

Holger Giese, Albert Zündorf (Eds.)

 Days 2005

15th -18th September 2005
Paderborn, Germany

Proceedings

Volume Editors
Jun.-Prof. Dr. Holger Giese
University of Paderborn
Department of Computer Science
Warburger Straße 100, 33098 Paderborn, Germany
hg@uni-paderborn.de

Prof. Dr. Albert Zündorf
University of Kassel
Department of Computer Science and Electrical Engineering
Wilhelmshöher Allee 73, 34121 Kassel, Germany
Albert.Zuendorf@uni-kassel.de

Program Committee

Program Committee Chairs

Holger Giese (University of Paderborn, Germany)
Albert Zündorf (University of Kassel, Germany)

Program Commitee Members

Gregor Engels (University of Paderborn, Germany)
Pieter van Gorp (University of Antwerp, Belgium)
Sabine Glesner (University of Karlsruhe, Germany)
Luuk Groenewegen (Leiden University, Netherlands)
Reiko Heckel (University of Leicester, UK)
Jens Jahnke (University of Victoria, Canada)
Mark Minas (University of the Federal Armed Forces, Germany)
Manfred Nagl (RWTH Aachen, Germany)
Jörg Niere (University of Siegen, Germany)
Bernhard Rumpe (TU Braunschweig, Germany)
Andy Schürr (TU Darmstadt, Germany)
Wilhelm Schäfer (University of Paderborn, Germany)
Dániel Varró (Budapest University of Technology and Economics, Hungary)
Bernhard Westfechtel (University of Bayreuth, Germany)

Editors’ preface

Fujaba is an Open Source UML CASE tool project started at the software engineering group of
Paderborn University in 1997. It initially combined features of commercial “Executable UML” CASE
tools with rule-based visual programming concepts adopted from its ancestor, the graph
transformation tool PROGRES. In 2002, Fujaba has been redesigned and became the Fujaba Tool
Suite with a plug-in architecture allowing developers to add functionality easily while retaining full
control over their contributions.

Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the
early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual
programming language with a special emphasis on object structure manipulating rules. Today, at least
six rather independent tool versions are under development in Paderborn, Kassel, Darmstadt, and
Siegen for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4)
specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-
based integration of system (re-)engineering tools.

Quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related
research activities. In addition, quite a number of Fujaba users send us requests for more functionality
and extensions.

This 3rd International Fujaba Days aims at bringing together Fujaba developers and Fujaba users from
all over the world to present their ideas and projects and to discuss them with each other and with the
Fujaba core development team.

Thanks to the EU research project SEGRAVIS we were able to invite Jean Bezivin to give a keynote
talk on ModelWare for the Fujaba Days. Within the technical program of the main workshop, we will
have 10 papers addressing meta-modeling, reverse engineering, formal methods, and code generation
and real-time systems. An additional demo session and two panel sessions will complete the program.

The abstracts of the invited talk plus an overview paper about the development efforts at the main
Fujaba locations Paderborn, Kassel, Darmstadt, Siegen, and Bayreuth, 5 position papers presenting
innovative ways of using or extending Fujaba of about 8 pages, and 4 reports of new features or
projects extending Fujaba of about 4 pages are compiled in the form of a technical report. The
structure of the report reflects the organization of the related presentations in sessions at the workshop.
There will be one session on model-driven development, one session on reverse engineering, one
session on formal methods, one session on code generation as well as one session dealing with real-
time systems.

We hope that this compilation of the keynote abstract, the overview paper, the position papers, and the
reports of the Fujaba workshop presentations provides a useful insight into the ongoing activities in
the Fujaba project and provides the needed background information and motivation for joining the
Fujaba development team.

The Fujaba Developer Days after the main workshop further enable active Fujaba developers to meet
each other and to spend two days together to share their experiences, to work on Fujaba extensions,
etc. Within the Fujaba Developer Days, a number of tutorials about Fujaba 4 Eclipse, the new code
generation mechanism, changes due to the upcoming Fujaba 5.0 release, and the Support for different
meta-models will be held.

Holger Giese & Albert Zündorf
Program Committee Chairs

Table of Contents

The Fujaba Tool Suite 2005: An Overview About the Development Efforts in Paderborn,
Kassel, Darmstadt, Siegen and Bayreuth..1

Keynote Talk
Model Driven Development..15

Jean Bezivin (Université de Nantes)

Model-Driven Development
SPin – A Fujaba Plugin for Architecture Stratification.. 17

Felix Klar, Thomas Kühne, Martin Girschick (TU Darmstadt)
Graph Transformations with MOF 2.0 .. 25

Carsten Amelunxen, Tobias Rötschke, Andy Schürr. (TU Darmstadt)

Reverse Engineering
Detection of Incomplete Patterns Using FUJABA Principles .. 33

Sven Wenzel (Tampere University of Technology, University of Dortmund)
Calculation and Visualization of Software Product Metrics .. 41

Matthias Meyer (University of Paderborn), Jörg Niere (University of Siegen)

Formal Methods
A Plugin for Checking Inductive Invariants when Modeling with Class Diagrams
and Story Patterns .. 45

Basil Becker, Holger Giese, Daniela Schilling (University of Paderborn)
Formal Verification of Java Code Generation from UML Models 49

Jan Olaf Blech, Sabine Glesner, Johannes Leitner (University of Karlsruhe)

Code Generation
Generation of Type Safe Association Implementations ... 57

Dietrich Travkin, Matthias Meyer (University of Paderborn)
Template- and modelbased code generation for MDA-Tools 63

Leif Geiger, Christian Schneider, Carsten Reckord (University of Kassel)

