stores
a String describing what this code block does. The comment

is not shown in Figure 1 to keep it readable. The token with
ID 7 e.g. covers the lines from line 7 to line 32 in Listing
1. For that token the object of type ElementReference is
also shown. This object connects the token with the corre-
sponding model element. Here this is the UMLClass object
u16. Using this tree every line in a Java file can be traced
back to the model elements that originally created that line.

3. JSR-045 AND SMAP
The previous section described a code-model mapping. To
now enable model-based debugging this mapping needs to
be integrated into the debugging process. That means it
should be possible to place breakpoints on model elements
or to stepwise execute a story diagram. The Java VM offers
an interface for such purposes. That interface is defined in
JSR-045 Debugging Support for Other Languages 1.

JSR-045 is originally made to allow debugging a textual lan-
guage other than Java using the standard Java debugger. To
debug an application in a different language using JSR-045,
for every source code file a so-called SMAP file must be pro-
vided. The SMAP file specifies which line in which file in
the source language corresponds to which line and file in the
target language which is normally Java.

To now debug Fujaba diagrams using JSR-045 one need to
convert the mapping tree described in the previous chapter
to a SMAP file. Note, that we are mapping a graphical lan-
guage to a textual one here. But that is no big problem since
our approach simply takes the IDs of the DLRToken in the
tree as source language line number. Additionally, the tree
has to be converted to a list. This is done by traversing the
tree depth-first and relate every line of the target language
to the token which generates this line and is deepest in the
token tree.

1
http://jcp.org/aboutJava/communityprocess/final/jsr045/index.html

The tree from Figure 1 would generate the SMAP file shown
in Listing 2. The SMAP file starts with a header that states
the target file (State.java, line 2) and the name of the source
language (Fujaba, line 3). Line 6 holds the name of the tar-
get file and the mapping starts at line 8. A single mapping
always looks like this: It starts with the start line in the
source file (here the ID of the DLRToken). Then comes a
“#” sign followed by the number of the source file (here al-
ways 1, see line 6). Then the number of repetitions might
be given starting with a comma. This makes only sense for
text-to-text mapping so it is not needed here. After a colon
the target line number and separated by a comma the length
of the code block is stated.

1 SMAP
2 State . java
3 Fujaba
4 ∗S Fujaba
5 ∗F
6 1 . . \ . . \ . . \ . . \ StatechartDLR . c t r
7 ∗L
8 6#1:1 ,6
9 7#1:7 ,2

10 8#1:9 ,12
11 9#1:21 ,3
12 10#1:24
13 12#1:25
14 9#1:26
15 7#1:27 ,5
16 6#1:32
17 ∗E

Listing 2: SMAP file for the source code from List-
ing 1

The lines 9 and 15 in Listing 2 e.g. specify that the lines 7-8
and 27-32 in the Java file from Listing 1 are generated by the
DLRToken with ID 7. That means that lines are generated
by the UMLClass element in the Fujaba model.

The information from the SMAP file is now compiled into
the Java class file using a post-compiler and can then be
used by every debugger that supports the JSR-045, like the
debugger integrated in eclipse.

4. FUJABA4ECLIPSE INTEGRATION
We have written a Fujaba4Eclipse plugin so that the ap-
proach described above can be used to debug Fujaba dia-
grams in Fujaba4Eclipse. Figure 2 shows that model-based
debugger in action. Due to the SMAP integration it is now
possible to add breakpoints to model elements, as shown in
the Breakpoint View in Figure 2. The debugger just hit
such a breakpoint. That is why the story diagram is opened
in the Fujaba Editor and the corresponding model element
is highlighted. The comment of the DLRToken, describing
what would happen next, is shown in the status bar. In this
case the debugger has stopped just before the target link
is created. The Debug View in Figure 2 shows the stack
trace of the suspended thread. Here it is possible to jump
to elements higher in the stack trace or to change the debug-
ger from model-based debugging to code-based debugging.
In the Variables View the developer can analyze the local
variables and the current object structure when the VM is
suspended. It is somehow difficult to compare a pattern in
a story diagram to the current object structure using the

24

Variables View to e.g. find out why a pattern fails. To solve
this problem the eDOBS plugin described in the next chap-
ter lifts the visualization of the object structure to model
level.

5. EDOBS
eDOBS is an Eclipse plugin, which visualizes the current
heap of a Java program at runtime as a UML object dia-
gram [2]. eDOBS may typically be used within a debugging
session. Instead of the variable view, the eDOBS panel may
show the content of variables and how the referenced objects
are related to each other. Figure 3 shows eDOBS visualiz-
ing the object structure while debugging the example from
Figure 2.

To make the comparison of the current object structure in
eDOBS and a story pattern in Fujaba easier, we have an-
notated all local variables names to the objects the variable
currently stores. This is done by visualizing the names as
notes behind the object name in eDOBS. In Figure 3 one
could see, that the object s0 is currently the this object,
the object s1 is stored as local variable sc, etc. Of course
one object in eDOBS can have multiple variable names. Ad-
ditionally, all objects currently not stored in any local vari-
able, that means all object not visible in the current method
block, are shown semi-transparent. This way it is quite easy
to identify a pattern in the current object structure and e.g.
analyze why the matching is not successful.

When exploring object structures in eDOBS, the way back
to the Eclipse or Fujaba4Eclipse artifact is offered for all
elements. That means that you can jump from an object /
attribute / method in eDOBS directly to the source code or
to the corresponding Fujaba4Eclipse diagram.

6. CONCLUSIONS
The paper has presented an approach to enable model-based
debugging in Fujaba. The result is implemented as eclipse
plugin in the CodeGen2 repository. It was tested with some
small examples, e.g. the Fujaba Solution for the AntWorld
Simulation Tool Case at the 4th International Workshop on
Graph-Based Tools2. In our opinion model-based debugging
helped alot when searching for bugs in those examples.

7. REFERENCES
[1] L. Geiger, C. Schneider, and C. Reckord. Template-

and modelbased code generation for MDA-Tools. In
H. Giese and A. Zündorf, editors, Proc. of the third
International Fujaba Days 2005, Paderborn, Germany,
volume tr-ri-05-259 of Technical Report, pages 57–62,
Paderborn, Germany, September 2005. University of
Paderborn.

[2] L. Geiger and A. Zündorf. eDOBS - Graphical
Debugging for eclipse. Electronic Communications of
the EASST, 1, 2006.

2http://www.fots.ua.ac.be/events/grabats2008/

25

Figure 1: Mapping tree

Figure 2: Model-based debugging in action

26

Figure 3: Model-based debugging with eDOBS

27

Fujaba’s Future in the MDA Jungle

Fully Integrating Fujaba and the Eclipse Modeling Framework?

Basil Becker, Holger Giese, Stephan Hildebrandt, Andreas Seibel
Hasso Plattner Insitute for Software System Engineering

Prof.-Dr.-Helmertstr. 2-3
14482 Potsdam, Germany

{Basil.Becker|Holger.Giese|Stephan.Hildebrandt|Andreas.Seibel}@hpi.uni-potsdam.de

ABSTRACT
Fujaba has a long tradition as a CASE tool and provides
outstanding features with its proprietary extensions in form
of Story Diagrams and TGGs. However, in its current form
Fujaba is not ready to support the development of tools or
applications for MDA. In this paper, we report about our
latest work on Fujaba and Eclipse and outline the used so-
lutions developed and employed so far. In addition, we out-
line our vision of the next open Fujaba version, which more
smoothly integrates with standard MDA environments and
thus could help that the Fujaba concepts and our research
results can be employed in standard development projects
in the MDA world.

1. INTRODUCTION
Fujaba has a long tradition as a CASE tool and provides
outstanding features with its proprietary extension in form
of code generation for UML Class Diagrams [5], Story Dia-
grams [2] and TGGs [4]. However as outlined in this paper,
Fujaba is currently not ready to support the development
of MDA tools or applications. To employ Fujaba and its
concepts, we have to restrict our projects to UML models
encoded with the proprietary UML dialect supported by Fu-
jaba. In practical applications, also other MDA techniques
are required, which have to be used in combination. In fact,
an open version of Fujaba is required, which can be employed
in a well established technological platform.

To be compatible with such a platform, Fujaba must be
able to support not only its proprietary UML models as
basis for its concepts but also standard meta models and
the standard APIs possibly generated by other non Fujaba
code generators. The Fujaba offspring MOFLON [1] with
its support for MOF 2.0 thus seems to be a good solution.
However, neither MOF 1.x nor MOF 2.0 has found much
acceptance in practice due to its complexity. Instead, the
Eclipse Modeling Framework (EMF)1 has become more or
less the quasi-standard for meta modeling, which provides a
partial implementation of the OMGs Essential Meta Object
Facility (EMOF) in form of the Ecore meta meta model.
In addition to basic support for modeling meta models and
code generation from the Ecore meta models, EMF also pro-
vides model serialization/de-serialization and validation fa-
cilities. Furthermore, a large variety of other tools for the
development of tools for MDA and DSLs based on EMF ex-

1http://www.eclipse.org/modeling/emf/

ist, e.g., openArchitectureWare2, ATL3 and GMF4. Also a
number of modeling tools already employ EMF such as the
UML2 Tools 5 for UML 2.0 modeling and TOPCASED6 for
SysML modeling.

In this paper, we report about our latest work on Fu-
jaba and Eclipse and outline the used solutions developed
and employed so far. In addition, we outline our vision
of the next open Fujaba version, which more smoothly in-
tegrates with standard MDA environments and thus could
help that the Fujaba concepts and our research results can
be employed in standard development projects in the MDA
world.

The paper is structured as follows: we first present our
current achievements and requirements for the meta model
based development of tools in Section 2 looking into meta
modeling (Section 2.1), Story Diagrams (Section 2.2), Triple
Graph Grammars (Section 2.3) and consistency rules (Sec-
tion 2.4). Then, we discuss our requirements for UML 2.0
based development of applications in Section 3. Finally, we
discuss our findings in Section 4 looking into open issues and
our envisioned solution before our final conclusions.

2. META MODEL BASED TOOL DEVEL-
OPMENT

2.1 Meta Modeling
Fujaba uses a proprietary meta meta model to represent
meta models. This makes interoperation with modeling
tools, based on other meta meta models, difficult. To create
transformation rules for our model transformation system
(described in Section 2.3), we first have to import the exist-
ing EMF meta models of the models, we want to transform,
into Fujaba. Unfortunately, there was no possibility to im-
port EMF based meta models into Fujaba, so far. Manually
remodeling meta models is usually not an option due to the
complexity of these meta models (e.g., UML 2.0). There-
fore, we developed a simple import plugin for Fujaba, which
uses EMF to de-serialize Ecore files and create the EMF
model tree in-memory. This tree is then traversed in order
to create a new Class Diagram, classes, attributes, methods,
generalizations and associations into Fujaba.

2http://www.openarchitectureware.org/
3http://www.eclipse.org/m2m/atl/
4http://www.eclipse.org/modeling/gmf/
5http://www.eclipse.org/uml2
6http://www.topcased.org

28

Problems arise if the Ecore model is split among several
files. An example is the SysML meta model used in TOP-
CASED7. This meta model references the UML 2.0 meta
model from the UML 2.0 plugin, which in turn references
the Ecore meta model. Within Eclipse, platform URIs are
often used to reference elements in models provided by other
plugins. In Fujaba, these URIs cannot be resolved, of course.
Therefore, the meta models have to be extracted from the
providing plugins, put into the same directory, and all ref-
erences in the files have to be made relative using a text
editor.

Then, all models can be imported into Eclipse in the order
in which they depend on each other. In the SysML case, first
the Ecore meta model must be imported because it is inde-
pendent from the other models. Then, the UML 2.0 meta
model and finally the SysML meta model can be imported.
The reason is, that elements referenced from another file are
not converted to Fujaba by the importer. The Fujaba ob-
jects must already exist. After the import, the meta models
are available for use in Fujaba.

2.2 Story Diagrams
Story Diagrams allow modeling behavior, using graph rewrit-
ing rules. They are similar to Activity Diagrams extended
by special Story Activities that contain graph rewriting rules.
In Fujaba, Story Diagrams specify the behavior of a method
related to a class. A code generator can generate Java code
from these Story Diagrams that implements the modeled
behavior.

Nevertheless, a problem occurs with meta models im-
ported from EMF. In Fujaba, compositions are always bi-
directional. This is not required in EMF. EMF provides the
method eContainer() to access the container of a contained
element. Importing a unidirectional EMF composition into
Fujaba, automatically creates an explicit inverse association
from the contained element to the container. Of course, this
association does not exist in the EMF model or the code
generated by EMF. This poses a problem for Fujaba’s code
generation from Story Diagrams because the code generator
might use these non-existent associations in the generated
code. This makes the generated code incorrect and it must
be corrected manually.

2.3 Triple Graph Grammars
In the context of Model-Driven Development (MDD), vari-
ous different models describe a system under construction.
These models can be used to describe different aspects, sub-
systems or overlapping parts of the system at different lev-
els of abstraction. Thus, models are not completely inde-
pendent but rather relationships between them exist, e.g.,
models are derived from other models by means of model
transformations or they are kept in sync by means of model
synchronization. Model transformation and synchroniza-
tion require a transformation system to transform differ-
ent model types and propagate changes between models. A
model transformation system must be seamlessly capable of
being integrated into an existing tool chain.

The Triple Graph Grammar (TGG) based model trans-
formation system introduced in [3, 4] has recently been mi-
grated to Eclipse. Thus, TGG based model transformations

7We encountered this problem in an industrial development
project where a model transformation for SysML models was
developed.

Source

Modeling

Tool

Target

Modeling

Tool

Transforma-

tion System

Source

Model

Target

Model

Transforma-

tion Rules

Source

Modeling

Tool

Adapter

Target

Modeling

Tool

Adapter

Figure 1: Overview of an in-memory transformation

can be easily used within Eclipse. This integration also al-
lows exploiting EMFs change notification mechanism for ef-
ficient synchronization of models. However, the transforma-
tion rules, that perform the actual transformation, are not
created within Eclipse but within Fujaba by means of Story
Diagrams.

2.3.1 Model Transformation on EMF Models using
Triple Graph Grammars

The model transformation system consists of a series of
Eclipse plugins. Core of the transformation system is the
transformation engine. It loads the source model of the
transformation and the required set of transformation rules
to create a target model. The engine is independent from
the model types. It just executes the transformation rules,
which perform the actual model transformation. The trans-
formation rules are therefore specific for two types of models,
the source and the target model. Transformation rule sets
are deployed as separate Eclipse plugins.

The TGG-based model transformation algorithm supports
bidirectional model transformation and synchronization. The
transformation can be executed on two conceptual levels:
file-based transformations and in-memory transformations.
The file-based transformation loads the source model file
from disk and saves the transformed target model to disk,
as well.
The in-memory model transformation (shown in Figure 1)
directly manipulates the models in the modeling tools’ mem-
ory. For this purpose, a special tool adapter is required that
allows accessing the models. If the modeling tool is another
EMF-based Eclipse plugin, such an adapter is usually quite
simple. In that case, the adapter just has to open the mod-
eling tool, get the resource object that contains the model,
and return it to the transformation engine. The transfor-
mation engine can then operate directly on the model. If
the modeling tool is an external program, the adapter is
much more complex and must translate modifications from
the EMF modeling space to the external modeling tool, e.g.,
via COM or .NET whenever the external tool provides an
appropriate interface. To execute a model transformation,
the user has to provide a source and target model and a set
of transformation rules.