Real-Time Systems
The SceBaSy PlugIn for the Scenario-Based Synthesis of Real-Time Coordination
Patterns for Mechatronic UML .. 67

Holger Giese, Sergej Tissen (University of Paderborn)
Worst-Case Execution Times Optimization of Story Patterns for Hard Real-Time
Systems ... 71

Sven Burmester, Holger Giese, Andreas Seibel, Matthias Tichy
(University of Paderborn)

The Fujaba Tool Suite 2005:
An Overview About the Development Efforts in

Paderborn, Kassel, Darmstadt, Siegen, and Bayreuth

The Fujaba Developer Teams from
Paderborn, Kassel, Darmstadt, Siegen, and Bayreuth

ABSTRACT
This paper provides an overview about the Fujaba Tool
Suite and its independent tool versions developed and main-
tained in Paderborn, Kassel, Darmstadt, and Siegen includ-
ing future plans for tool development in Bayreuth. Start-
ing with the architecture and roadmap for the Fujaba core,
we report about the different directions of development
(e.g. meta-modeling, realtime systems, and re-engineering)
and also provide an outlook on planned future work for each
direction. In addition, references which provide more de-
tailed information for the different directions are provided
and a comprehensive list of the plug-ins which are avail-
able or currently under development by Paderborn, Kassel,
Darmstadt, or Siegen is included.

Keywords
Fujaba, UML, MOF, JMI, Reverse Engineering, Design Pat-
tern, Anti Pattern, Metrics, Model-Driven Development,
Code Generation, Story Pattern, Graph Transformations,
Triple Graph Grammars, Tool Integration, Versioning, Real-
Time, Mechatronic, Modelchecking, Scenarios, Teaching,
Eclipse, Metamodeling

1. INTRODUCTION
Fujaba is an Open Source UML CASE tool project started

by the software engineering group of Paderborn University
in 19971. In 2002, Fujaba has been redesigned and became
the Fujaba Tool Suite with a plug-in architecture allowing
developers to add functionality easily while retaining full
control over their contributions.

Fujaba followed the model driven development philosophy
right from its beginning in 1997. At the early days, Fujaba
had a special focus on code generation from UML diagrams
resulting in a visual programming language with a special
emphasis on object structure manipulating rules.

Today, at least six rather independent tool suites are
under development in Paderborn, Kassel, Darmstadt, and
Siegen for supporting (1) re-engineering, (2) real-time
and mechatronic systems, (3) education, (4) specification
of distributed control systems, (5) integration with the
ECLIPSE platform, and (6) MOF-based integration of sys-
tem (re)engineering tools.

The paper is organized as follows. In the next section,
we report about architectural improvements concerning the

1Fujaba is a successor of the not UML-compatible CASE
tool PROGRES whose development has been started around
1986.

Fujaba kernel and about the Eclipse integration efforts as
well as approaches concerning model versioning. In Sec-
tion 3, we present our approaches concerning model-driven
development. This includes work on support for MOF 2.0
meta-models as well as various applications of triple graph
grammars for e.g. tool integration and (meta-)model trans-
formations. We show in Section 4 ongoing research concern-
ing reverse engineering of software systems, in particular
design pattern and anti pattern recognition. Section 5 con-
tains a presentation of the various approaches concerning
model driven development of dependable, embedded, real-
time systems. In Section 6, we present work on teaching
object-oriented concepts using Fujaba as well as work on a
Fujaba supported software development process. We con-
clude the paper with an overview about possible new re-
search areas for Fujaba. [hg,mtt]

2. MODEL MANAGEMENT - ARCHITEC-
TURE AND ALGORITHMS

In this section, we report about the current state of the Fu-
jaba kernel as well as the current state of the Fujaba Eclipse
integration efforts. This section includes reports about ver-
sioning in Fujaba and work on computing differences be-
tween models.

2.1 Kernel
The Fujaba Tool Suite has been well proven in various

projects in the last eight years since its beginning. Espe-
cially, the changeover from Fujaba 3 to the Fujaba Tool
Suite 4 with its ability to add plug-ins had opened our
project to a wider developer community beyond the Univer-
sity of Paderborn. However, the Fujaba Tool Suite has
still limitations that impede further development.

Fujaba can only handle one project at a time. This
prevents the possibility to define dependencies between
projects. Projects must always be consistent in itself. Fu-
ture versions of the Fujaba Tool Suite will be able to
handle more than one project with project dependencies.

Fujaba is particularly well known for its Story Driven
Modeling (SDM). However, SDM is restricted to the UML
class meta model. There are new approaches using the Meta-
Object Facility (MOF) for class models. To support such
approaches, an interface for class meta models and SDM is
introduced so that the meta models can be changed [46].
Further enhancements of the meta model and the user in-
terface are under work.

All these enhancements will result in the Fujaba Tool
Suite 5 which are in turn only a preparation for the most

1 Fujaba Days 2005

important enhancement. The Fujaba Tool Suite will be
migrated to the widely used IDE Eclipse. [lw,tr]

2.2 Fujaba4Eclipse
In 2004, we received an IBM Eclipse Innovation Grant for

porting a core part of the Fujaba Tool Suite to an Eclipse
plug-in [35]. Today, the third release of Fujaba for Eclipse
is available for download at the Fujaba web site. So far,
the plug-in supports modeling of class and story diagrams,
from which Java code can be generated.

The Fujaba4Eclipse plug-in reuses major parts of Fujaba.
The display and editing of diagrams has been reimplemented
using the well-documented Eclipse and GEF frameworks.
First tests show that especially the display of large class
diagrams is much faster than in Fujaba.

Fujaba4Eclipse already provides several extension points
which enable the contribution of new diagrams or diagram
elements as well as loading and saving of model elements
provided by other Eclipse plug-ins. More extension points
will follow. Several Fujaba reverse engineering plug-ins
have already been ported successfully to Eclipse. The ex-
perience shows that the effort required is not too high since
many parts of Fujaba4Eclipse, e.g. figures for displaying
UML elements, can easily be reused. The MyPlugin exam-
ple plug-in for Eclipse will soon be available as well, so start
contributing! [mm,lw]

2.3 Persistency [KS]
The old storing mechanism of Fujaba (FPR) accompa-

nied the Tool right from the first development stages. But
as Fujaba evolved, more and larger projects were started,
using Fujaba. Thus a single-user environment is not suited
for these projects any more. Previous attempts to add a
versioning facility to Fujaba [45] did not succeed.

CoObRA is a framework, developed at the University of
Kassel, that offers undo/redo, persistency and version con-
trol techniques [15]. It records changes to the object struc-
ture of an application to facilitate all these features. The
major advantage is that it provides an easy-to-use mech-
anism requiring very low integration costs. CoObRA was
successfully integrated into the model of the Fujaba Tool
Suite.

This results in a major feature for Fujaba: Projects can be
stored in local files and in server side repositories to share
them among developers, both with the same API. Addi-
tionally full undo and redo support was added to Fujaba.
For applications developed with Fujaba the CoObRA plug-
in also extends the Fujaba code generation facilities to offer
CoObRAs features to applications generated with Fujaba.

CoObRA2, which is integrated into Fujaba5, already pro-
vides all the features from CoObRA and was optimized
concerning design and processing speed. Planned features
include hierarchical and cascaded repositories to support
working in groups at different development sites. Also, it
is future work to use CoObRA2 with CVS servers, to con-
currently work on e.g. Fujaba project files and additional
resources like documentation and images within the same
CVS repository.

To continue the work on Fujaba’s scalability for large
projects, we want to introduce a generic loading on demand
strategy. Models could be partially loaded when required
and unloaded to free memory without harming proper op-
eration. This would tackle the memory problems with large

Fujaba specifications, which are quite some obstacle at this
time. [cs]

2.4 Differences of Models
In general, software should be developed in teams. In or-

der to support cooperative team work a version management
system which supports UML models is absolutely necessary.
It is not always possible to record changes to a model as
done in the CoObRA approach, depicted above. Thus the
essential part of such systems is the ability to calculate dif-
ferences, present them to the developer and to provide merge
operations to come to a consistent model. In our approach
we use unified diagrams with difference information to be
presented to the developer.

The current algorithm calculates differences of two mod-
els given as XMI files. The output is also an XMI file; it
contains the unified model of the two original models with
additional difference information added by the XMI exten-
sion mechanism. The difference algorithm does not rely on
persistent unique identifiers and the calculation itself is con-
figurable to capture the semantics of an actual model or part
of the model in the algorithm. The algorithm is designed to
support flat diagrams, where a recursive nesting of diagram
elements is forbidden, e.g. UML class diagrams or sequence
diagrams. The configuration of the algorithm for UML class
diagrams works well and is part of the plug-in distribution.
Currently the algorithm is enhanced to support hierarchical
diagrams such as UML package diagrams, state-charts or
Matlab/Simulink models. For more details see [27].

Figure 1: Document with difference information.
Parts detected as similar are shown in black color,
the green (light gray) parts exist only in the second
diagram and the red (dark gray) parts exist only in
the first diagram. The small u-button indicates a
value change.

Unfortunately, a difference diagram type has less restric-
tions than a ’normal’ diagram type. For example a difference
class diagram has to allow for having more than one class
with the same name or a class must be allowed to contain two
methods with the same signature having only different pa-
rameter names. Consequently, each difference diagram type
needs its own visualization. A configurable algorithm such

Fujaba Days 2005 2

as the calculation algorithm is not feasible. We have devel-
oped a cook book which describes how a diagram type im-
plementation can be transformed in an implementation for
the corresponding difference diagram type step by step. Fu-
jaba currently supports the visualization of difference class
diagrams only, cf. Figure 1. For more details see [37, 41].
[jn]

3. MODEL- AND META-MODEL-DRIVEN
SOFTWARE DEVELOPMENT

Originally, Fujaba has been developed to support model-
driven software development activities by offering its users
an executable subset of UML 1.x with a precise semantics
definition based on graph transformations. Despite of the
fact that Fujaba has been used from the very beginning for
meta modeling and bootstrapping activities, the tool’s main
focus was and still is the rule-based development of ordi-
nary Java applications with complex data structures. OMG-
compliant meta modeling activities and the definition of
model-to-model transformations were out-of-scope. Nowa-
days this situation is rapidly changing with the development
of a number meta modeling and model-transformation plug-
ins, which are the main topic of this section.

These plug-ins support meta modeling activities based on
MOF 2.0, rule-based definition of ”local” model transfor-
mations (working on a single model on the same abstraction
level) as well as the specification of step-wise model refine-
ment processes and the translation between models belong-
ing to different meta models. These plug-ins developed at
different Universities, are described in the following subsec-
tions. [as]

3.1 Meta Modeling with MOF 2.0
Meta -modeling languages are used to describe other mod-

eling languages. The Object Management Group (OMG)
adopted MOF 2.0 [40] as standard meta modeling language.
It provides valuable new features for modularization, refine-
ment, and reuse of meta models compared to UML 1.x class
diagrams which are currently supported by the Fujaba ker-
nel.

Therefore, we developed a meta modeling framework
called MOFLON (www.moflon.org). The framework is
based on MOF 2.0 and realized as a new Fujaba plug-in
[2] (replacing the Fujaba UML 1.4 compatible class diagram
editor). MOF 2.0 simplifies modularization and reuse of
meta models by offering a sophisticated package concept as
well as powerful means for refinement of attribute types and
associations. Packages act as namespaces and can be refined
and reused using package merges. This concept is more so-
phisticated than Fujaba’s current package concept.