2.3.2 Creating Model Transformation Rules with Fu-
jaba

Figure 2 shows the main steps, which are required to cre-
ate transformation rules within Fujaba. Before the actual
transformation rules can be defined, the meta models of the
source and target models must be available in Fujaba. In
case of Ecore meta models, these must be either remod-
eled or imported into Fujaba. Besides the source and tar-
get meta models, a third correspondence model is required
for a model transformation with TGGs. This correspon-

29

Import EMF

Meta Models

Create TGG

Rules

Derive Story

Diagrams

Generate

Transformation

Rule Java

Code

Adapt Java

Code Manually

Put Java Code

into Eclipse

Plugin

Deploy

Transformation

Rule Plugin

Use

Transformation

Rules

Create

Configuration

Files

Figure 2: Necessary steps to create executable
transformation rules from TGG rules

dence model captures traceability links between correspond-
ing source and target model elements. Of course, a corre-
spondence meta model is required that describes the avail-
able types of correspondence nodes and their inheritance
relationships. In addition to the meta models of the models
to be transformed, the meta model of the transformation
system itself is required. This meta model is also available
as an Ecore model and must be imported into Fujaba, as
well.

When all necessary meta models are available in Fujaba,
the TGG rules can be specified with the Fujaba TGG edi-
tor. While these TGG rules are only declarative, operational
transformation rules have to be derived afterwards in form
of Story Diagrams. For each TGG rule and each transforma-
tion direction a separate Story Diagram is derived. The gen-
erated Story Diagrams are the basis for the subsequent code
generation. The code generator has to generate proper EMF
compatible access methods for object creation and modifica-
tion. For example, factories create all EMF objects. These
factories must be used in the generated code to create new
EMF objects.

The current code generation (CodeGen2 plugin) of Fu-
jaba already supports the generation of EMF compatible
code. To enable the EMF code generation, the code style
attribute of all model elements must be set to ”emf“. The
generated Java code is then integrated into an Eclipse plugin
project. Due to the issue described in Section 2.2, several
manual corrections of the code may be necessary. In the
mentioned industry project, this issue posed a huge obsta-
cle because the UML 2.0 meta model contains mostly uni-
directional compositions and the code generator extensively
uses the false inverse associations. These errors had to be
corrected manually in the generated code.

Besides the classes for the actual transformation rules,
some more helper classes and configuration files need to be
created manually that, e.g. describe the type of models
the transformation rules can be used for. Especially, the
transformation rule plugin has to implement an extension
point provided by the transformation system. The trans-
formation system employs this extension point to discover
available transformation rules. Currently, these configura-
tion files have to be created by the user but rather should
be created automatically.

2.4 Consistency Rules
We are currently working on another MDA application, which
is a tool for model-based development of UML based appli-
cations deployment where we employ the notion of compo-

Meta-Model 1

Domain Specific
Model 1

Consistency
Rules

MDA Tool

Fujaba

specified on

applied on

conform to

Meta-Model n

Domain Specific
Model n

...

consistent to

applied on

specified on

conform to

Figure 3: Conceptual integration of Fujaba and an
Eclipse-based MDA tool for consistency rule speci-
fication

nent development and component configuration & deploy-
ment. The developed software components provide soft-
ware development aspects as well as deployment aspects like
well defined variation points for configuration during deploy-
ment.

Fujaba does not provide the necessary modeling artifacts
for this problem domain. In contrast, Eclipse does provide
with EMF an appropriate environment for defining meta
models, based on Ecore. Thus, we employ Eclipse and EMF
as modeling environment. However, Fujaba is still a major
part of the tool because we define consistency rules between
domain specific models by means of Story Diagrams. Figure
3 shows the tool, its artifacts, the role of Fujaba and the
relationships between these artifacts.
Consistency rules have to be specified on the meta models
and are subsequently applied on the domain specific models,
which are conform to their meta-models (instantiations). If
relationships between domain specific models exist, which is
quite common in our case, consistency rules are applied in
order to check whether all required domain specific models
are consistently modeled.

In order to realize such a tool, we employ the previously
explained EMF importer and the EMF code generation ca-
pability of Fujaba’s code generation. Thus, we import the
EMF meta models into Fujaba, specify the consistency rules
based on these meta models and subsequently generate EMF
compatible code for the consistency rule application within
Eclipse.

2.5 Open Issues
The major issue is the different meta meta models of Fu-
jaba and EMF. This requires a conversion of meta models
of one type to another. However, this conversion does not
work seamlessly because of the major conceptual differences.
One mentioned problem is compositions, which are always
bidirectional in Fujaba. This makes the generation of correct
Java code in Fujaba difficult.

Furthermore, the described workflow for creating a set
of transformation rules is far too complex for an ordinary
user of the transformation system. The process involves two
different platforms, Eclipse and Fujaba, and requires a lot
of manual steps. This workflow must be limited to only one
platform and be automated as much as possible.

30

3. UML 2.0 BASED APPLICATION DEVEL-
OPMENT

Fujaba does not allow UML 2.0 based application develop-
ment, yet. It is missing the capability of modeling compo-
nent based systems, a feature, which is nowadays of major
importance. Of course, it is possible to add components
and all other missing modeling aspects to Fujaba’s meta
meta model, but this is related to huge implementation ef-
forts. Obviously, this reduces or even circumvents Fujaba’s
usage in industry cooperation’s, as industry mostly uses and
arrogates UML 2.0 conform models, respectively.

Story Diagrams can only be used with Fujaba models and
within these models only for objects. But using them for
other modeling artifacts providing a similar instantiation
concept, i.e. components, would be a great benefit. How-
ever, it is impossible to use the modeling capabilities of dif-
ferent MDA / CASE tools and then use Fujaba to extend
these capability by means of Story Diagrams. Following, if a
developer wants to use Story Diagrams, she/he is currently
locked in Fujaba.

4. DISCUSSION
The sketched workflow of Section 2.3.1 is not quite opti-
mal. Two different platforms and meta meta models, Fu-
jaba and EMF, have to be used. Fujaba does only support
Class Diagrams of UML 2.0, which are even not completely
compatible to UML 2.0. The import of EMF models into
Fujaba and the code generation of Fujaba do not work per-
fectly, yet. Necessary configuration files cannot be created
automatically at all and several manual steps are required.
Furthermore, TGGs and Story Diagrams are not available
as EMF models, which would allow model transformations
on these models using the explained transformation system.
The main cause for these issues is the gap between the meta
meta models that must be bridged somehow.

To overcome these problems, the tool chain should be lim-
ited to a single platform. Because EMF is already widely
in use, it is the canonical choice. However, this requires the
migration or redevelopment of editors for TGGs and Story
Diagrams as well as a code generation from Story Diagrams.
Although Fujaba4Eclipse already tried to integrate Fujaba
within Eclipse, the migration did only change the user in-
terface but the underlying technology is still incompatible
to EMF.

Therefore, reusing established technologies of the Eclipse
world must leverage the integration of Fujaba and Eclipse.
Reusing EMFs widely used meta meta model would make
Fujaba compatible to other EMF based tools and would also
reduce maintenance effort. Such tools could also be reused
and do not need to be redeveloped for Fujaba anymore.

This also opens another possibility for the generation of
Story Diagrams from TGG rules as explained in Section
2.3.2. Up to now, the generation of Story Diagrams from
TGG rules is hard coded. This complicates the subsequent
development of the transformation algorithm because a large
part of the algorithm is contained in the operational trans-
formation rules. If the transformation algorithm is modified,
the generation algorithm for the Story Diagrams has to be
changed, as well. If TGG and Story Diagrams were also
EMF models, the transformation algorithm itself could be
used to create the Story Diagrams. Only a set of transfor-
mation rules has to be provided that transform TGGs into

Story Diagrams. To modify the transformation algorithm,
only this set of transformation rules has to be adapted.

To achieve the described goal, we are currently working on
the development of a Story Diagram editor based on GMF.
Because Story Diagrams are quite similar to UML Activity
Diagrams, we simply extend the UML 2.0 meta model pro-
vided by the UML 2.0 plugin by reusing intersecting parts.
Subsequently, a code generator for Story Diagrams must be
developed because a Story Diagram’s semantic is expressed
in terms of the resulting code. EMFs code generation mech-
anism can be reused to generate the main structure of the
code but a tailored code generation is required to generate
code from the behavior modeled by means of Story Dia-
grams.

A drawback of the sketched solution is that story-driven
modeling is then limited to Ecore models. Although, Story
Diagrams and their associated Class Diagrams are based on
UML 2.0, these Class Diagrams have to be converted to
Ecore models in order to use EMFs code generation. This
is a restriction because Ecore provides only a subset of the
constructs supported by MOF or Fujaba. A code genera-
tor that can generate Java code directly from the UML 2.0
model without a prior conversion to Ecore can solve this
problem.

5. CONCLUSION
In this paper, we have presented two major issues that ap-
peared in our recent work. First, the future of meta-modeling
seems to be hold by EMF and second, Fujaba’s Story Dia-
gram and TGG features are important for engineering qual-
ity software. We have experienced and explained that Fu-
jaba provides only poor compatibility to EMF and therefore
is going to loose track of further developments in MDD. To
overcome this, we propose to open Fujaba towards EMF
and benefit from EMFs success on the one hand and en-
abling Fujaba’s key technologies on the other hand, such as
Story Diagrams and TGGs for EMF based development.

6. REFERENCES
[1] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.

MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In Model
Driven Architecture - Foundations and Applications:
Second European Conference, volume 4066 of LNCS,
pages 361–375. Springer Verlag, 2006.

[2] L. Geiger, C. Schneider, and C. Reckord. Template-
and modelbased code generation for MDA-Tools. In 3rd
International Fujaba Days, Paderborn, Germany,
September 2005.

[3] H. Giese and S. Hildebrandt. Incremental model
synchronization for multiple updates. In Proceedings of
GraMoT’08, May 12, 2008, Leipzig, Germany, volume
Proceedings of GraMoT’08, May 12, 2008, Leipzig,
Germany, 2008.

[4] H. Giese and R. Wagner. From model transformation
to incremental bidirectional model synchronization. In
Software and Systems Modeling, 28 March 2008.

[5] U. Nickel, J. Niere, and A. Zündorf. The FUJABA
environment. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages
742–745, New York, NY, USA, 2000. ACM Press.

31

Letting EMF Tools Talk to Fujaba through Adapters

Jendrik Johannes
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

ABSTRACT
Many software modelling tools are built on top of the Eclipse
Modeling Framework (EMF) through which they can com-
municate and exchange models. In contrast to that, the Fu-
jaba Toolsuite defines its own modelling framework. Both
frameworks are built on the same concepts of software mod-
elling. Therefore, they can be adapted. This paper presents
an implementation of a generic adapter layer that adapts Fu-
jaba’s modelling framework to EMF. Through this adapter
layer, Fujaba models can be processed by any EMF-based
tool without adapting each of those tools individually.

1. INTRODUCTION
The Fujaba Toolsuite and the Eclipse Modeling Framework
(EMF) are both extensible software modelling frameworks.
Fujaba, as an academic tool, has a long history and grew
since the beginning of UML modelling into a set of tools
based on a common core framework. EMF, as an industrial
driven open-source framework, has attracted a larger com-
munity and consequently many modelling tools were built
based on it during the last years. Today, Fujaba and EMF
are both stable and productively usable modelling technolo-
gies, where each has its advantages and disadvantages for
specific software modelling tasks.
In Model-Driven Software Development (MDSD), which at-
tempts to use modelling during the whole software devel-
opment process, tool integration is very important. Focus-
ing on Fujaba and EMF-based tools, both could be used
together and profit from each other in MDSD processes.
Therefore, solutions are needed to integrate them tightly.
In earlier works, several ideas were presented that deal with
integration and exchange between Fujaba and EMF. They
were either based on aligning Fujaba-code itself [8] or on
model-transformations that convert Fujaba to and from EMF
models [5, 7]. The earlier require invasive changes of the
Fujaba source-code, which is problematical when the tool
evolves; the latter have a static nature, which requires ex-
plicit translations that hinder a smooth runtime integration
of both tools and easily lead to data inconsistencies. The
approaches so far also did either not succeed or not attempt
to provide a generic integration of both frameworks.
In this paper we apply the well-known Adapter Pattern [4]
to implement a small set of adapters that mediate between
Fujaba and EMF tools at runtime. Therefore, no changes
neither of Fujaba nor of EMF are required, but models are
kept synchronised at runtime. The only premise for such
adapters is that both tools expose the runtime model in-
stances to the outside—which both do.

The paper is structured as follows: Section 2 shows the
points at which Fujaba and EMF need to be adapted and de-
scribes our adapter implementation. The usability of the im-
plementation is demonstrated using different examples that
show how Fujaba interacts with different EMF-based tools
in Section 3. Section 4 concludes and discusses possible en-
hancements of the adapter layer.

2. MAPPING AND ADAPTATION
In this paper, we focus on inspecting and modifying Fu-
jaba models with EMF tools, which can only handle EMF
models. To let Fujaba models look like EMF models, the
following four concepts, found in both Fujaba’s and EMF’s
implementation of model, need to be adapted: A model in
Fujaba or EMF (1) conforms to a metamodel, (2) consists
of model elements and (3) references between the elements,
(4) is instantiated by a factory, and (5) persisted in a re-
source (e.g., a file). This section shows how the different
implementations of the five concepts can be adapted.

2.1 Metamodel Mapping
A metamodel defines the concepts of a modelling language
and can therefore be used to instantiate a modelling frame-
work for that language. Since we want to access Fujaba mod-
els from EMF, the first step is to make Fujaba’s modelling
language—UML Class Diagrams, Statecharts, and Activity
Diagrams with Story Patterns—known to EMF. This can be
done by providing a metamodel of these languages in Ecore1

format. The second step is to map the metaclasses of this
metamodel (i.e., Fujaba metamodel in Ecore format) to the
corresponding representations of the metaclasses in Fujaba
(i.e., Java classes implementing the metaclasses).
To solve this issue, we implemented a tool that extracts
information about the Fujaba metamodel from the Fujaba
class files using Java’s refelection facilities. For each Java
class that belongs to Fujaba’s metamodel implementation,
the tool constructs an EClass (EMF metaclass representa-
tion) and organises all of them in EPackages (EMF meta-
model representations), which are then registered in EMF’s
metamodel registry. For this, the tool makes assumptions
about Fujaba’s metamodel implementation but also requires
additional information that can not be derived from the im-
plementation allone. Describing all the assumptions and
additional parameters in detail is not possible in this paper
due to space limitations. Some assumptions are, however,
presented in the context of Sections 2.2 and 2.3.

1EMOF [9] conformant metamodelling language of EMF

32

During the extraction, a mapping between the Fujaba meta-
class representation (Java class objects) and Ecore metaclass
representations (EClass objects) is created. The mapping is
used by the adapters described in the next sections.