Further major features of MOF 2.0 compared to Fujaba
UML class diagrams are the relations between association
ends. In MOF 2.0 association ends can be redefinitions,
subsets or unions of other association ends. Those relations
simplify the challenging task to structure, reuse, and refine
huge meta models. Beside the new features, the editor offers
an XMI import which permits the exchange of models with
Rational Rose and other XMI-standard-compliant commer-
cial UML CASE tools. [ca,tr]

3.2 Meta Model Transformation with Story
Diagrams

Choosing MOF 2.0 as modeling (graph schema definition)
language has some implications for Fujaba graph transfor-
mations as discussed in [3]. Model/graph transformations
defined by means of story diagrams, are no longer manipu-
lating simple directed, node- and edge-labeled graphs with
attributed nodes, but have to be adapted to the much more
complicated data model imposed by MOF 2.0. This adap-
tion involves some modifications of different parts of Fujaba.
On the one hand, packages offer now much more sophisti-
cated means to structure, reuse, and refine model fragments
and to define namespaces for classes and other model el-
ements; they are intended to replace Fujaba’s simple view
diagram concept. On the other hand some effort has be done
to integrate the improved association concept that is intro-
duced by MOF 2.0 as well as UML 2.0 into Fujaba graph
transformations, i.e. to modify its underlying class of graphs
appropriately.

In MOF 2.0, set-valued association ends are not neces-
sarily unique. As already indicated in [53], the introduc-
tion of non-unique association ends requires modifications
of the graph model, because story diagrams have to deal
with multiple links of the same type between identical ob-
jects. Besides, relationships between association ends can be
defined that result in automatic link-creation (subsets) or re-
strict possible end types for given associations(redefinition).
While automated link-creation is transparently performed
by the MOFLON plug-ins [2], some modifications are neces-
sary in the Fujaba core to support the remaining new MOF
2.0 concepts: Unions of association ends make associations
virtually abstract, so links of that type may be queried, but
not created, modified or deleted by story diagrams. These
restrictions should be checked statical during the creation of
story diagrams. Other new features like redefinition of asso-
ciation ends demand additional runtime analysis activities.
[ca,tr]

3.3 MDD and Stratified Graph Transforma-
tions

Complex software systems call for ways to obtain sim-
plified views onto them, otherwise important architectural
structures will be buried in overwhelming details. However,
resolving certain issues often requires the manipulation of
more detailed architecture without destroying the consis-
tency between these more detailed models and their abstrac-
tions. Architecture Stratification [4] addresses the need to
provide a multitude of views on models ranging from very
concrete to very abstract so that a large number of stake-
holders may view the system (model) with a level of abstrac-
tion that is best for their particular interests and require-
ments. In contrast to a layer, as in the ISO/OSI network
model, each level fully describes the whole system, albeit
using varying conciseness.

The SPin plug-in [28] extends Fujaba with facilities to an-
notate very abstract models so that they can be successively
transformed into more concrete versions in accordance with
OMG’s MDA approach. SPin comes with a dynamically ex-
tendable library of refinement transformations. Thus, SPin
provides basic support for architecture stratification. Cur-
rently, refinement transformations are realized as straight-
forward Fujaba graph transformations. Future work will
investigate the use of triple graph grammars (TGGs) for
the same and more advanced purposes including round-trip
engineering. [fk,tk]

3 Fujaba Days 2005

3.4 Model Transformation using TGGs
The advent of OMG’s new silver-bullet of the model-

driven architecture (MDA) [42] has put model transforma-
tions into focus. A practicable model transformation tech-
nique should allow a visual specification of the transforma-
tion with an underlying formal foundation and is expected
both to be applicable in different stages of the development
process and in both directions. The transformation process
itself should be executable in a batch-oriented and incre-
mental way. Additionally, the technology should allow syn-
chronizing models that belong to different meta models and
keeping them consistent.

Due to these requirements, we are using the visual, formal,
and bidirectional transformation technique of triple graph
grammars (TGGs) [48]. A triple graph grammar specifica-
tion is a declarative definition of a bidirectional model trans-
formation. The mapping between two models is achieved by
an additional correspondence model. It enables a clear dis-
tinction between the source and the target and holds addi-
tional traceability information [12]. This extra information
is needed to preserve the consistency between both models.

A recently developed Fujaba plug-in offers the required
tool support for model transformations with triple graph
grammars. Its main component is an editor for the declar-
ative specification of triple graph grammar rules. From
this specification we derive implementations of executable
consistency-checking or establishing rules automatically.
The rules are executed using the standard Fujaba model
transformation engine. This engine is currently extended
towards incremental model transformations. Additionally,
we have developed a concept which allows us to transform
Fujaba incompliant models. Based on this concept, we have
developed a code generator with round-trip engineering ca-
pabilities. The generator transforms class diagrams repre-
sented in Fujaba to Eclipse’s Java abstract syntax tree and
vice versa. This case study is a first step towards model
round-trip engineering and code generation realizing the vi-
sion of MDA. [rw]

3.5 Tool Integration with TGGs
As mentioned in the previous subsection, triple graph

grammars provide powerful means to integrate models be-
longing to different meta models. In contrast to the activi-
ties discussed above, where Java tools with open interfaces
are integrated for round-trip engineering purposes, the main
focus of the work described here is laid on consistency check-
ing and update propagation between models manipulated by
commercial-off-the-shelf modeling tools. These tools are nei-
ther written in Java nor do they usually offer appropriate
interfaces for model manipulation purposes. Furthermore,
automatic round-trip engineering is usually unfeasible and
the main emphasis has to be laid on consistency checking
and traceability link creation activities. In addition, adher-
ence to standards is a must which are or will hopefully be
in the future supported by the regarded CASE tools.