2.2 Model Element Adapter
The most important objects to adapt are the ones repre-
senting model elements. In both Fujaba and EMF, each
model element is represented by one Java object. In Fu-
jaba, all those objects are instances of a class implementing
FElement. In EMF, the objects are instances of a class im-
plementing EObject. Both interfaces offer convenient func-
tionality for each model element; for instance comparability
or listener support. In Fujaba, the Java class of which a
model element is an instance corresponds to that element’s
metaclass. In EMF, this does not have to be the case.2 The
metaclass of an element can always be determined by the
eClass() method of EObject. A standard implementation
of EObject that can be used to represent any model element
is DynamicEObjectImpl.
This loose coupling between metaclasses and their Java im-
plementation is possible in EMF because the EObject inter-
face offers rich reflection capabilities to inspect and modify
models. For example, eGet(String feature) delivers the
value of a feature by naming it; eSet(String feature, Ob-

ject value) sets a feature to the given value. In Fujaba,
such reflection capabilities are not provided by the FElement
interface. Models can only be inspected and modified by us-
ing Java methods that correspond to element features (e.g.,
get<featureName>()).
Our adapter implementation delegates the reflective meth-
ods of EObject to methods of Fujaba metamodel classes
using Java reflection. It hereby makes assumptions about
the method names in Fujaba metamodel classes which were
already used in the metamodel mapping (Section 2.1) and
correspond to method naming applied by the Fujaba code
generator.
The dynamic model element adapter, DynamicEObject4Fu-
jabaModels, is implemented as an extension of the existing
DynamicEObjectImpl. The DynamicEObject4FujabaModels

constructor expects an instance of FElement. This is the
adapted Fujaba object to which the constructed adapter
is bound for its lifetime. Furthermore, the methods dy-

namicGet() and dynamicSet() are overridden that handle
reading and writing properties of the object. They realize
the connection between the public EObject interface and the
storage of information.

dynamicGet(int featureID) is implemented as follows:

1. Use the featureID (an identifier for a EStructural-

Feature object that represents a feature defined by an
EClass) to obtain name, mutiplicity, and type of the
feature

2. If the feature’s multiplicity is 1: find and call the
method get<featureName>() on the adapted fujaba
element (call the method is<featureName>() instead,
if the type is boolean)

(a) If the called method returns a String, Integer, or
Boolean value, return that value

2It can be the case if EMF’s code generation is applied

(b) If the called method returns an FElement, ask the
DynamicEObject4FujabaModelsFactory (cf. Sec-
tion 2.4) for the corresponding Adapter and re-
turn it

3. If the feature’s multiplicity is > 1: if no DynamicEList-

4FujabaModels representing the multiplicity feature
was constructed yet, construct one (cf. Section 2.3);
return the DynamicEList4FujabaModels representing
the multiplicity feature

dynamicSet(int featureID, Object value) is implemented
as follows:

1. Use the featureID to obtain name, mutiplicity, and
type of the feature

2. If the feature’s multiplicity is 1:

(a) If the type is an EClass, ask the metamodel map-
ping (cf. Section 2.1) for the corresponding Fu-
jaba metamodel class and use that as type (oth-
erwise the type is String, Integer, or Boolean and
can be used as is)

(b) Find and call set<featureName>(<featueType>)
on the adapted fujaba element

3. If the feature’s multiplicity is > 1: do nothing (handled
by DynamicEList4FujabaModels, cf. Section 2.3)

2.3 Collection Reference Adapter
Features with a multiplicity > 1 have to be handled explic-
itly in modelling tools implemented in Java, since there is no
notion of attributes with a multiplicity > 1 in Java directly.
Instead, collection objects have to be used. Fujaba and EMF
handle this differently: Fujaba offers three3 methods for
each multiplicity > 1 feature directly on the corresponding
metaclass. These methods are iteratorOf<featureName>()
(returns an iterator over the feature), addTo<featureName>
(value:<featureType>) (adds an element to the feature),
and removeFrom<featureName>(value:<featureType>) (re-
moves an element from the feature). In EMF, no such meth-
ods are defined by metaclasses. Instead, a list object is
returned when the value of a specific feature is requested.
Clients can add/remove elements to/from the list which di-
rectly manipulates the feature. Therefore, EMF comes with
its own extension of the Java Collections Framework to in-
sert additional functionality into the list methods which are
required for model manipulation. In particular, lists repre-
senting features have to implement the interfaces EList.
For our adaptation, we require an EList that delegates all
operations to methods of the adapted Fujaba object. In
the implementation DynamicEList4FujabaModels,it was not
possible to reuse an existing implementation (as for the
model element adapter), since the functionality of storing
data is so fundamental to Java’s list implementations that
nearly every methods accesses the data storage directly. Con-
sequently, we implemented the required interfaces directly
and did the following delegations to the adapted Fujaba el-
ement:

3There are more methods to access features, but the enu-
merated three are sufficient. Availability of other methods
also varies between metaclasses.

33

1. iterator() delegates to iteratorOf<featureName>()

2. add()delegates to addTo<featureName>()

3. remove() delegates to removeFrom<featureName>()

The adapted Fujaba element—and the feature that is adapted
by a DynamicEList4FujabaModels—are both passed to that
list in its constructor, when it is created by a dynamicGet()

method call of a DynamicEObject4FujabaModels (cf. Sec-
tion 2.2). All other list operations dictated by the imple-
mented interfaces are based on the three that delegate to
the Fujaba element.

2.4 Model Element Factory Adapter
The two presented adapters are used to access and ma-
nipulate existing model elements. What is not supported
yet is the creation of new elements, which is implemented
in the DynamicEObject4FujabaModelsFactory. Both Fu-
jaba and EMF use factories for model element creation and
have a registry for factories that can be queried for a suit-
able factory for a given metaclass. Therefore, adaptation
is straight forward: DynamicEObject4FujabaModelsFactory
extends EMF’s standard factory implementation EFacto-

ryImpl by overriding the basicCreate(EClass) template
method. Our implementation uses the metamodel mapping
(cf. Section 2.1) to obtain the Fujaba metaclass correspond-
ing to the given EClass. It then asks Fujaba for a factory
suitable for that metaclass and uses that factory to create a
new Fujaba model element.
A singleton DynamicEObject4FujabaModelsFactory is regis-
tered at the metamodel created by the mapping (cf. Section
2.1). Doing so forces EMF to use this factory for creating
elements conforming to the corresponding metamodel.
The DynamicEObject4FujabaModelsFactory also acts as a
model element adapter (cf. Section 2.2) registry. It is used
by all four adapter types (cf. Sections 2.2, 2.3, 2.4, 2.5)
to obtain an adapter for a Fujaba model element. If the
adapter does not exist yet, it is created for the correspond-
ing element and registered.

2.5 Resource Adapter
The last missing piece in the adaptation is the storing and
loading of models. Fujaba models are loaded and stored by
Fujaba and made available in Fujaba’s workspace. In EMF,
so called Resources are used to represent physical storage.
We leave the loading and storing of models to Fujaba and
adapt it as well, by providing a FujabaResource that, in-
stead of loading from and writing to a physical storage, ac-
cesses the Fujaba workspace.
Resource types can be registered at EMF for a file exten-
sion. We register the FujabaResource for the extension
.fujaba. When a file with the .fujaba extension is opened
in the Eclipse workspace, EMF attempts to load it as a
FujabaResource, which takes the file name of the opened
file and looks for a Fujaba project (in Fujaba’s workspace)
with the same name. It then retrieves the adapter for that
project (which is also a Fujaba model element) from the reg-
istry (cf. Section 2.4) and sets it as the resource’s content.
Therefore, any Fujaba project can now be accessed as EMF
model from Eclipse by creating an empty file somewhere in

the Eclipse workspace using the scheme: <FujabaProject-

Name>.fujaba.4 Saving works in a similar fashion by manip-
ulating the Fujaba workspace in FujabaResource’s saving
method.

3. APPLICATIONS
This section shows how the adapter is used by different
EMF-based tools without further effort. Its aim is to demon-
strate the rich possibilities of a generic integration of Fujaba
and EMF as demonstrated in the last section. Throughout
this section we use s simple UML model modelled in Fujaba
shown in Figure 1.

Figure 1: Model of a conference system in Fujaba

3.1 Displaying Fujaba Models in EMF-style
The first simple application is a tree model editor included in
EMF. This editor can display any model independent of its
metamodel. It uses the containment relationships between
model elements to determine the tree structure. Figure 2
shows the example opened in that editor. Note that we can
not only inspect, but also modify the model with the editor.

Figure 2: Fujaba model displayed in EMF’s editor

3.2 EMF Compare: Diffing Fujaba Models
EMF Compare [3] is a tool that computes diffs between two
versions of a model and visualises them using tree represen-
tations as used by the editor above. Imagine that we import
a new version of the example into the Fujaba workspace un-
der the name ConferenceSystemNew, where the class Paper
has been renamed to Submission. EMFCompare suggests
that Submission was indeed Paper before by inspecting both
versions’ structures as shown in Figure 3.

Figure 3: Visual diff between Fujaba models

4Fujaba has to run in the same JavaVM as Eclipse such that
the Fujaba workspace can be accessed.

34

3.3 Transforming Fujaba Models with ATL
For EMF, there are plenty of model transformation and
management tools available; many of them in the Eclipse
Modelling Project [11]. As one representative, we show the
ATL [1] transformation tool, in which model transformations
can be defined in declarative rules. One could for instance
define a transformation from Fujaba UML to Eclipse UML2
[2] and then open the result with editors for the latter. Fig-
ure 4 shows an excerpt of such a transformation and the
result of transforming the conference system model.

Figure 4: Transforming Fujaba to Eclipse UML

3.4 Reuseware: Composing Fujaba Models
In our own tool Reuseware [6, 10] we can define (cross-
cutting) composition systems for modelling languages. We
defined, for instance, a composition system for Fujaba class
diagrams that can be used to extend classes with pre-defined
functionality. Figure 5b shows a Reuseware composition
program that extends the example model with observer be-
haviour by reusing the prior defined observer model (cf. Fig-
ure 5a). Reuseware can execute the composition program
and produce a composed model (cf. Figure 5c). This appli-
cation was indeed our motivation for developing the adap-
tation mechanism and will be further explored in future re-
search.

Figure 5: Composing two Fujaba models

4. CONCLUSION AND OUTLOOK
In this paper we described a metamodel mapping and a set
of adapters that enable EMF tools to access models in the
Fujaba workspace. This opens the door for interesting new
projects that combine EMF tools and Fujaba.
A prerequisite for the adaptation is the availability of an
Ecore version of the Fujaba metamodel. Since this was not
available, a tool was written to extract this metamodel from
Fujaba’s class files. This tool requires additional informa-
tion, which are at the moment statically encoded. In the
future, this could be made configurable, and different con-
figurations could be provided for different Fujaba versions
to ensure that the tool works with them. Another approach

would be to construct a complete Fujaba metamodel in UML
by using Fujaba reverse engineering tools and, if required,
manual modelling. [5] can then be applied to transform it
into an Ecore metamodel of Fujaba.
We realised dynamic adapters using reflection. One could
also think of a generative approach that generates specific
adapters for metaclasses, avoiding the usage of reflection
to increase performance. Such an approach might also be
applicable the other way around—to access EMF models
from Fujaba. For this, Ecore metamodels would have to be
mapped to extensions of Fujaba’s metamodel and adapters
that work in the reverse direction must be generated.
For the adapters to work, both the EMF tool and Fujaba
have to run in the same JavaVM, which caused some Class-
Loader issues during our experimentation. How to resolve
those has to be further investigated. Another open issue is
to integrate the adapters with Fujaba4Eclipse, which should
not be difficult, since Fujaba4Eclipse is based on the same
framework as Fujaba. On the other hand, the integration
should be much smoother and less problems should occur,
since Fujaba4Eclipse and the EMF-based tools both run in-
side Eclipse (and therefore in the same JavaVM).

5. ACKNOWLEDGMENTS
This research has been co-funded by the European Com-
mission within the 6th Framework Programme project Mod-
elplex contract number 034081 (cf. www.modelplex.org).

6. REFERENCES
[1] ATL Project. Atlas Transformation Language.

www.eclipse.org/m2m/atl. Accessed Aug. 2008.

[2] Eclipse Foundation. Eclipse UML2 Project.
www.eclipse.org/uml2. Accessed Aug. 2008.

[3] EMF Compare Project. Emf compare. www.eclipse.org/
emft/projects/compare. Accessed Aug. 2008.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1994.

[5] L. Geige, T. Buchmann, and A. Dotor. Emf code
generation with fujaba. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proc. of the 5th International Fujaba
Days, Kassel, Germany. University of Kassel, Oct. 2007.

[6] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler.
On language-independent model modularisation.
Transactions on Aspect-Oriented Development, Special
Issue on Aspects and MDE (to appear), Nov. 2008.

[7] F. Heidenreich and U. Wemmie. Breaking the domination
of the internal graph model. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proc. of the 5th International Fujaba
Days, Kassel, Germany. University of Kassel, Oct. 2007.

[8] J. Johannes, I. Savga, and T. Haupt. Integrating fujaba
and the eclipse modeling framework. In H. Giese and
B. Westfechtel, editors, Proc. of the 4th International
Fujaba Days, Bayreuth, Germany, volume tr-ri-06-275.
University of Paderborn, Sept. 2006.

[9] Object Management Group. MetaObject Facility (MOF)
specification version 2.0. OMG Document, Jan. 2006.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[10] Reuseware Project. Reuseware Composition Framework.
http://www.reuseware.org. Accessed Aug. 2008.

[11] The Eclipse Foundation. Eclipse modelling project.
http://www.eclipse.org/modelling. Accessed Aug. 2008.

35

The Fujaba Automotive Tool Suite∗

Kahtan Alhawash, Toni Ceylan, Tobias Eckardt, Masud Fazal-Baqaie, Joel Greenyer,
Christian Heinzemann, Stefan Henkler, Renate Ristov, Dietrich Travkin, Coni Yalcin

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[alhawash|crowdy|tobie|masudf|jgreen|chris227|shenkler|renate|travkin|coni81]@upb.de

ABSTRACT
Automotive systems contain a large number of software con-
trollers that interact in order to realize an increasing number
of functions. The controllers are typically developed sepa-
rately by different suppliers. Therefore, errors in the overall
functionality are often detected late in the development pro-
cess or even remain undetected. This affects the quality and
safety of the systems and may lead to expensive recalls.

We propose to specify the communication behavior more
precisely in the early system design by modeling the con-
trollers’ interactions using formal sequence diagrams (LSCs).
Based on these behavior models we’re able to automati-
cally synthesize state machines, which can be used to gener-
ate code for the communication behavior of the controllers.
We provide a prototypical integrated modeling environment
based on Fujaba which supports specifying requirements,
modeling the component architecture, and component be-
havior as well as the state machine synthesis.

1. INTRODUCTION
Today’s cars provide a continuously growing number of en-

hanced functions like a car’s windows when it starts raining
and no one is in the car, or automatically adapting the speed
to that of a preceding car. The rising complexity of these
functions requires the interaction of numerous controllers,
sensors, and actuators to achieve the desired behavior. In
order to handle the system’s complexity and increase its flex-
ibility, more and more functions are realized by software.

The controllers are usually developed separately by dif-
ferent suppliers. These rely on interface and requirements
specifications given by car manufacturers. Therefore, the
controllers are tested as single units. Integration tests, espe-
cially tests addressing communication behavior, are run very
late in the development process. Not sufficiently consider-
ing the communication behavior in the early development
process, negatively affects the system’s quality and safety.
Failures and errors due to wrong communication behavior
are revealed too late and may result in product recalls.

Furthermore, inconsistencies in system design may arise
due to heterogenous tools which are typically used in the
automotive industry today: DOORS1 is often used for re-

∗This work was partly developed in the course of the Spe-
cial Research Initiative 614 – Self-optimizing Concepts and
Structures in Mechanical Engineering – University of Pader-
born, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.
1http://www.telelogic.com

quirements engineering, an AUTOSAR2-compatible editor
is used to specify the system architecture, and MATLAB
Simulink3 for the specification of the components’ inter-
nal controller behavior. Finally, code generators like Tar-
getLink4 are used to generate the controller code.

We approach the problems stated above by formally speci-
fying the communication behavior earlier in the development
process, starting in the requirements engineering phase. The
requirements are refined step-wise to iteratively build the
system architecture and formally specify its behavior very
early in the system design. This would enable car manu-
facturer to validate the overall system functionality in ear-
lier development phases and to provide suppliers with more
precise specifications of single controllers. Additionally, we
show how to establish traceability between the design ar-
tifacts and the elaborated requirements. To support the
overall process, we implemented a modeling environment
based on Eclipse and Fujaba. Since all editors operate on
the same underlying model and provide just different views
on it, consistency between all artifacts and across all devel-
opment phases is achieved.

2. EXAMPLE
The example that we use throughout this paper is that of an
adaptive cruise control (ACC). The ACC supports the driver
of a car by keeping the current speed and by adapting the
speed to preceding cars automatically in order to maintain
a safe distance.