Therefore, we are developing a variant of TGGs which
finally generates Java code for MOF/JMI-compliant tool
interfaces. Furthermore, we take OMG’s MOF 2.0 Query
/ Views / Transformations Request for Proposals (QVT)
[43] and the most promising submission from the QVT-
partners [44] into account. Our solution is based on the
tool integration framework Toolnet from Daimler Chrysler
[1]. This framework offers interfaces for uniformly access-

ing tools’ data by means of so called tool adapters based
on Java Metadata Interfaces (JMI) [36]. Finally, the frame-
work provides the infrastructure for inter-tool communica-
tion. We are currently busy to extend Toolnet by (semi-
)automatic tool integration mechanisms (e.g. consistency
checking, attribute change propagation, model transforma-
tion). In this scenario, Fujaba is used to draw declarative
triple graph grammars, (semi-)automatically derive opera-
tional graph rewriting rules for the different tool integra-
tion use cases, and generate JMI-compliant Java code from
them. In the future, we plan to extend the formalism of
triple graph grammars to multi graph grammars. With
multi graph grammars, we will be able to cope with an ar-
bitrary number of to be integrated tools instead of pairs of
tools only [32]. [ak,as]

3.6 Incremental Model Synchronization using
TGGs

One common problem application programmers in gen-
eral and CASE tool developers in particular have to solve
is to keep some internal object model and its representation
on screen consistent, i. e. have the graphical user interface
always display what the internal object model looks like.

Although this is not a “hard” problem and everybody
knows how to implement such a synchronization, it is at least
annoying and error prone work that keeps you away from
the “real” work. Usually observers are registered on both
models. They are activated when something changes in one
model and then update the other model. So for each change
operation an observer reaction has to be implemented.

In our experience, when implementing observers you usu-
ally think in terms of “what happens if attribute x changes
its value” or “what happens if object y gets another child
object of type Z”. This is a rather low level operational kind
of abstraction close to the implementation of observers. A
higher level of abstraction is to think in terms of “what-
corresponds-to-what-rules” and leave the actual operations
necessary to perform the synchronization to a tool that does
the right thing.

We think that triple graph grammars are a good match for
that higher level of abstraction. We think that those rules
can be written down using triple graph grammars, maybe
with some extensions added. We plan that this is done in
such a way that either the observer code can be automati-
cally generated or that an interpreter executes those rules.
This will result in two major improvements compared to
manual implementation. First, you will not have to imple-
ment the observers manually any longer. Second, designing
and maintaining the synchronization can be done on the
higher level of abstraction described above.

That scheme is not limited to the special problem de-
scribed here which represents a part of our motivation. Be-
cause we use triple graph grammars it is straightforward to
apply that scheme to any two object models. [tm]

3.7 CodeGen2
The old code generation concept of Fujaba added an ab-

straction layer that should ease the adaption to new pro-
graming languages. But that also makes the maintenance of
the code generation very complex. In fact, to generate few
line of code one has to write dozens of lines in the code gen-
eration. This makes small adaption of the code generation
impossible especially for Fujaba users. The CodeGen2 plug-

Fujaba Days 2005 4

in now replaces the old code generation by a new template-
based one. Using templates, it should be possible (even for
the user) to adapt the generated code to ones wishes and
to write own templates for new languages or new language
elements.

Additionally, CodeGen2 introduces a layer of so called
tokens on which the templates are applied. On this layer
optimizations can easily be preformed. Several optimiza-
tions have already been implemented which results in faster
execution time of the generated code.

CodeGen2 was completely specified using Fujaba (except
for the templates, of course). This way CodeGen2 is the
first step towards bootstrapping of Fujaba. [cs,lg,cr]

3.8 JMI Code Generation for MOF 2.0
One part of the MOFLON framework as described in 3.1 is

a code generator plug-in based on the MOMoC compiler [6]
for the generation of MOF 2.0 compliant meta models. To
be able to work with meta modeled languages, tool providers
need to map meta models on source code. For that purpose,
SUN provides the Java Metadata Interface (JMI) [17] which
is a standardized mapping of MOF compliant meta models
onto Java. As the Java representation of MOF, JMI speci-
fies the generation of tailored interfaces for the creation and
access of meta data as well as a set of reflective interfaces
for a unified discovery of meta data. The standardized in-
terfaces facilitate an easy exchange and integration of meta
models which make JMI a very useful standard.

Thus, the MOFLON code generator adheres to the JMI
standard and generates compliant meta model implementa-
tions. The XML-based code generation process consists of
three steps. First of all a modularized preprocessing phase
performs several kinds of transformations on the meta model
(e.g. unfolding of refinement relationships between pack-
ages). Afterwards in the second step, the meta model is
transformed into a proprietary XML representation which
acts as input for several XSL stylesheets transforming the
XML representation during the third and last step into Java
code. The generated meta model implements all JMI in-
terfaces and supports the new features of MOF 2.0. Fur-
thermore, all changes concerning the instances of the meta
model are propagated by an event mechanism to enable a
clean and easy integration. This event mechanism is based
on the event mechanism provided by the NetBeans Meta-
data Repository (MDR) [33], a JMI repository which is used
by several tools, to achieve compatibility between MDR and
meta models generated by MOFLON. Future versions of the
code generator will be integrated with an OCL compiler and
the graph transformation of Fujaba (cf. Section 3.2). There-
fore, the MOMoC/XSLT-based three-phase code generation
approach has to be integrated with the template-based code
generation mechanism of CodeGen2 described in the previ-
ous subsection. [ca]