A simplified system architecture for the ACC is shown
in Figure 1. The sensors, actuators, and the user interface
are omitted here. The ObjectRecognition component is re-
sponsible for detecting preceding cars by interpreting inputs
from a front radar sensor. The information about preced-
ing cars is sent to the AdaptiveControl component, which
computes the maximum speed of the car so that the safety
distance is maintained. The new speed of the car is set in
the AccelerationControl component, which is responsible for
controlling the actual speed of the car. The internal (con-
troller) behavior, e.g. the calculation of the new speed by
the AdaptiveControl, is not considered here. These are typ-
ical tasks for control engineering, where control behavior is
specified by continuous block diagrams, usually using MAT-
LAB Simulink.

However, the three components have to interact in order

2http://www.autosar.org
3http://www.mathworks.com
4http://www.dspace.com

36

Figure 1: Simplified ACC component diagram

to achieve the correct ACC behavior. To achieve a correct
system functionality, a correct communication behavior of
the components is needed in addition to the internal behav-
ior. In this paper, we concentrate on the communication
behavior, which is modeled in terms of asynchronous mes-
sages that are sent via ports.

3. THE DEVELOPMENT PROCESS
The development process in the automotive industry to-

day captures the system’s requirements in a structured way,
typically using the tool DOORS. In order to ease integration
of structured requirement specifications into our tool envi-
ronment, we specify requirements in a goal-oriented way [6],
using goal trees (Figure 2). This helps to iteratively define
requirements, identify components and describe communi-
cation behavior. These goals are therefore directly linked to
the according parts in the system architecture (components)
and communication behavior descriptions.

The system architecture is modeled using UML compo-
nent diagrams (see Figure 1). Component diagrams have
become the standard means to specify the architecture of
automotive systems today, since a variant of component di-
agrams also forms part of the AUTOSAR standard. Compo-
nents can send and receive messages via ports. The ports are
typed over interfaces which contain a set of message types
that can be sent or received (Figure 3).

In the early design process found in practice today, it is
specified what kind of data values or messages can be com-
municated between the components, but the order of mes-
sages and the events which trigger communication sequences
are not formally specified. Thus, the behavioral specification
given to suppliers is often incomplete. Different from indus-
try processes, we propose to specify communication between
components in the early design phase by using a formal vari-
ant sequence diagrams (see section 5). This enables an early
analysis of the communication behavior before the specifi-
cation is given to suppliers. In our implemented automotive
tool suite, the sequence diagrams are modeled based on the
system architecture model and thus syntactic consistency is
ensured. Furthermore, we link components and sequence di-
agrams to the goals which they fulfill so that design problems
can be traced to the according requirements.

All parts of the system description are iteratively refined
during the specification process. The communication behav-
ior for each component can then be synthesized automati-
cally. Our synthesis generates one statechart per compo-
nent. From these statecharts, source code can be generated
by standard techniques [2]. This code can be used for early
prototyping, or code generation may be combined with the

refined (control) behavior of the component, which is devel-
oped by component suppliers [1].

Keep distance to
preceding vehicles

Support the Driver

Calculate new required
speed

Retrieve own current
Speed

Calculate required Speed
due to distance
changing

Retrieve distance change
per interval

OR

OR

And
And And

......

Figure 2: Goal tree excerpt of the ACC example

«interface»
I _SpeedFunct ions

setSpeed (speed:Integer)

«interface»
I _CarRecognit ion

updateDistChange (

mid Interfaces

«interface»
I _SpeedRequest

getCurSpeed ()

«interface»
I _SpeedValue

sendCurSpeed (curSpeed:Integer)

distance:Integer, distanceChg:Integer, curSpeed:Integer)

precedingCar (present: Boolean)

Figure 3: Interfaces – Specifying communication be-
tween components

4. MODELING COMMUNICATION BEHAV-
IOR

In this section, we show how to specify the communication
behavior by considering two refined goals from the example
“Retrieve own current speed” and “Calculate new required
speed” (Figure 2).

This communication behavior is described with a subset
of Live Sequence Charts (LSCs) [5]. The syntax, however,
is based on UML 2.1.

We specify a separate LSC for each goal – Figure 4a refines
the behavior for “Retrieve own current speed”, Figure 4b
refines the behavior for “Calculate new required speed”.

According to [5], we distinguish between mandatory be-
havior and possible scenarios. To describe what must hap-
pen, we split sequence diagrams into a prechart and a main
chart. If the behavior of the prechart is observed, the be-
havior of the main chart is executed. The LSC in Figure
4a accordingly specifies that if the AccelerationControl re-
ceives getCurSpeed() from the AdaptiveControl, it will an-
swer with sendCurSpeed(curSpeed). The LSC in Figure 4b
specifies that if the current speed has been retrieved, the
AdaptiveControl has to calculate the new speed by calling
calcMaxSpeed(...) and send it to the AccelerationControl us-
ing setSpeed(...). Specifying system behavior in such manner
thus enables early execution and analysis of specifications.

Several LSCs can be active at the same time. Since the ex-
ecution of one LSC can lead to the fulfillment of the prechart
of another, one LSC execution can be a trigger for another
LSC execution. This way, the execution of the main chart
in Figure 4a triggers the LSC in Figure 4b.

37

Further on, we distinguish between synchronized method
calls for intra-component behavior (calcMaxSpeed(...)) and
asynchronous messages for inter-component communication.

sc RetrieveCurrentSpeed

adapt iveCont rol:Adapt iveCont rol accelerat ionCont rol:Accelerat ionCont rol

MAINMAIN

getCurSpeed()

sendCurSpeed(curSpeed)

sc UseFormulaForCalculation

accelerat ionCont rol:Accelerat ionCont roladapt iveCont rol:Adapt iveCont rol

MAINMAIN

setSpeed(newSpeed)

sendCurSpeed(curSpeed)

calcMaxSpeed(distance, distanceChange, curSpeed)newSpeed:=

a)

b)

Figure 4: a) Sequence diagram for speed retrieval
b) Sequence diagram for calculation of new speed

The central advantage of using LSCs is their formality,
which enables synthesis to one statechart for each compo-
nent. Additionally, the specification can already be sim-
ulated and analyzed during the requirement specification
phase. This solves one of the major problems of the cur-
rent development process employed in industry where incor-
rect communication behavior is often discovered not until
implementation phase.

5. SYNTHESIS OF COMMUNICATION BE-
HAVIOR

Based on the system’s inter-component communication be-
havior specified by a number of LSCs, we are now able to
automatically synthesize intra-component behavior for each
component as statecharts similar to the methods proposed
in [3] and [4]. We adapted the implementation of [3] to syn-
thesize LSCs [4].

We generate one statechart for each component with one
orthogonal state for each LSC. The top orthogonal state of
the statechart for the AdaptiveControl (Figure 5) results
from the LSC RetrieveCurrentSpeed, the bottom orthogo-
nal state results from the LSC UseFormulaForCalculation
(Figures 4a and b).

For generating the states for each LSC, we insert states
on the component’s lifeline before and after each sending or
receiving of a message. The transition between those states
becomes either a raised – sending a message – or a trig-
ger event – receiving a message – with the message as the
transition label. In the example, two states InitReceivesend-
CurSpeed and ReceivedsendCurSpeed are generated for the
reception of sendCurSpeed(...). Furthermore, a trigger send-
CurSpeed(curSpeed) is added to the transition between those
states.

If the message is located in the prechart of the sequence
diagram, the event is always a trigger, whether the message
is sent or received. The reason for this is that the prechart
is observed behavior and not executed behavior. In the ex-
ample, the sent message getCurSpeed() is a trigger of the

corresponding statechart transition between the states Initi-
ategetCurSpeed and SentgetCurSpeed.

Intra-component method calls are realized as entry actions
in one state. Accordingly for the method calcMaxSpeed(...)
a state IncalcMaxSpeed is generated with the method call as
its entry action.

To realize correct behavior for the main chart semantics,
coordination messages are employed as proposed in [4]. To
give notice to all participating components that the prechart
of the LSC is satisfied, a message is sent to the correspond-
ing components. As soon as those receive such a message,
they change their state for being able to react on or execute
the ensured behavior of the main chart. In the example
statechart (top orthogonal state), the AdaptiveControl first
has to receive coordadaptiveControlgetCurSpeed() before it
starts with the execution of the main chart. Accordingly,
coordination messages have to be inserted to notify all par-
ticipating components that the execution of the main chart
has finished (message overaccelerationControl()).

This automatic synthesis of the components’ communi-
cation behavior facilitates analysis of communication based
component and system properties at an early stage of de-
velopment. It also enables automatic code generation. For
this, the intra-component method calls have to be extended
with internal controller behavior.

6. RELATED WORK
Our sequence diagrams are based on LSCs [5], using a syn-
thesis sceme as presented later by Harel, Kugler and Pnueli
[4]. The main difference of our subset of LSCs, besides the
UML syntax, is that they only employ hot semantics and
only describe conditions within alternative and loop frames.
In addition to [4], we are able to synthesize these alterna-
tive and loop frames. The original work on LSCs relies on
a simple object system to describe the system architecture,
whereas we consider a component-based software architec-
ture. Our synthesis is designed to route coordination mes-
sages (see section 5) only over existing connectors between
the components instead of allowing arbitrary communication
between the components. This becomes important when de-
ploying the components on a distributed platform.

The SceBaSy approach uses time-annotated sequence dia-
grams to synthesize reusable, state-based coordination pat-
terns [3]. The synthesis focuses on calculating admissible
time bounds for real-time statecharts, but in turn requires
the sequence diagrams to be deterministic. This requires a
detailed behavior description and, therefore, the approach
is not suitable for early development phases. SceBaSy and
its real-time analysis could, however, still be integrated in a
later development stage. To integrate SceBaSy, it should be
investigated in the future how to perform time-analysis to
find admissible alternatives in early, non-deterministic com-
munication behavior descriptions. Furthermore, the Sce-
BaSy synthesis employs rules for optimizing the resulting
statecharts and it is to be investigated how to employ such
rules in our synthesis scheme.

7. CONCLUSION AND FUTURE WORK
We presented a development process for automotive soft-
ware systems with special emphasis on formal specification
of communication behavior. We proposed a sequence dia-
gram dialect that facilitates early analysis of communication

38

adaptiveControl

InitiategetCurSpeed SentgetCurSpeed

InitiateoveraccelerationControl

SentoveraccelerationControl

InitReceivesendCurSpeedReceivedsendCurSpeed

InitReceivecoordadaptiveControlgetCurSpeed

ReceivedcoordadaptiveControlgetCurSpeed

InitialState

calcMaxSpeed

InitiatecoordaccelerationControlsendCurSpeed

SentcoordaccelerationControlsendCurSpeed
InitiatesendSpeed

SentsendSpeed

InitReceivesendCurSpeed ReceivedsendCurSpeed

InitReceiveoveradaptiveControl

ReceivedoveradaptiveControl

InitialState

1

0

Trigger:
getCurSpeed()

1

1

1

Raised:
overaccelerationControl()

1

Trigger:
sendCurSpeed(curSpeed)

1

Trigger:
coordadaptiveControlgetCurSpeed()

1

0

1

1

Raised:
sendSpeed(speed) 1

Trigger:
sendCurSpeed(curSpeed)

Trigger:
overadaptiveControl()

0

InitialState

In

calcMaxSpeed(distance, distChange, curSpeed)entry:

1

1

1

1

1

Raised:
coordaccelerationControlsendCurSpeed()

1
1

Figure 5: Synthesised statechart for the adaptiveControl component

behavior and automatic synthesis to communication based
component behavior by means of statecharts. We realized
tool support for this development process and proposed con-
cepts using the Fujaba4Eclipse platform.

Future work embraces scalablity analysis of the synthe-
sized statecharts. We suppose that, as the approach uses
parallel states, it provides better scalability for statecharts
than synthesizing one non-parallel statechart for each com-
ponent. Accordingly, synthesized statecharts should be op-
timized to eliminate superfluous states.

Also important for future work are consistency checks on
LSCs, for example showing deadlock freedom or discovering
contradictions between several LSCs. This is important, be-
cause a high modularity in the LSC specification can lead
to many inconsistency that are not obvious to see.

It is already possible to annotate time constraints in our
LSCs. The synthesis approach needs to be extended with
timing analysis as the specified systems act in real-time envi-
ronments. One possibility could be to integrate SceBaSy for
use in later design phases of the overall development process
while using our approach in the requirement specification.
Controller behavior has to be integrated for example using
MATLAB Simulink models. Another extension could be the
inclusion of a deployment model (cf. AUTOSAR) in order
to specify which software components shall be realized on
which hardware components. Finally, an AUTOSAR con-
form code generation should be developed to support the
implementation phase of the automotive software system.

8. REFERENCES
[1] S. Burmester, H. Giese, S. Henkler, M. Hirsch,

M. Tichy, A. Gambuzza, E. Müch, and H. Vöcking.
Tool support for developing advanced mechatronic
systems: Integrating the fujaba real-time tool suite

with camel-view. In Proc. of the 29th International
Conference on Software Engineering (ICSE),
Minneapolis, Minnesota, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[2] S. Burmester, H. Giese, and W. Schäfer. Code
generation for hard real-time systems from real-time
statecharts. Technical Report tr-ri-03-244, University of
Paderborn, Paderborn, Germany, October 2003.

[3] H. Giese, S. Henkler, M. Hirsch, and F. Klein.
Nobody’s perfect: interactive synthesis from
parametrized real-time scenarios. In SCESM ’06:
Proceedings of the 2006 international workshop on
Scenarios and state machines: models, algorithms, and
tools, pages 67–74, New York, NY, USA, 2006. ACM.

[4] D. Harel, H. Kugler, and A. Pnueli. Synthesis revisited:
Generating statechart models from scenario-based
requirements. In Formal Methods in Software and
Systems Modeling, pages 309–324, Berlin/Heidelberg,
Germany, 2005. Springer-Verlag.

[5] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSC’s and the
Play-Engine. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003.

[6] A. V. Lamsweerde. Goal-oriented requirements
engineering: A guided tour. RE ’01: Proceedings of the
5th IEEE International Symposium on Requirements
Engineering, page 249, 2001.

39

Hybrid Model Checking with the FUJABA Real-Time Tool
Suite∗

Stefan Henkler, Martin Hirsch, Claudia Priesterjahn
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[shenkler|mahirsch|cpr]@uni-paderborn.de

ABSTRACT
Advanced mechatronic systems use their software to exploit
local and global networking capabilities to enhance their
functionality and to adapt their local behavior. Such sys-
tems include complex hard real-time coordination at the net-
work level. This coordination is further reflected locally by
complex reconfiguration in form of mode management and
control algorithms. As such hybrid systems often contain
safety-critical requirements, a proper approach for the safety
analysis is mandatory. In former papers we have presented
a compositional verification approach for the real-time and
safety analysis. We present in this paper the integration of
the hybrid verification tool PHAVer in the FUJABA Real-
Time Tool Suite which enables also to consider hybrid re-
quirements.

1. INTRODUCTION
For mechatronic systems [2], which have to be developed

in a joint effort by teams of mechanical engineers, electrical
engineers, and software engineers, the advances in network-
ing and processing power provide many opportunities. The
development of such systems will therefore at first require
means to develop software for the complex hard real-time
coordination of its subsystems at the network level. Sec-
ondly, software for the complex reconfiguration of the local
behavior in form of mode management and control algo-
rithms is required, which has to proper coordinate the local
reconfiguration with the coordination at the network level.

The interplay between the discrete software models and
the continuous controllers is the cause for hybrid require-
ments. As such systems often contain safety-critical require-
ments, a proper approach for the safety and hybrid analysis
is mandatory.

In [3] and [5] we have presented the FUJABA Real-Time
Tool Suite which enables the model-based development of
mechatronic Systems as well as the formal verification of
the real-time coordination and the correct embedding of the
employed controllers. But, the current Tool Suite lacks in
the support for analyzing hybrid behavior.