4. RE-ENGINEERING
Today, software is seldom developed from scratch. In fact,

developers spend most of their time with the maintenance of
existing systems, e.g. to meet new requirements or to inte-
grate them with other software components. Unfortunately,
(design) documentation for such systems or components is
often not available or has become obsolete over time. Thus,
before changes can be made, an understanding of the system
has to be gathered from the available artifacts such as e.g.

the source code.
The work presented in the following sections aims to sup-

port this task. The first approach reverse engineers class di-
agrams from the byte code of Java class libraries in order to
make them amenable for model based development. The fol-
lowing approaches are concerned with the analysis of source
code in order to detect or improve design and anti pattern
implementations as well as to perform coarse-grained analy-
ses to get a first impression of a system. Finally, an approach
for analyzing the evolution of domain-specific software ar-
chitectures is presented.

4.1 Java Byte-code
Fujaba’s Story Driven Modeling (SDM) is very helpful

for creating method implementations. Especially pattern-
matching is well supported by SDM, because of the graphi-
cal specification approach. However, to be able to use SDM,
a class diagram containing the metamodel of the elements
to be used in SDM must be present in the current Fujaba
project.

If a developer just wants to use his own model elements
which are defined in his project, this does not represent a
problem. Yet, often developers use elements of other devel-
opers. For those elements typically no class diagram exists,
but corresponding source code or byte code only. To get
a class diagram from these representations one can reverse
engineer “by hand” or use a parser in combination with a
generator that produces a class diagram automatically. A
plugin that is able to automate this process for Java source
code is the JavaParser plug-in which is part of the Fujaba
RE Tool Suite.

An alternative way to obtain the desired class diagrams is
the Java Virtual Machine synchronizer (VM-synchronizer)
introduced in [28]. It is part of the “SPin” plug-in and
supports synchronization of UML classes with their Java
counterpart by creating class diagrams from Java byte code.
[fk]

4.2 Design Pattern Recognition
In recent years, we have developed a semiautomatic de-

sign pattern recognition on the source code of existing sys-
tems [38]. The approach uses a static analysis of the ab-
stract syntax graph (ASG) representation of the source code.
Patterns are described graphically based on graph grammar
rules with respect to the ASG. It is a highly scalable process
which can be applied to large real world applications with
more than 100.000 LOC. The found design pattern instances
are rated by accuracy values [39].

The static analysis focuses on the structural aspects of a
pattern. Behavioral aspects of patterns can only be ana-
lyzed rudimentary by static analysis. Thus, we are working
on a dynamic analysis that confirms or weakens the pat-
tern instances from static analysis [51]. Behavioral patterns
based on sequence diagrams describe the interaction within
patterns. The dynamic analysis executes the system to be
analyzed and records traces of method calls. These traces
will be compared to the behavioral patterns. [lw]

4.3 Anti Pattern Recognition and Transfor-
mation

In contrast to design patterns, anti patterns represent bad
design solutions especially with respect to maintainability.
Examples include data classes consisting only of fields and

5 Fujaba Days 2005

almost no behavior, god classes assuming too much respon-
sibilities in a (sub-)system, or huge conditionals for handling
requests or representing different states of an object. The
presence of anti pattern instances in a system may compli-
cate certain maintenance tasks significantly. Thus, we use
the pattern recognition approach introduced in the previ-
ous section in combination with software product metrics to
recognize anti pattern instances.

An anti pattern can usually be transformed into a bet-
ter solution, sometimes based on design patterns. Starting
from the ideas presented in [26], we are currently working
on support for the improvement of recognized anti pattern
instances. We want to provide anti pattern specific refactor-
ings of the ASG, which improve the structure of the software
while preserving its behavior. Since not necessarily all found
anti pattern instances need to be improved, the re-engineer
determines those to be transformed. The transformation it-
self, however, we plan to automate as far as possible. [mm]

4.4 Metrics
Software product metrics are one opportunity to perform

coarse-grained analysis. Metrics such as lines of code, num-
ber of attributes or methods of a class, lack of cohesion, or
depth of inheritance hierarchies allow for producing quanti-
tative analysis results of a software system. A combination
of different metrics allows to draw conclusions such as prob-
lematic or high influencing system parts. To overcome the
flood of numbers produced by the metrics, Lanza proposes a
graphical representation of metric combinations. So-called
polymetric views are an ideal means to get a first impression
of a system.

Polymetric views are two-dimensional graphs containing
nodes and sometimes edges, which are arranged in a certain
layout. Nodes represent entities of the analyzed software
system and edges represent relationships between the enti-
ties. Each node is a rectangle and can carry up to 5 metric
values depending on the certain layout, whereas edges do not
carry any metric information. A reverse engineer can easily
identify runaways by looking at the produced pictures and
perform further analysis.

Fujaba needs two plug-ins to support the metrics calcu-
lation and polymetric views. The first plug-in offers the
calculation of several object-oriented software product met-
rics. The second plug-in allows for viewing the metric results
calculated by the first plug-in as polymetric views. Both
plug-ins allow for extending and modifying the set of met-
rics and polymetric views, respectively. For more details see
[34]. [mm,jn]

4.5 Trend Analysis of Domain-Specific Soft-
ware Architectures

The aim of this research activity is to define a methodi-
cal approach to monitor the progress of evolving a domain-
specific software architecture from an initial to a desired
situation. Therefore, both relevant metrics and consistency
rules are taken into account. Rather than gathering archi-
tectural information only once to assess the quality, we re-
peat the measurements over an extended period of time and
analyze the trends that can be observed. A case study of
this approach has been described in [47].