We present in this paper the integration of the hybrid veri-
fication tool PHAVer [6] into the FUJABA Real-Time Tool
Suite based on the mappings from Real-Time Statecharts

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

to hierachical Timed Automata [7, 8]. In detail, we have
to map Hybrid Reconfiguration Charts (HRC), our model-
ing approach for hybrid systems, to Hybrid Input/Output
Automata (HIOA) [6], the input model of PHAVer.

In the remainder of this paper, we at first present in Sec-
tion 2 the conceptual integration of the PHAVer tool. Then,
we outline in Section 3 the tool support and evaluation. Fi-
nally, we conclude and present future work.

2. HYBRID MODEL CHECKING OF UML
MODELS

In this section the concept of the integration of the hybrid
model checker PHAVer and the necessary mapping rules are
presented. Figure 1 shows the actions that have to be per-
formed for the model checking of HRCs with PHAVer. The
main step is the transformation from the HRC model into a
HIOA. The HIOA and a specification to be checked build the
input for PHAVer. The model checker states if the model
fulfills the specification or not. In order that the verification

Model Checking with PHAVer

Hybrid

Mechatronic

UML Model

Specification

Error

Trace

Correct

Hybrid I/O

Automaton Hybrid

Model Checking

Map to

correct

error

Figure 1: Hybrid Model Checking with PHAVer

will perform correctly the mapping must keep the semantics
of the original model. Otherwise we might find false pos-
itives or false negatives during verification. The following
paragraphs introduce the mapping rules established in this
work.

Start State.
A start state in a HRC can embed configurations of the

component. The continuous values at the component’s ports
can thus be deployed in this state. However, in contrast to
HIOA reconfiguration charts can not specify their inital val-
ues or range of values. The start state of the HRC is mapped
to the start state of the HIOA consisting of a location and
variable allocations. Each continuous variable is assigned
the value 0 (Figure 2).

40

State

HIOA

State

RTS

x := 0

y := 0

Figure 2: Mapping a start state

Clocks and Clock Resets.
Each clock tk of the original timed automaton is mapped

as a continuous variable tk such that for each location of the
HIOA ṫk = 1 is satisfied.

Further in HIOA discrete assignments can be assigned to
transitions. Therefore a clock reset can simply be modeled
by assigning 0 to the clock to be reset (Figure 3).

HIOARTS

{t0} t0 := 0

Figure 3: Mapping clock resets

Time Invariants and Time Guards.
Because of the direct mapping of clocks to continuous vari-

ables both time invariants and time guards can directly be
taken over to the HIOA (Figure 4).

HIOARTS

S1

t < 5
S2

t > 3
S1

t < 5

 = 1

S2

 = 1

t > 3

t
t

Figure 4: Mapping guards

Urgent and Non-Urgent Transitions.
As HIOA allow only urgent transitions, all non-urgent

transitions of the hybrid reconfiguration chart are mapped
to urgent-transitions. Thus the original semantics are kept
since ”non-urgent” says that a transitions does not need to
fire immediately after its activation. In case such a transi-
tion would actually fire immediately no unexpected behavior
would result [12].

Synchronous Communication.
The mapping for synchronous communication is depicted

in Figures 5 and 6. Figure 5 shows the synchronization
modeled by a HRC. Parallel states of hybrid reconfiguration
charts synchronize via synchronization channels. Each syn-
chronization contains exactly one sender and one receiver.
At the starting point the HRCs as depicted in Figure 5 start
with states S1 and S3. When the event e is activated the
statecharts switch to S2 and 4 synchronously.

Figure 6 shows the same synchronization modeled by two
HIOA. Generally transitions of two parallel HIOAs will fire
simultaneously, if they are labeled with the same synchro-
nization marks and are activated at the current moment.
S1 is the source of the transitions sending messages. That
is why all incident transitions have to contain the variable
e send representing the sender. For all incoming transi-
tions e send is set to 1. All outgoing transitions must reset
this value to 0 - the initial value. The receiving transition

S1

S2

S3

S4

e! e?

State

RTS

Figure 5: Synchronous communication modeled by
hybrid reconfiguration chart

(S3, S4) will only be fired, if e send is set to 1 and another
transition also marked with the label e is activated. Thus
sender and receiver can only fire synchronously and the orig-
inal semantics of synchronous communication in HRCs are
kept.

S1 S2

S3 S4

HIOA

e_send := 1

e_send :=
 1

e_send :=
 0

e_send := 0

e_send := 0

e_send == 1

e

e

Figure 6: Synchronous communication modeled by
HIOA

Embedding of Component Instances.
In HRCs the behavior of controllers is described by dif-

ferential equations over the incoming and outgoing signals.
The same applies to the component instances embedded in
states of hybrid reconfiguration charts. As the continuous
dynamics of hybrid systems in PHAVer is also described by
differential equations they can be directly applied to HIOA.

Application Order.
The existing XML exchange format for the transforma-

tion of Mechatronic UML models to the UPPAAL input
format [8] has been extended by continuous parts to enable
the verification of continuous parts of mechatronic systems.
Also the transformation of Real-Time Statecharts into hier-
archical Timed Automata has been extended by continuous
parts. In that way the following subset of the needed map-
pings can already be performed: stop states, entry()-, do()
and exit()-methods and the history operator.

Afterwards the mapping rules presented in this paper are
applied. To guarantee the correctness of the resulting mod-
els the mapping steps have to be applied in a defined order.
For instance the mapping rule for clocks demands that all
locations of the resulting model satisfy a certain property.
Therefore it must not happen that one of following mapping
steps adds a location that does not satisfy this property.

41

The following list shows the appropriate application order
of the transformation steps.

1. First apply the rules presented in [8].

2. Map the synchronous communication.

3. Map the non-urgent transitions, since following map-
pings can not add new locations or transitions to the
model.

4. Map the clocks.

5. Map time guards, time invariants and clock resets.

3. TOOL SUPPORT AND EVALUATION
In this section we explain the implementation of the ap-

proach. First, we describe the implementation as a plugin
for FUJABA. Thereafter we give an evaluation example and
point out the adaptability of the verification to real world
examples.

3.1 The Plugin
In Figure 7 the architecture of the required FUJABA plu-

gins is depicted. The three plugins HybridComponenent,
UMLRT2, and RealtimeStatechart allows us to model the
behavior as well as the structure of hybrid systems. The plu-
gins on the bottom left side realize the integration of model
checker. The UMLRTModelchecking provides an interface
for model checker which allows to export the model and add
constraints to the model [4]. The actual model checking en-
gine is provide by the specific model checker, in our case the
PHAVer-Plugin.

<<requires>>

<<requires>>

<<requires>>

<<
re
qu
ire
s>
>

<<
re
qu
ire
s>
>

<<requires>>

<<
re
qu
ire
s>
>

Modeling

Model Checker

Figure 7: Architecture of the plugin

Figure 8 shows the transformation steps taken by the im-
plemented FUJABA plugin. First the hybrid reconfigura-
tion chart is exported to the XML exchange format provided
by the UMLModelChecking Plugin. This action is followed
by the transformation into an intermediate format and the
transformation into the final PHAVer input format the hy-
brid input output automata.

3.2 Evaluation
As an evaluation example we take the AHCS case study

from [10]. We consider the model of a central controller
for a automated highway and analyze the controller itself
for safety properties, particularly for the specification that

Hybrid

Reconfiguration

Chart

XML Exchange

Format

PHAVer Input

Language

(HIOA)

Intermediate

Format

Result

Export to XML

PHAVer
Transform to

PHAVer input

language

Transform

based on RTSC

-> HTA

Hybrid Model Checking in FUJABA

Figure 8: Hybrid Model Checking in FUJABA

no two vehicles on the automated highway collide with each
other. The controller enforces speed limits on vehicles on the
automated highway to achieve this purpose. In Figure 9 the
hybrid reconfiguration chart to which realizes the behavior
of the AHCS for four vehicles is depicted. xk is the distance
of one vehicle k to the beginning of the highway and ẋk the
velocity of the vehicle. At the beginning (state ”‘Fahrt”’) the
velocity for each vehicle is in the interval ẋ ∈ [a, b]. When
two vehicles i, j come within a distance α (xi − xj < α) of
each other, we call this a ”‘possible”’ collision event and the
controller switches to the ”‘Risiko i j”’ state. The controller
asks the approaching vehicle to slow down by reducing the
upper bound to ẋi ∈ [a, c′] and asks the leading vehicles to
speed up by increasing the lower bound to ẋj ∈ [c, b], c > c′;
it also requires that all other cars not involved in the pos-
sible collision slow down to a constant velocity β for vehi-
cles behind the critical region and β′, β′ > β for vehicles
in front of the critical region. When the distance between
the two vehicles involved in the possible collision exceeds α,
the controller switches to the ”‘Fahrt”’ state . Otherwise the
”‘Error”’ state will be reached, if xj − xi < α′, alpha′ < α

Figure 9: Evaluation example

To ensure that no collision between the vehicles happen we
have to check that the ”‘Error”’ state will be never reached
as long as the systems runs. To check this constraint we
have to compute the followings steps in PHAVer:

• compute all reachable state: Reach = Sys-
tem.reachable

• define the forbidden states: Forbidden = Sys-
tem.{Error? & True}

• compute the set Reach ∩ Forbidden:
bad.intersection assign(Forbidden)

In Figure 10 a screenshot of the constraint is depicted. For
the evaluation of the example, we chose the following param-
eterization of the variables. WE set the number of vehicles

42

Figure 10: Specification of the constraint

to 4, 6, 8, 12, 14, and 16. The other variables are set to:

a = 0, b = 100, c = 70, c′ = 50, α = 100, α′ = 10, β = 40, β′ = 80

.
The results of the evaluation are presented in Table 3.2

as well as a visualization of the results is given in 11. In
detail the time and memory consumption are analyzed. One
result is that the runtime of the model checker exponentially
increase with the number of vehicles. The same holds for
the memory consumption. It is to be noted that although
PHAVer is more efficient than other model checkers [6] the
runtime exponentially increase with the number of variables
used in the HIOAs [11]. Hence it can take a long time to get
a result if any result is computed.

Number of vehicles Runtime [s] Memory [MB]
4 0, 16 3 MB
8 2, 6 11 MB
10 11, 34 16 MB
12 156, 7 37 MB
14 5120, 3 112 MB
16 14092, 34 354 MB

Table 1: Evaluation results

rru
n
ti
m

e
[s

]

number of cars

Figure 11: Evaluation results

4. CONCLUSION AND FUTURE WORK
In this paper, we have presented the integration of the

hybrid verification tool PHAVer in the FUJABA Real-Time
Tool Suite. We have shown the mapping of our hybrid mod-
eling approach, Hybrid Reconfiguration Charts, to the input
model of PHAVer (Hybrid Input/Output Automata). In
the evaluation, we have shown that, in principle, the model
checking of hybrid systems does not scale. Therefore, appro-
priate abstractions are required as shown in [9]. In the fu-
ture, we want to consider a better integration of the PHAVer
tool in the compositional verification approach by using the

assume/guarantee approach of PHAVer [1] which enables a
better scalability.

5. REFERENCES
[1] S. Berezin, S. Campos, and E. M. Clarke.

Compositional reasoning in model checking. Lecture
Notes in Computer Science, 1536:81–102, 1998.

[2] D. Bradley, D. Seward, D. Dawson, and S. Burge.
Mechatronics. Stanley Thornes, 2000.

[3] S. Burmester, H. Giese, S. Henkler, M. Hirsch,
M. Tichy, A. Gambuzza, E. Müch, and H. Vöcking.
Tool support for developing advanced mechatronic
systems: Integrating the fujaba real-time tool suite
with camel-view. In Proc. of the 29th International
Conference on Software Engineering (ICSE),
Minneapolis, Minnesota, USA, pages 801–804. IEEE
Computer Society Press, May 2007.

[4] S. Burmester, H. Giese, M. Hirsch, and D. Schilling.
Incremental design and formal verification with
UML/RT in the FUJABA real-time tool suite. In
Proceedings of the International Workshop on
Specification and vaildation of UML models for Real
Time and embedded Systems, SVERTS2004, Satellite
Event of the 7th International Conference on the
Unified Modeling Language, UML2004, October 2004.
to appear.

[5] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The fujaba real-time tool suite:
Model-driven development of safety-critical, real-time
systems. In Proc. of the 27th International Conference
on Software Engineering (ICSE), St. Louis, Missouri,
USA, pages 670–671. ACM Press, May 2005.

[6] G. Frehse. Phaver: Algorithmic verification of hybrid
systems past hytech. pages 258–273. Springer, 2005.

[7] H. Giese and S. Burmester. Real-Time Statechart
Semantics. Technical Report tr-ri-03-239, University of
Paderborn, Paderborn, Germany, June 2003.

[8] M. Hirsch. Effizientes Model Checking von UML-RT
Modellen und Realtime Statecharts mit UPPAAL.
Master’s thesis, University of Paderborn, June 2004.

[9] M. Hirsch, S. Henkler, and H. Giese. Modeling
Collaborations with Dynamic Structural Adaptation
in Mechatronic UML. In Proc. of the ICSE 2008
Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’08),Leipzig,
Germany, pages 1–8. ACM Press, May 2008. to
appear.

[10] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M.
Clarke. Reachability for linear hybrid automata using
iterative relaxation abstraction. In A. Bemporad,
A. Bicchi, and G. C. Buttazzo, editors, HSCC, volume
4416 of Lecture Notes in Computer Science, pages
287–300. Springer, 2007.

[11] X. Li, S. J. Aanand, and L. Bu. Towards an efficient
path-oriented tool for bounded reachability analysis of
linear hybrid systems using linear programming.
Electron. Notes Theor. Comput. Sci., 174(3):57–70,
2007.

[12] A. Steinke. Integration Hybrider Rekonfigurations-
charts mit Matlab/Simulink-Modellen. Master’s thesis,
University of Paderborn, 2007.

43

Component Story Diagrams in Fujaba4Eclipse∗

Jörg Holtmann, Matthias Tichy
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[chrome|mtt]@uni-paderborn.de

ABSTRACT
A current trend in Software Engineering is the develop-
ment of self-adaptive component-based software architec-
tures. Our modeling approach for component-based soft-
ware systems Mechatronic UML, integrated in the Fu-
jaba Real-Time Tool Suite plugin for Fujaba4Eclipse, sup-
ports self-adaptiveness only to a certain degree. This
paper presents tool support for an extension of Mecha-
tronic UML, which facilitates initialization and reconfig-
uration of a Mechatronic UML system based on Story
Diagrams and thus enables a step towards self-adaptiveness
on a structural level.

1. INTRODUCTION
Today’s software systems are mainly build in a

component-based fashion to reduce their complexity. Fur-
thermore, some software systems have to be self-adaptive,
which means that they adapt their behavior in response
to event occurrences or changes in the environment. The
adaption can be realized by changing system parameters
or by a structural reconfiguration. Mechatronic UML
[1] supports, among other things, the modeling of compo-
nents with real-time behavior, the coordination between dis-
tributed components as well as its verification, but only a
limited structural reconfiguration by enumerating all differ-
ent configurations.

In [6], we presented concepts for an extension to Mecha-
tronic UML, which overcomes this limitation. This pa-
per presents the implementation of these concepts in Fu-
jaba4Eclipse. The general idea is to use a formalism based
on Story Diagrams [2] to model system initialization and re-
configuration for a component-based architecture. Compo-
nent instance structures consist in contrast to object struc-
tures of elements such as component and port instances and
different connector types. Furthermore, conventional Story
Diagrams operate only on flat object structures and do not
provide the possibility to traverse a hierarchy, which is in-
duced by a component-based system. So traditional Story
Diagrams are not well suited for component-based archi-
tectures, but their variant Component Story Diagrams [6]
make use of both the Story Diagrams’ formal foundations
and sophisticated control structures as well as the exten-
sions required by component-based architectures. The de-

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

veloped formalism reuses the graphical syntax of component
diagrams for a tight integration of the modeling of structure
as well as reconfiguration behavior. We refer to [3, 6] for a
discussion of the limitations of related approaches.