Fujaba is used as meta modeling tool to define the analysis
part of the related tool chain. First, the domain-specific
meta model is defined using the MOFLON/Editor plug-in

described in section 3.1. Consistency rules and metrics are
then defined using Fujaba graph transformations that have
been adapted to MOF 2.0 as described in section 3.2, and
triple graph grammars (cf. section 3.5). Using the JMI-
compliant MOFLON/Compiler plug-in described in section
3.8, Java code for analysis rules is generated, which can
be checked and visualized by a partially hand-written tool
framework. [tr]

5. REAL-TIME AND MECHATRONIC
SYSTEMS

A new field of research concerns the software develop-
ment for reconfigurable mechatronic systems. Mechatronic
systems combine technologies from mechanical and electri-
cal engineering as well as from computer science. They are
real-time systems because reactions to the environment usu-
ally have to be completed within a specific, predictable time
and they are hybrid systems because they usually consist of
discrete control modes as well as implementations of contin-
uous feedback controllers. Due to their application domain,
the behavior, which is largely controlled by software, has
to meet safety-critical requirements. Thus, modeling ap-
proaches for mechatronic systems must include formal ver-
ification in order to guarantee safety-critical requirements.
In the following sections, we describe our ongoing efforts for
modeling and formal verification of mechatronic systems.
[mtt]

5.1 Modeling
In order to support specifying the architecture of embed-

ded real-time systems which are usually distributed systems,
Fujaba has been extended by UML 2.0 component diagrams
in the Fujaba Real-Time Tool Suite [11]. The behavior of
single components is specified by real-time statecharts [9].
Real-time statecharts introduce clocks and allow the specifi-
cation of worst-case execution times (WCETs) for activities
and deadlines for transitions. The abandonment of the zero-
execution time semantics for transitions enables code gener-
ation for hard real-time systems. We introduced coordina-
tion patterns [24] as a notion to capture the local real-time
coordination behavior of different roles as real-time state-
charts. Those patterns are subject to formal verification in
order to guarantee safety-critical properties. Component be-
havior is then derived by composing and refining a number
of pattern role behaviors. In addition, story diagrams have
been enhanced to automatically derive worst-case execution
times [13]. Code generation exists for Real-Time Java [7]
and for C++. [sb]

5.2 Modelchecking
Mechatronic components, which beside their local con-

trol are also interconnected with each other, result in a
complex distributed embedded real-time system. As such
mechatronic systems often contain real-time and safety-
critical requirements, a proper approach for the real-time
and safety analysis is mandatory. One aim of the Fujaba
Real-Time Tool Suite is to provide a tool support for veri-
fication. Therefore, a number of plug-ins were developed.
The main plug-in provides compositional model checking
techniques and a background model checking engine. An
interface permits to attach different model checker backend
plug-ins, e.g. Uppaal and Raven, realizing a transformation

Fujaba Days 2005 6

from the UML model to the model checker specific input
language [24]. [mh]

5.3 Invariant Checking
In addition to the modelchecking of the interaction be-

tween components, the Fujaba Real-Time Tool Suite offers
a plug-in which is capable of checking story patterns. Prop-
erties to be checked are structural ones given as so called
forbidden graph patterns. Each forbidden graph pattern
describes a critical situation and must never be part of a
concrete object diagram produced by the application of a
given set of story patterns. The developed plug-in auto-
matically checks for a given set of forbidden graph patterns
whether a set of given story patterns can ever produce one of
them. If this is possible the plug-in outputs a counter exam-
ple showing the faulty story pattern and how it can produce
an object diagram containing a forbidden graph pattern. In
contrast to most other tools on checking graph transforma-
tion systems our approach is also feasible for infinite state
systems (cf. [23] and [5]). [ds]

5.4 Hybrid Systems
Mechatronic systems, which combine techniques from me-

chanical and electrical engineering and from computer sci-
ence, require the integration of components from these dif-
ferent domains. This has been achieved by enhancing the
Real-Time Tool Suite with hybrid components [21]. Hy-
brid components integrate for example feedback-controller
components from the control engineering domain with hy-
brid reconfiguration charts2 which are extensions of real-time
statecharts (see Section 5.1).

Hybrid components and hybrid reconfiguration charts do
not just provide the required integration of the different do-
mains, they further reduce complexity of the models when
specifying dynamic reconfiguration and simplify analyses
[21]. We integrated the real-time modelchecking with the
design of hybrid systems [14] and support code generation
for C++.

Currently, we extend hybrid reconfiguration charts to
model reconfiguration by graph-based reconfiguration rules
[10] and to support flexible resource management [8]. [sb]

5.5 Multi-Agent Systems
Mechatronic components can be viewed as autonomous

agents, which leads to the notion of mechatronic systems as
multi-agent systems. A suite of plug-ins that is currently
under development aims to enable the prototyping and veri-
fication of such systems by extending existing modeling and
code generation tools.

The first area of interest is the prototyping of simulated
versions of the agents’ physical environment. The environ-
ment model and the agents’ capabilities for perceiving and
manipulating it are specified and generated based on UML
class diagrams and story patterns [29].

Building on this model of the observable environment, the
social structure of the system is modeled. A decomposition
into communities of agents provides a separation of concerns
and enables an intuitive specification of the agents’ interac-
tions and social dependencies using story patterns [31].

Finally, critical aspects of the system model will be model
checked, while non-critical aspects are optimized using em-
pirical evaluation [30]. The revised behavioral specification

2Formerly known as hybrid statecharts.

will then be implemented by individual agents, which we
ultimately plan to derive automatically. [fl]

5.6 Scenario-Based Synthesis
The scenario-based synthesis approach for parameterized

real-time behavior presented in [22, 20] extends our ap-
proach for the compositional formal verification of UML-RT
models described by components and patterns [24]. The
scenario-based synthesis techniques facilitates the design
and verification steps by automatically deriving the required
pattern behavior. Starting from a set of timed scenarios, the
presented procedure generates a set of Statecharts with ad-
ditional real-time annotations that realize these scenarios.
As parameterized timed scenarios are supported, different
system configurations can be specified as required by ad-
justing the behavior using the specific timing constraints.