The running example used in this paper is taken from [6]
and describes the communication structure of autonomous
railway vehicles from the RailCab project1. These Rail-
Cabs can build convoys to reduce the energy consumption
by utilizing the slipstream. Their communication structure
is build by Mechatronic UML components. The lead-
ing RailCab computes reference positions for all subsequent
RailCabs in a convoy. For each following RailCab, one posi-
tion calculation component is deployed in the leading Rail-
Cab. This component sends the reference position to its
connected following RailCab. Thus, a structural reconfigu-
ration is required for the leading RailCab’s embedded com-
ponents when a RailCab joins or leaves a convoy.

Section 2 sketches a flexible component type definition
as a base for the modeling of Component Story Diagrams.
While Section 3 presents the Component Story Diagrams
themselves, Section 4 introduces the code generation plugin,
which is a prerequisite for the execution of the Component
Story Diagrams. Section 5 concludes this paper and adduces
current and future work on Component Story Diagrams.

2. COMPONENT TYPE DEFINITION
Like conventional Story Diagrams, also Component Story

Diagrams require a type definition as a basis for modeling.
Instead of classes, component types are employed as clas-
sifying model. In [6] we presented a variable component
type definition based on the UML Composite Structures [4].
Component types consist of parts, which are also classified
by a component type and have a multiplicity. So parts rep-
resent a set of instances classified by the part’s component
type, which an instance of the superordinate component
type may contain by composition. Additionally, ports are
provided with a multiplicity.

Figure 1 shows the embedded component structure for the
component type RailCab, holding the behavior concerning
computation of reference positions for subsequent RailCabs
and adaptation of the own position to a reference position.
Besides some parts with a default multiplicity of 0..1 for
component instances which control and determine the posi-
tion or the velocity of a RailCab, the part posCalc—classified
by the component type PosCalc which contains the behavior
for calculating reference positions for following RailCabs—
is deployed within RailCab. This part has a multiplicity of

1www.railcab.de/en

44

∗ (denoted by the second frame), so it stands for an arbi-
trary amount of embedded component instances of the type
PosCalc. One of its regular ports is connected via a dele-
gation connector type PosRef to a so-called multiport with
multiplicity ∗ attached to the superordinate component type
RailCab. Instances of this multiport are used for connections
between the embedded position calculation component in-
stances with component instances representing the following
RailCabs. Since the delegation connector type PosRef has a
source and target multiplicity of 1, each component instance
of the part posCalc may be connected via a delegation con-
nector :PosRef exactly to one instance of the corresponding
multiport. In the same manner, component instances of the
part posCalc may be connected among each other via as-
sembly connectors :Next. That way, a position calculation
component instance gets the reference position of the pre-
ceding RailCab as input for the calculation of the reference
position of the subsequent RailCab.

RailCab

vRef : VRef

posCalc : PosCalcintegral : Integral

posCtrl : PosCtrl

vCtrl : VCtrl

A2VCtrl

1

1

A2PosCtrl

1

1Integral2VCurrent1

1

VCtrl2VCurrent

1

1

PosCtrl2VCurrent

1

1

PosCtrl2PosRef

1

1

PosRef

1

1

1 1

VCtrl2VRef

1
1

Next

1 1

Calc2Integral

Figure 1: Component type RailCab [3]

Figure 2 depicts the system level ConvoySystem, which de-
scribes all allowed system configurations with interconnected
RailCab parts: the assembly connector type PosRef connects
the afore mentioned multiport of the part convoyLeader with
multiplicity 0..1 to a regular port of the part convoyFollowers
with multiplicity of ∗. This means that there is at most one
instance of the role convoyLeader, which is connected by n
:PosRef connectors to n convoyFollowers instances. In this
way, the latter ones can receive the reference positions cal-
culated by the corresponding posCalc instances, which are
deployed within convoyLeader. Together with the internal
definition of the component type RailCab, this builds the
component-based communication structure for RailCab con-
voys.

convoyFollowers : RailCab
convoyLeader : RailCab

«system»

ConvoySystem

1
1

PosRef

Figure 2: System level ConvoySystem [3]

For a more detailed view on the scenario and the semantics
of the component types the reader is referred to [6]. For a
precise description of the Mechatronic UML component

type definition based on the UML Composite Structures and
the differences to the previously used type modeling see [3].

3. COMPONENT STORY DIAGRAMS
Story Diagrams [2], a graph transformation formalism,

offer a wide variety of features for the model-based speci-
fication of object-oriented behavior such as object/link cre-
ation/deletion, control flow structures and an appropriate
visual representation. However, the structures conventional
Story Diagrams operate on are simple objects connected by
links. Components have ports connected among each other
by assembly and delegation connectors. Secondly, Story Di-
agrams cannot traverse hierarchies of objects. In contrast to
that, components explicitly are defined by composition and
are arranged by other, more granular components and thus
span a hierarchy. So the traditional Story Diagram approach
does not align well with component-based architectures.

In [6], we introduced the new transformation language
Component Story Diagrams, which combine the intuitive
but formal notation of conventional Story Diagrams with
the previously sketched, extended Mechatronic UML type
definition. Instead of objects and links, component and port
instances are created or destroyed and interconnected via as-
sembly and delegation connector links. Calls to other Com-
ponent Story Diagrams are supported to traverse the differ-
ent hierarchy levels of a system configuration and to respect
the encapsulation of components at the same time. The
callee is defined either for the same component type or for
a component type residing one hierarchy level below.

Figure 3 shows the Component Story Diagram initCon-
voySystem associated with ConvoySystem. This Component
Story Diagram initializes a convoy system consisting of one
component instance leader classified by convoyLeader (de-
noted by leader/convoyLeader) and several component in-
stances /convoyFollowers (cf. Figure 2). The value of the
parameter followers:Integer specifies the amount of /convoy-
Followers instances to be created.

To achieve this behavior, firstly in Story Pattern create-
Leader the component instance leader/convoyLeader includ-
ing two port instances is created by defining a corresponding
component variable with �create� modifier and two at-
tached port variables. Afterwards, the Component Story
Diagram initConvoyLeader is called for the newly created
component instance. This Component Story Diagram is de-
fined for the component type RailCab residing one hierarchy
level below and initializes the embedded configuration for
leader. The subsequent statement activity creates a counter
variable to create the required /convoyFollowers instances in
a loop. The Story Pattern createNextFollower is executed as
long as the loop condition holds. In this Story Pattern, a
new component instance follower/convoyFollowers including
three port instances is created and connected via the assem-
bly connector :PosRef to a new port instance of the already
bound leader. Whereas the call to initConvoyFollower ini-
tializes the embedded configuration of follower, the call to
insertPosCalc changes the existing configuration of leader by
deploying a new component instance /posCalc. To obtain
the latter behavior, a name, the actual position, and the
newly created port instance pos of leader are assigned as
arguments.

The Fujaba4Eclipse editor for Component Story Diagrams
is syntax-driven and context-sensitive w.r.t. the component
type definition. While modeling a Component Story Dia-

45

createNextFollower

this

leader

insertPosCalc ("posCalc" + i , i ,

pos)

«create»

follower / convoyFollowers
 : RailCab

initConvoyFollower ()

int i = 1;

ConvoySystem::initConvoySystem(followers:Integer)

createLeader

this

«create»

leader / convoyLeader
 : RailCab

initConvoyLeader ()

follower.setName("follower" + i); i++;

adadadad ConvoySystem::initConvoySystem()

:PosRef
[i <= followers]

[else]

Figure 3: Component Story Diagram initConvoySystem [3]

gram for ConvoySystem, for example, as shown in Figure 3,
the user can only assign parts to component variables which
are defined in ConvoySystem, namely convoyLeader and con-
voyFollowers (cf. Figure 2). Both parts are interconnected
by the assembly connector type PosRef attached to certain
port types. Thus, you can only assign this connector type
to the assembly link used in Story Pattern createNextFol-
lower. Component variables can be associated with calls to
Component Story Diagrams; the callee is selected from the
Component Story Diagrams defined for the corresponding
component type RailCab of the variable’s part (cf. Table 1).
Arguments representing a port variable, for example, have
to be selected from the set of possible variables w.r.t. the sig-
nature of the callee. Further and in particular more complex
Component Story Diagrams can be found in [3].

4. CODE GENERATION
To make use of existing code generation techniques, Com-

ponent Story Diagrams are translated to conventional Story
Diagrams based upon the Mechatronic UML metamodel.
The translation is defined by TGG [5] rules, which thus de-
scribe the formal semantics of Component Story Diagrams.
Fujaba’s TGG plugins [7] are employed as concrete mod-
eling and execution environment. A new code generation
plugin takes the Mechatronic UML component type def-
inition and Component Story Diagrams as input and trans-
forms them using the translation rules to Story Diagrams
classified by the metamodel.

Figure 4 shows a part of the Story Diagram which is gener-
ated from the Component Story Diagram of Figure 3.2 The
translation is for the most part straightforward. The control
flow is basically unchanged. All variables in a Component
Story Pattern are translated to objects of classes of the meta-
model; for example, the component variable this is translated
to the object parentComponentInstance:ComponentInstance.
The variables’ stereotypes are translated accordingly. Note

2Actually, it is not a conventional Story Diagram but a
slightly extended version which we chose due to implemen-
tation issues. The only difference in this example is the
transformation call node. This node executes another Story
Diagram after all specified changes like creating and destroy-
ing edges and nodes have been executed.

the special case of the leader component variable transla-
tion. The translation honors the component type defini-
tion of Figure 2 which specifies that a convoy may only
contain one leader RailCab. Adopting conventional Story
Pattern semantics, an additional optional object leaderCom-
ponentInstanceToDelete is added to the generated Story Pat-
tern which removes the old leader when a new one is created.
Statement activities are taken over without modifications.

A more detailed view on the translation is sketched in [6],
while the complete translation and an example of a trans-
lated Story Diagram is given in [3].

Executable code is generated from the translated Story
Diagrams. Table 1 lists an overview of the used variables
and links in Component Story Diagrams (second column)
as well as in the translated Story Diagrams (third column)
and of the generated Lines of Code (last column) for all
evaluated Component Story Diagrams. This overview indi-
cates the reduction of complexity by using Component Story
Diagrams on Mechatronic UML component structures in-
stead of modeling Story Diagrams based upon the Mecha-
tronic UML metamodel. Note however that the generated
LOC are not only related to the actual amounts of variables
and links but to a greater extent to loops and iterations over
∗-associations.

The generated code can be executed at design time on
component instance diagrams in Fujaba4Eclipse.

5. CONCLUSION AND FUTURE WORK
This paper introduced tool support for the modeling

and the execution of sophisticated structural reconfigura-
tions for component-based architectures by presenting an
extended Mechatronic UML component type definition
and a context-sensitive editor as well as a code generation
plugin for Component Story Diagrams.

Currently there are two important open issues. First,
Component Story Diagrams do not support negative or op-
tional variables like conventional Story Diagrams. Since
there are compositional dependencies between components
and attached ports and between ports and linked connectors,
the scope of a negative component variable, for example, in-
cludes also compositionally dependent variables. These have
to be translated to a group of connected negative object vari-

46

InitConvoySystem(parentComponentInstance:ComponentInstance , followers:Integer)

createNextFollower

«create»
posCurrent: DiscretePortInstance

convoySystem: Component

«create»
posRefIn: DiscretePortInstance

aConvoyFollowersPortPart: PortPartleader componentInstanceDiagram: ComponentInstanceDiagram

parentComponentInstance

«create»
follower: SoftwareComponentInstance

«create»
pos: DiscretePortInstance

convoyLeaderComponentPart: ComponentPart

Transformation Call
InsertPosCalc

posCalcName = "posCalc" + i
position = i

«create»
aFollower: DiscretePortInstance

«create»
followerInnerDiag: ComponentInstanceDiagram

convoyFollowersComponentPart: ComponentPart

Transformation Call
InitConvoyFollower posConvoyLeaderPortPart: PortPart

posCurrentConvoyFollowersPortPart: PortPart

posRefConvoyFollowersPortPart: PortPart

«create»
posRef: Assembly

posRefAssemblyType: AssemblyType

«create»
posRef3_1RequiredInterfaceInstance: RequiredInterfaceInstance

«create»
posRef2_1ProvidedInterfaceInstance: ProvidedInterfaceInstance

posRef2ProvidedInterfacePart: ProvidedInterfacePart

posRef3RequiredInterfacePart: RequiredInterfacePart

createLeader

componentInstanceDiagram: ComponentInstanceDiagram

«create»
leaderInnerDiag: ComponentInstanceDiagram

convoyLeaderComponentPart: ComponentPart

name == "convoyLeader"

parentComponentInstance convoySystem: Component

«create»
leader: SoftwareComponentInstance

name := "leader"

«destroy»
leaderComponentInstanceToDelete: SoftwareComponentInstance

«create»
vCurrent: DiscretePortInstance

name := "vCurrent"

«create»
a: DiscretePortInstance

name := "a"

Transformation Call
InitConvoyLeader

vCurrentConvoyLeaderPortPart: PortPart

name == "vCurrent"

aConvoyLeaderPortPart: PortPart

name == "a"

int i = 1;

follower.setName("follower" + i); i++;

 Success

td InitConvoySystem

has

instances

contains
isComposedOf

isComposedOf
isComposedOfinstanceOfout

has

contains

hasinstances

instances

has

has

contains

«argument»
parentComponentInstance

instances
contains

containscontains

contains

contains

contains

innerDiag

innerDiag

has

«argument»
parentComponentInstance

instances

has

in

instances
«argument»
posParam

has

has

has

has

has

fromto

instances

provided

required

instances

instances

[i <= followers]

contains

contains

contains

contains

innerDiag

innerDiag

instances

has

instances

has

isComposedOf

instanceOf

has

has

«argument»
parentComponentInstance

instances

instances

[else]

Figure 4: Excerpt of Story Diagram generated from Component Story Diagram initConvoySystem

Variables and Object variables
Comp. Story Diag. connector links and links LOC
ConvoySystem::initConvoySystem 12 89 760
ConvoySystem::insertFollower 8 69 605
ConvoySystem::removeFollower 9 71 618
RailCab::initConvoyFollower 11 89 695
RailCab::initConvoyLeader 15 137 968
RailCab::insertPosCalc 52 482 2806
RailCab::removePosCalc 42 389 2422
Overall 149 1326 8874

Table 1: Comparison of amounts of variables/links in Component Story Diagrams and in translated Story
Diagrams and of generated Lines of Code [3]

ables in the resulting translated Story Diagram. Until now,
conventional Story Diagrams forbid such negative variable
groups, what also affects groups of optional variables. A
concept has already been developed to solve this problem [3]
but has not been implemented yet. Secondly, the presented
Component Story Diagrams are selected and executed at de-
sign time by an user. To obtain a self-adaptive approach for
mechatronic real-time systems, we are currently working on
an integration of Component Story Diagrams into real-time
statecharts.

Future works could include extensions like attributes as
well as an inheritance concept for component types to pro-
vide Component Story Diagrams with attribute conditions
and the matching of instances of derived component types.

6. REFERENCES
[1] S. Burmester, H. Giese, and M. Tichy. Model-Driven

Development of Reconfigurable Mechatronic Systems
with Mechatronic UML. In U. Assmann, A. Rensink,
and M. Aksit, editors, Model Driven Architecture:
Foundations and Applications, volume 3599 of Lecture
Notes in Computer Science, pages 47–61. Springer
Verlag, Aug. 2005.

[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A new Graph Rewrite Language based on
the Unified Modeling Language. In G. Engels and

G.Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer Verlag, 1998.

[3] J. Holtmann. Graphtransformationen für
komponentenbasierte Softwarearchitekturen. Master’s
thesis, University of Paderborn, Germany, April 2008.

[4] Object Management Group. UML 2.0 Superstructure
Specification, October 2004. Document: ptc/04-10-02
(convenience document).

[5] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In Proc. of the 20th

International Workshop on Graph-Theoretic Concepts
in Computer Science, Herrschin, Germany, June 1994.
Spinger Verlag.

[6] M. Tichy, S. Henkler, J. Holtmann, and S. Oberthür.
Component Story Diagrams: A Transformation
Language for Component Structures. In Postproc. of
the 4th Workshop on Object-oriented Modeling of
Embedded Real-Time Systems (OMER 4), Paderborn,
Germany, 2008.

[7] R. Wagner. Developing Model Transformations with
Fujaba. In H. Giese and B. Westfechtel, editors, Proc.
of the 4th International Fujaba Days 2006, Bayreuth,
Germany, volume tr-ri-06-275 of Technical Report,
pages 79–82. University of Paderborn, September 2006.

47

Towards Software Product Line Testing using Story Driven
Modeling

Sebastian Oster, Andy Schürr, Ingo Weisemöller
Real-Time Systems Lab, TU Darmstadt

{oster, schuerr, weisemoeller}@es.tu-darmstadt.de

ABSTRACT
This paper provides an approach towards model based Soft-
ware Product Line Testing using Story Driven Modeling.
The motivation is to identify a small set of Product Instances
such that the verification of this test set guarantees the cor-
rectness of all possible Product Instances or even the whole
Product Line. One of the most famous approaches to model
variability in Software Product Lines is the feature model.
The feature model is constructed based on functionality and
system requirements. To simplify the feature management
and testing we realize the test set selection on the basis of
the feature model. Dependencies derived from the system
architecture are also added. We use Fujaba/MOFLON to
specify the feature model and to describe methods operat-
ing on this model. Therefore, each feature selection and any
algorithm used for testing can be formulated using graph
transformation with Story Driven Modeling (SDM). This
paper is a first discussion of our approach.

Keywords
Software Product Line, Combinatorial Testing , Story Driven
Modeling, Feature Model

1. INTRODUCTION
Software Product Lines are an approach to improve reusabil-
ity of software components in a large number of products
that share a common set of features. In this paper we focus
on decreasing the test effort for Software Product Lines. A
Software Product Line can provide an enormous number of
different Product Instances. Testing each Product Instance
individually has proven itself as a trustworthy but extensive
method. To decrease this effort we use the combinatorial
test design and adapt it to our approach. The idea of using
a combinatorial test design is not a new but a very promis-
ing approach. With the best of our knowledge combinatorial
testing is mainly used to reduce the amount of test param-
eters [1]. Only certain combinations of test parameters are
used for testing instead of testing each test parameter indi-
vidually or all possible combinations. In this paper we apply
combinatorial testing to generate a set of Product Instances.
It is a mathematical method to select certain, adequate sam-
ples of combinations of Product Instances. Testing this set of
Product Instances we assume that it results in a verification
of all possible Product Instances. In our approach we also
use the feature model to represent dependencies between
features and groups of features of a Software Product Line.
Regarding these dependencies, certain features are chosen
using combinatorial testing. These dependencies influence

the selection of certain Product Instances that implement
the selected combinations of features. A feature model rep-
resents the set of features hierarchically and captures com-
monality and variability. We use the notation according to
the BMBF feasiPLe Project [3]. Feature models in feasiPLe
consist of optional, mandatory, xor, and alternative features.
A feature can be a variation point or a variant. Each feature
which splits into other features is called a variation point. A
variant is simply a feature which cannot be subdivided into
other variants. We will explain the notation and function-
ality roughly with the assistance of our running example a
Software Product Line for LEGO NXT model cars.

2. RELATED WORK
Several papers cover the subject Product Line testing. How-
ever these work mainly focuses on the question how to inte-
grate testing in the overall Product Line development pro-
cess [6] or, how to generate and organize test cases [4]. In [5]
the author also tries to minimize the amount of Product In-
stances which need to be tested to verify the whole Software
Product Line. However the work is based on a different rep-
resentation of variability and the calculation of the minimal
test set is intricate and very time consuming. We refer to
[5] for further details.

3. RUNNING EXAMPLE
We present a Software Product Line of LEGO model cars.
We use a feature model to model variability. It is a very sim-
plified and abstract example in comparison to real vehicles.
The functionality is based on Lego Mindstorm NXT actors,
and sensors. The corresponding feature model (cf. Fig.1)
covers only a few features of the model car we use to eval-
uate our ideas in Software Product Line testing, but should
suffice to present the basic ideas of our approach. For the fol-
lowing explanation please consult the corresponding feature
model. The feature model consists of software features (driv-
ing/steering mode & driver support) and hardware features
(sensors & actuators). Driving mode offers three different
types of locomotion. These are autonomous driving (”Auto-
motive”), random drive and steering movements (”Crazy”),
and ”Manual”driving which requires user interacion. All fea-
tures are alternatives but at least one of these features must
occur in a Product Instance. If ”Manual” driving mode is se-
lected one has to choose between gamepad or steering wheel
control. These features exclude each other so only one of it
can be included in a product instance. We name this nota-
tion xor for exclusive-or. The variation point driver support
offers different optional software features to support driv-

48

Figure 1: LEGO Model Car Product Line

ing. These are Adaptive Cruise Control (”ACC”), Lane De-
parture Warning (”LDW”), Dimmed Headlight, and Speed
Control. All features are optional which means that Prod-
uct Instances can be derived that do not include any of these
features. If ”ACC” is chosen for a certain product, one has
to decide what degree of sensitiveness is required. The last
two variation points ”sensor” and ”actuator” are the hard-
ware components. Both come along with Lego Mindstorm
NXT Set. We refer to [2] for more detailed information.
The variation point ”actuator” includes mandatory features
(”motor” & ”nxt”). That means that these features have to
be included in each derived Product Instance.

4. PRODUCT INSTANCE SELECTION
Instead of testing all possible Product Instances individually
we use combinatorial testing to identify a minimal test set of
Product Instances. Our strategy is based on two major con-
cepts to reduce the test effort for Software Product Lines.
Exploiting dependencies between features and combinatorial
testing. The basic idea is that we first of all have somehow
to identify dependencies (independencies) between features
or groups of features relying e.g. on user input, static anal-
ysis of code or architectures or inspection of runtime traces
of the regarded Software Product Line. The identificaton of
these dependencies is out-of-scope of this paper. Afterwards
a minimal set of Product Line instances has to be deter-
mined that covers all possible combinations of pairs of fea-
tures. The computation of such a test set is an NP-complete
problem [5]. Therefore, we have to combine strategies from
greedy and constraint-solving algorithms to compute reason-
ably small test sets of Product Instances effectively. We have
just started first experiments to play with different combi-
nations of strategies which cannot be presented here due to
lack of space. As a consequence we will only present the ba-
sic ideas of our approach and give the reader an impression
why we have selected SDM as an ideal algorithm prototyp-
ing language for this purpose. Generating a set of Product
Instances for testing is a multilevel process. Before we go
into any detail we sketch our approach to give an overview
over the different levels of our procedure.

1. Analysing Dependencies
The feature model serves as basis for our approach.
First of all we need to add dependencies between the
different features to our feature model. These depen-
dencies can be derived e.g. from system specifications,

hardware restrictions or system requirements. E.g. in
our running example the model car can only provide
the feature Adaptive Cruise Control (ACC) if an ultra-
sonic sensor is installed. Also, if two motors are used
to accelerate the vehicle (turbo) we have no plug-in
position left for the light. Therefore, the features light
and turbo motor exclude each other. Additionally we
need to add dependencies derived from the software
architecture. In contrast to the feature dependencies
we try to apply these dependencies between the vari-
ation points. If we can not pass on the dependencies
from the architecture to the variation points directly
we can consider a reorganisation or adaption of the ex-
isting variation points. But this is not the focus of our
approach. All in all we want to have a feature model
which is representative for the functionality and the
architecture dependencies. To simplify our running
example we use the same variation points directly be-
neath the root node as we have software and hardware
components in our architecture. To clarify the differ-
ence between the two kinds of dependencies we name
them differently. Require and exclude for dependencies
between features and influence edges for links between
variation points.

2. Normalizing the feature model
Since we want to realize the combinatorial test design
using graph transformations appropriate transforma-
tion rules have to be specified. We do not want to
test all possible feature combinations but a minimal
set of Product Instances. To simplify the selection for
combinatorial testing we normalize the feature model.
The normalization ”flattens” the feature model so that
only three levels remain. These are the root-feature
level (model car), the variation point level including
dependencies derived from the architecture, and the
variant level including dependencies between variants.
Instead of using mandatory, optional and alternative
variants we realize graph transformation rules which
replace these features using only xor variants to rep-
resent the same functionality. For lack of space we do
not list SDM rules for this graph transformation. We
can also unify the dependencies between the features.
Instead of saying that a variant requires a certain other
variant we can say that it excludes all other variants.
We illustrate the normalization in the appendix. To
ensure a clear overview we only drew one exclude de-

49

pendency (cf. Fig.3).

3. Combinatorial Testing
In this step we assemble Product Instances based on
pairs of variants. We only want to generate Product
Instances of pairs of variants which depend on each
other. The variation points which are linked by an de-
pendency edge depend on each other and so do all vari-
ants beneath them. Therefore, we only have to com-
bine pairs between dependent variation points. Ac-
cording to the normalized feature model of our run-
ning example we have to pair each variant of ”Driv-
ing/Steering Mode” with each variant of ”Driver Sup-
port”. We also have to pair ”Driver Support” - ”Sen-
sors” and ”Driver Support” - ”Actuators”. However,
we have to consider the exclude edges between the fea-
tures. For Instance, if we want to pair the variant com-
bination including ”Automotive” with a variant com-
bination of ”Driver Support” we have to ensure that
the variant combination does not exclude ”ACC” and
”LDW”. This decreases the amount of possible Prod-
uct Instances. We describe the generation of Product
Instances in detail in the next section.

Please consult the feature models of our running example
for details for the first (cf. Fig.1) and the second step of
our procedure (cf. Fig.3). We marked the two different
types of dependencies. The require (marked blue) and ex-
clude (marked red) dependencies between features and ad-
ditional dependencies derived from the software architecture
(marked green). The dependencies on feature level are used
to ensure that only reasonable feature combinations are com-
posed during the combinatorial test. Edges between varia-
tion points give information about which variants of each
variation point interdepend. We will only pair variants of
variation points which interdepend.

5. GRAPH TRANSFORMATION
Considering the lack of space of this paper we can only
describe one of the graph transformation steps with SDM.
Since we see a higher benefit in presenting the combinatorial
testing, we use SDM to formulate transformation rules for
the combinatorial test design. However we want to give a
short insight into the normalization procedure of the feature
model.

5.1 Peek insight feature model normalization
Flattening the feature model is a bottom-up process. We
start at the lowest level and pass up the variants to the
variation point above. We describe this procedure giving an
example. We assume that each variant has its name as an at-
tribute. Converting two alternative variants v1 and v2 into
a xor related feature we first need to create a new variant
which name is a concatenation of the source variants. We
therefore need a rule to specify that we can only concate-
nate two names if variant1.name<variant2.name. Else we
would get two combinations v1v2 and v2v1. This new vari-
ant becomes an xor feature. In the next step the alternative
edges from the variation point to the variants are deleted
and replaced by xor edges. The result of two alternative
variants are three xor variants v1,v2, and v1v2. Analog to
this procedure we can also convert optional and mandatory

features to xor features. A realization with SDM is possible.
The normalization of our running example is illustrated in
the appendix.

5.2 Combinatorial Selection using SDM
Our combinatorial testing approach generates certain Prod-
uct Instances which include pairs of variants. Generally, we
pair each variant of a variation point V P1 with each variant
of variation point V P2 if V P1 and V P2 are connected by
an influence edge. We have to consider the dependencies be-
tween variants and pair only variants which do not exclude
each other. These pairs of variants need to be combined to
form Product Instances. We use the dependencies derived
from the architecture to pair interdepending variants and
special rules to form the Product Instances. To realize this
approach we iterate over the influence edges on the variation
point level. We implement a container class which realizes
a table of Product Instances. We use SDM to model our
approach (cf. Fig.2). We enumerated the different activities
in the SDM diagram.

Figure 2: SDM Diagram for generating Product In-
stances

50

In the first activity, all pairs of variants which influence each
other are determined. Variants influence each other if they
1. do not exclude each other and 2. belong to two variation
points which are linked by a dependency edge. If this pair
of variants is not covered by an existing product instance
we apply the following rules to try to extend an existing
product instance.

1. We check if an existing Product Instance already cov-
ers one of those variants and if the variation point of
the other variant is still unbound. We can then use
activity 2a or 2b to add the mentioned variant to an
existing Product Instance.

2. If the rule above fails the third activity will look for a
product instance in which the two concerning variation
points of the variants are still unbound.

If no Product Instance can be found which can be extended
we have to create a new Product Instance.

6. CONCLUSION
We can use SDM to select certain Product Instances for
testing and for the normalization of the feature model. This
is our first approach using graph transformation on feature
models to realize combinatorial testing for Software Prod-
uct Lines. We have to examine different and very complex
algorithms which can operate on graphical structurs. Fu-
jaba/MOFLON is an ideal tool for high-level specification
and the rapid prototyping of these algorithms. Since the cal-
culation of a minimal test set is a NP-complete optimization
problem we can not guarantee that our test set of Product
Instances is minimal. However we decreased the amount of
Product Instances which need to be tested dramatically in
comparison to testing all Product Instances.

7. REFERENCES
[1] D. M. Cohen, S. R. Dalal, A. Kajla, and G. Patton.

The automatic efficient tests generator. Fifth Int’l
Symposium on Software Reliability Engineering,
IEEE:303–309, 1994.

[2] LEGO. www.lego.com.

[3] F. P. Page. www.feasiple.de.

[4] K. Pohl and A. Metzger. Software product line testing.
Communications of ACM, 49(12), 2006.

[5] K. Scheidemann. Verifying families of system
configurations. Doctoral Thesis, TU Munich, 2007.

[6] A. Tevanlinna, J. Taina, and R. Kauppinen. Product
family testing: a survey. ACM SIGSOFT Software
Engineering Notes., 29, 2004.

APPENDIX
A. NORMAILZED FEATURE MODEL

Figure 3: Normalized Feature Model

51

Integration of Legacy Components in
MechatronicUML Architectures∗

Christian Brenner, Stefan Henkler,
Martin Hirsch, and Claudia Priesterjahn

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[cbr|shenkler|mahirsch|cpr]@uni-
paderborn.de

Holger Giese
System Analysis and Modeling Group

Hasso Plattner Insitute
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam, Germany

holger.giese@hpi.uni-potsdam.de

ABSTRACT
One of the main benefits of the component-based develop-
ment paradigm is its support for reuse which is guided by the
interface description of the components. This facilitates the
construction of complex functionality by the flexible compo-
sition of components. However, the also required verification
of the resulting system often becomes intractable in practice
as no abstract model of the reused components, which can
serve the verification purpose, is available for the integrated
legacy components. In this paper, we present the integration
of legacy components in a Mechatronic UML model by an
incremental synthesis of the communication behavior of the
embedded legacy components combined with compositional
verification.

1. INTRODUCTION
One of the main benefits of the component-based develop-
ment paradigm is its support for reuse which is guided by
the interface description of the components (cf. [10, 2]). In
general, the proper composition of independent developed
components in the software architecture of embedded real-
time systems requires means for a sufficient verification of
the integration step either by testing or formal verification.
However, the overwhelming complexity of the interaction of
distributed real-time components usually excludes that test-
ing alone can provide the required coverage when integrating
legacy components.

Thus formal verification techniques seem to be a valuable
alternative. However, the required verification of the result-
ing system often becomes intractable as no abstract model
of the reused components which can serve the verification
purpose is available for legacy components.

A number of techniques which either use a black-box ap-
proach and automata learning [8] or a white-box approach
which extracts the models from the code [9, 1, 7] exists.
However, these approaches did not consider the specific con-
text for efficiently synthesizing the relevant behavior of the
legacy component, which is of paramount importance for
embedded systems. Further, these approaches are not capa-

∗This work was partly developed in the course of the Spe-
cial Research Initiative 614 – Self-optimizing Concepts and
Structures in Mechanical Engineering – University of Pader-
born, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.

ble of finding conflicts in early learning steps.
In this paper we present a tool support for the incre-

mental synthesis of communication behavior for embedded
legacy components by combining compositional verification
and model-based testing techniques based on [4, 6]. For the
exploration of the component’s behavior a formal model of
the component’s environment is applied. The environment
model is employed to derive known environment behavior
which is then used to systematically synthesize the relevant
behavior of the legacy component as well as a formal model
describing its communication behavior. While this formal
model is not a valid encoding of all possible behavior of the
legacy component, it is in fact a valid representation of its
communication behavior for the context relevant for its em-
bedding.

In the next section we present the incremental synthesis
approach. Afterwards we describe the implementation as
well as the evaluation. We finish the paper with the conclu-
sion and future work.

2. INTEGRATION OF
LEGACY COMPONENTS

Given a concrete context and a concrete component imple-
mentation with hidden internal details (legacy component),
the basic question we want to check is whether a given prop-
erty φ as well as deadlock freedom (¬δ) holds. We are in par-
ticular interested in a guarantee that both properties hold
or a counterexample witnessing that they do not hold. How-
ever, usually the legacy component cannot be employed to
traverse the whole state space as the state space of the com-
plete system is too large to directly address this question.
Before we answer the question, we discuss in the next sec-
tion the prerequisites our approach. Afterward, we present
an overview of our approach and discuss in more detail the
relevant technique in Section 2.3.

2.1 Prerequisites
The approach presented in this paper will only work, if cer-
tain prerequisites and constraints can be fulfilled by the
legacy component. The component must have neither non-
deterministic nor pseudo-nondeterministic behavior. For ex-
ample the firing of transitions must not directly depend on
variable values or timing constraints since they are currently
not explicitly captured. Such conditions will only be valid,

52

if they are encapsulated in the state information. All tran-
sitions must fire within a given timespan after the receipt
of a triggering message. That is to prevent that a test run
which leads to a deadlock will not terminate. This times-
pan also applies to ε-transitions. In this case the timespan
starts at the entry to the transition’s start state. To enable
the learning of the behavior the definitions of the compo-
nent’s interfaces muss be known, a start state must be given
and it must be possible to reset to this start state. Further,
the state changes (current state) must be observable at the
interface.

Our experiences showed us that the prerequisites, besides
the state information, are realistic for mechatronic systems,
as this are reactive systems. As discussed in the future work
we have to extend our black-box approach with additional
white-box information, to abandon on the state information
at the interface of the legacy component.

2.2 Sketch of the Proposed Approach
Given a Mechatronic UML architecture which embeds a
legacy component and behavioral models for all other com-
ponents building the context of the legacy component, the
basic question of correct legacy component integration is
whether for the composition of the legacy component and
its context all anomalies such as deadlocks are excluded or
all additionally required properties hold. However, it is usu-
ally very expensive and risky to reverse-engineer an abstract
model of the legacy component to verify whether the inte-
gration will work.

To overcome this problem we suggest employing some
learning strategy via testing to derive a series of more de-
tailed abstract models for the legacy component. The spe-
cific feature of our approach will be that we exploit the
present abstract model of the context to only test relevant
parts of the legacy component behavior. The approach de-
pends only to a minimal extent on reverse engineering re-
sults.

We start with synthesizing a model of the legacy compo-
nent behavior based on known structural interface descrip-
tion. As shown in [4] we use a safe over approximation.
Then, we check whether the context plus the model of legacy
behavior exhibit any undesired behavior taking generic cor-
rectness criteria or additional required properties into ac-
count. If not, we use the resulting counterexample trace to
test the legacy component. If the trace can be realized with
the legacy component, a real error has been found. If not,
we first enrich the trace with additional information using
deterministic replay [3] and then merge the enriched trace
into the model of the legacy component behavior. We re-
peat the checks until either a real error has been found or
all relevant cases have been covered.

Execute legacy

component

Produce

output

Synthesize

behavior

Extract behavioral

model of context

1

(Input vector)

Counterxample

[Counterexample confirmed]

[Properties satisfied]

Observed behavior

2

3

4

Check combination

Mlegacy Mcontext

Mcontext Mlegacy

Figure 1: Sketch of the approach

Figure 1 illustrates our process with a summary of the over-
all approach. 1) Initially, we synthesize an initial behavior
model for the legacy component based on known structural
interface description and derive a behavioral model of the
context from the existing Mechatronic UML models. 2)
We check the combination of the two behavioral models and
either get a) a counterexample or b) the checked properties
are guaranteed. In the latter case we are done. 3) If we have
a counterexample, we use this as test input for the legacy
component. Deterministic replay enables us to enrich the
observable behavior with state information by monitoring.
If the tested faulty run is confirmed, we have found a real
counterexample. If not, we can use the new observed be-
havior to refine the previously employed behavior model of
the legacy component. We repeat steps 2) to 4) until one of
the described exits occurs.

The approach can be extended to multiple legacy com-
ponents, by using the parallel combination of multiple be-
havioral models. The iterative synthesis will then improve
all these models in parallel. While theoretically possible, we
can currently provide no experience whether such a parallel
learning is beneficial and useful for multiple legacy compo-
nents. Our expectation that it depends on the degree in
which the known context restricts their interaction which
determines which benefits our approach may show also for
this more advanced integration problems.

2.3 Chaotic Closure
For our approach it is necessary that the model checker
takes into account every behavior which is possible accord-
ing to our current knowledge about the system. To ac-
complish this, the already known parts of the system are
extended with chaotic behavior, resulting in a new model
called chaotic closure. The latter is then, in combination
with a model of the context, subject to model checking.
Namely, for all so far unknown behavior it is assumed that
on the one hand any possible interaction may occur but on
the other hand a deadlock is possible at any time as well.
Therefore, the chaotic closure is an over approximation of
the real system: It always models at least all of the sys-
tem’s behavior, but not all of the modeled behavior has to
be possible in the system.

For modeling chaotic behavior a chaotic automaton, a
non-deterministic finite automaton consisting of two states,
can be used: The state sδ with no outgoing transitions rep-
resents the case of the system being in a deadlock, neither
receiving nor sending any messages. The state s∀ on the
contrary represents the case where all inputs being possible
for the system are enabled and all outputs can occur. This
is modeled by one self-transition and one transition to sδ

for each possible input (with no output) and each possible
output (with no input). For creating these transitions the
input- and output-alphabets of the system must be known.
Both states of the chaotic automaton are initial states.

The chaotic closure is a combination of the synthesized
model with the chaotic automaton for the system, mapping
all unknown behavior to a chaotic one. Figure 2 shows as
an example the Chaotic Closures (on the right side) for a
trivial first conjectured behavior model and for a slightly
more advanced one.

A Chaotic Closure is constructed as follows: First, the
chaotic automaton for the input- and output-alphabets of

53

Figure 2: Example for a chaotic closure

the system is constructed. Then the states and transitions
of the chaotic automaton are added to the incomplete au-
tomaton modeling the behavior that has been learned until
now. For every combination of a state and an incoming or
outgoing event for which a transition neither has been de-
fined nor excluded, a new transition is created from that
state to both the s∀ and the sδ state. Contrary to the syn-
thesized behavior, the chaotic closure constructed for it is
non-deterministic.

The explicit deadlock state sδ in the chaotic hull makes
sure that as long as there still is behavior left to learn, the
model checker will be able to find a deadlock. The result
is that in every iteration of our approach at least one new
transition is learned. However this only applies to behavior
of the system which can be reached in combination with the
model of the context. Any other behavior is not considered
to be relevant in the context the system is integrated into,
and therefore no time needs to be wasted with testing it.

3. IMPLEMENTATION AND EVALUA-
TION

As the aim of our synthesis approach is to allow to
safely integrate legacy components into existing Mecha-
tronic UML contexts, it has been implemented in a way
that it is on the one hand compatible to models created with
the Fujaba Real-Time Tool Suite and on the other hand does
not rely on a specific testing framework. The latter is im-
portant because it depends on the legacy component, which
testing framework can be used. To accomplish this, the be-
havior synthesis step, being the core of the approach, was
implemented in Java as a command-line tool. For the ver-
ification step, the model checker verifyta of the integrated
tool environment UPPAAL has been chosen.

In the synthesis tool automata are saved as Extended Hi-
erarchical Timed Automata (ExHTA), which have the same
semantics as Fujaba Real-Time Statecharts (RTSCs), in a
tool-independent XML-format. This has several advantages:
As RTSCs can be exported into this format, it is possible
to use a context which has been modeled in Fujaba using
Mechatronic UML. Also the Uppaal Plugin provides a
way to convert ExHTA to Timed Automata which can be

validated using verifyta. It is possible to enable support for
other model checkers as well, by implementing additional
mappings to the formats they are using. Finally, the model
synthesized by our approach also is saved in ExHTA. This
should simplify implementing a method for loading it as a
RTSC in Fujaba1.

The first execution of the synthesis tool creates the
first trivial behavior model, it constructs the correspond-
ing chaotic closure by using the system’s i/o-interface and it
combines it with the model of the context. The subsequent
execution of the (slightly modified) Uppaal Plugin converts
this combination from ExHTA to the Uppaal XML-format.
Then verifyta is used for model checking it against the prop-
erties defined in a certain CTL dialect. The resulting coun-
terexample (if any) is then used on the one hand by a testing
framework to execute it as a test case, on the other hand
it is used by the synthesis tool for comparing it against the
trace resulting from those tests. If trace and counterexam-
ple conform, a message will be issued by the tool. Otherwise
the trace is used for learning new behavior (and so on).

Shuttle 1 Shuttle 2

Distance
Coordinationcontext

(Fujaba)

legacy component
(MATLAB/Simulink)

frontRole rearRole

Figure 3: Component diagram for the scenario used
for evaluation of our approach

Using the synthesis tool, our approach has been evalu-
ated within a MATLAB simulation for the case of a MAT-
LAB/Simulink legacy component being integrated into an
existing Mechatronic UML system model. Figure 3 shows
a component diagram picturing the scenario considered for
this. The components in this diagram are two Rail Cab
Shuttles, safety critical mechatronic systems, communicat-
ing with each other within a collaboration pattern. One of
these Shuttles, the one that made the decisions, was the con-
text in our approach. The other one, which was a reactive
system, was the system to be integrated.

To realize the evaluation, a simple testing framework was
implemented within MATLAB/Simulink. The main task of
this framework is the execution of the counterexamples pro-
vided by the model checker as test cases: It sends a message
to the system whenever the context would send one accord-
ing to the counterexample and it logs all communication and
all state changes of the system. Additionally, by calling the
synthesis tool and the model checker it is able to execute
our approach automatically for this scenario.

The evaluation showed that our approach is able to suc-
cessfully synthesize a correct model for the given scenario.
Also a simple error that had been added to the simulation
could be found. However, it turned out that the synthesis
needed quite a few steps, especially for learning the complete
correct model. This was due to the model checker return-
ing only very short counterexamples which lead to only one
transition being learned in each iteration of the approach.

1An implementation for this is currently under development.

54

The total amount of testing necessary was greatly increased
by this because to reach a new transition, often much of the
already known behavior had to be tested again.

A way to force the model checker to create longer coun-
terexamples is instrumenting the Chaotic Closure and mod-
ifying the temporal logic formula used by the model checker.
These changes can be used together with certain command
line options to make verifyta try to maximize the number
of some transitions in the counterexamples. Three different
modifications of this kind have been tried: One possibility
is to increase the number of self-transitions of s∀ up to a
maximum value. However this has the drawback that ver-
ifyta usually uses several iterations of one loop to achieve
this. Another option is to make the model checker try to
use every self-transition of s∀ at least once in each coun-
terexample. Finally, the model checker can also be driven
to try to let every counterexample contain every transition
of the context’s model. Each of these possibilities has been
tested for our evaluation scenario, in several cases resulting
in a much smaller amount of iterations and a smaller to-
tal amount of testing steps as well. However the success of
each of these modifications is likely to depend heavily on the
specific scenario they are used in.

In addition to the evaluation with MATLAB/Simulink we
also consider using our approach with the IPANEMA frame-
work. Using our synthesis approach within this framework
would have the advantage of being able to use the model of
the context on the one hand for exporting it to ExHTA and
on the other hand for automatically generating code from it
which can be compiled to run on the framework. A testing
framework for model based testing [5] already exists which
can be adapted to work in conjunction with the synthesis
tool. Also a Test Case Generator exists which can be used
for converting counterexamples to test cases.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a tool support for the incre-
mental synthesis of communication behavior for embedded
legacy components by combining compositional verification
techniques and model based testing. It enables context spe-
cific learning with conflict detection in early learning steps.
The employed learning strategy provides options for opti-
mization as shown in the evaluation. The interplay between
the formal verification and the test could be improved when
a number of counterexamples instead only single one could
be derived from the model checker. This is achieved by using
specific strategies of the model checker to derive counterex-
amples.

Next, we want to combine the presented dynamic analy-
sis with a static analysis to extend the applicability of the
approach. E.g., the parts of the code which are responsible
for the current state or internal variable values and depen-
dencies could be detected by a static analysis and used by
the dynamic analysis.

5. REFERENCES
[1] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,

C. S. Păsăreanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from java source code.
In International Conference on Software Engineering,
pages 439–448, 2000.

[2] I. Crnkovic. Building Reliable Component-Based

Software Systems. Artech House, Inc., Norwood, MA,
USA, 2002.

[3] H. Giese and S. Henkler. Architecture-driven platform
independent deterministic replay for distributed hard
real-time systems. In Proceedings of the 2nd
International Workshop on The Role of Software
Architecture for Testing and Analysis
(ROSATEA2006), pages 28–38, New York, NY, USA,
July 2006. ACM Press.

[4] H. Giese, S. Henkler, and M. Hirsch. Combining
Compositional Formal Verification and Testing for
Correct Legacy Component Integration in
Mechatronic UML. In R. de Lemos, F. D.
Giandomenico, C. Gacek, H. Muccini, and M. Vieira,
editors, Architecting Dependable Systems V, volume
5135 of LNCS, pages 248–272. SPRINGER, 2008.

[5] H. Giese, S. Henkler, M. Hirsch, and C. Priesterjahn.
Model-based testing of mechatronic systems. In
L. Geiger, H. Giese, and A. Zündorf, editors, Proc. of
the 5th International Fujaba Days 2007, Kassel,
Germany, pages 1–4, September 2007.

[6] S. Henkler and M. Hirsch. Compositional validation of
distributed real time systems. In OMER4 -
Object-oriented Modeling of Embedded Real-Time
Systems, pages 1–6, 2007. accepted.

[7] G. J. Holzmann and M. H. Smith. A practical method
for verifying event-driven software. In ICSE ’99:
Proceedings of the 21st international conference on
Software engineering, pages 597–607, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[8] H. Hungar, O. Niese, and B. Steffen. Domain-specific
optimization in automata learning. In In Proc. 15 Int.
Conf. on Computer Aided Verification, 2003.

[9] D. Lucio, J. Kramer, and S. Uchitel. Model extraction
based on context information. In ACM/IEEE 9th
International Conference on Model Driven
Engineering Languages and Systems, LNCS. Springer,
2006.

[10] C. Szyperski. Component Software and the Way
Ahead. In G. T. Leavens and M. Sitaraman, editors,
Foundations of Component-Based Systems,
incollection 1, pages 1–20. Cambridge University
Press, New York, NY, 2000.

55