In the future work we plan to improve the approach by
supporting parameters in an even more general manner. In
addition, we want to look into hybrid behavior and oppor-
tunities to also do synthesis for parameterized real-time be-
havior with restricted continuous behavior. [hg]

5.7 Dependable Systems
Based on the above presented support for real-time and

hybrid systems, support for modeling of dependable systems
is added to the Fujaba Real-Time Suite. Fault Tolerance
Patterns [50] capture the structure of standard fault tol-
erance techniques like distributed recovery blocks or triple
modular redundancy setups. In addition, deployment re-
strictions and degradation rules are specified for these pat-
terns. The patterns are easily applicable to component-
based real-time systems and are used to satisfy required haz-
ard likelihoods in combination with a compositional hazard
analysis approach [25]. Based on the aforementioned de-
ployment restrictions, viable deployments are automatically
computed prior to the systems systems as well as online for
repair. If a full repair of the system is not possible, degra-
dation rules [49] are used to degrade the systems functional
or non-functional properties in order to keep its operating.

Currently, we address the behavior synthesis of generic
components in fault tolerance patterns like voter compo-
nents. [mtt]

6. METHODOLOGY

6.1 The Fujaba Process
In order to facilitate the use and the teaching of Fujaba

and story driven modeling, the Fujaba group at University
of Kassel has developed tool support for the so-called Fujaba
Process. The Fujaba Process is of course iterative, use-case
driven and test-centered as a modern process should be. The
XProM plug-in developed at University of Kassel provides
dedicated tool support for this process. The process is or-
ganized in the following steps:

First, the developer organizes his functional requirements
into use cases.

Second, each use-case is elaborated by a textual scenario
descriptions using a predefined format.

Third, these textual use case scenarios are elaborated into
so-called story boards. A story board is a simple activity
diagram where the activities contain collaboration diagrams
modeling the corresponding step in detail.

7 Fujaba Days 2005

During editing the story boards, Fujaba collects declara-
tions of new classes, associations, and attributes. Thus, at
the end of the story boarding, a first conceptual class dia-
gram has already been created.

In addition, the XProM plug-in turns story boards auto-
matically into JUnit tests. These JUnit tests create the start
situation of the story board, invoke the method that realizes
the use case and compare the resulting object structure with
the result situation of the story board.

In case the generated JUnit test fails, XProM starts the
Dobs debugger [19], automatically. This allows to compare
the actual object structure resulting from the test run with
the desired object structure depicted in the story board. In
current work, we extend this mechanism to protocol auto-
matically, which intermediate story board steps have been
accomplished and which are still open.

A code coverage tool will allow to identify code that is not
employed in the JUnit test generated from the story boards
resulting from the use case analysis. Such code is either
dead or it covers special cases that are not yet contained in
the use case scenarios.

The Fujaba process has been applied with great success
in the programming methodologies courses at University of
Kassel for three years now. It helps our students a lot to
organize their work. The resulting project handbooks are so
far of much higher quality than project documents created
without this help in earlier courses. [az,cs]

6.2 Teaching Fujaba
Teaching informatics usually starts with an introduction

into a programming language. Frequently, it is even re-
stricted to programming language issues. Object orientation
and OO modelling are considered to be too complicated for
introductory courses. Thus, the tackling of OO concepts is
postponed to university, a fact which we feel is deplorable
and at the same time unnecessary. To improve this situa-
tion, we developed a new approach to teaching OO mod-
elling in introductory informatics at secondary school level
from the very first lesson. We first introduce objects and
how to model simple situations with object diagrams. Then
we show how to operate on and with object models in sim-
ple steps. Once these ideas are understood, the derivation
of class diagrams is almost a matter of course. This is then
systematically turned into OO programs always examining
certain scenarios and certain situations and the behavior and
interaction of certain objects. By using Fujaba we are able
to teach OO and to develop executable models at the same
time (see [16]). [id]

7. FUTURE WORK

7.1 OCL Integration
In cooperation with the TU Dresden, we aim to integrate

the Dresden OCL Toolkit [18] into Fujaba. Currently, OCL
support for Fujaba’s class diagrams is developed. In Fu-
jaba’s story patterns, constraints are used frequently for at-
tribute assertions and for general constraints. Such con-
straints are written down using plain Java and are then
copied into the Java code. It would be more reasonable
to also use OCL here. From such OCL constraints, Java
code has to be generated using the Dresden OCL Toolkit
again. This integration is planed as second step of the OCL
integration. [lg]

7.2 Usecase Driven Component Segmentation
A project in cooperation with an industrial partner deals

with the problem to answer the question: Is it more costly
to re-engineer an existing system or to reimplement it. A
constraint from the industrial partner is that the new soft-
ware system should be constructed out of components and
the components should be reused in other products also.
A problem is the granularity of the component, because
the reuse is based on use-cases and not on technical issues.
Therefore in the project, we use the use-cases as starting
point and try to assign parts of the existing software to the
use-cases. Based on these assignments an algorithm will
identify components by rearranging parts of the software.
We will use cohesion and correlation metrics to value the
computed component structure on the one hand. On the
other hand, we use a cost-model for the rearrangement op-
erations that will produce an overall ’price’ of the restruc-
turing. The decision of re-engineering or reimplementing the
system should then be answer easier. [jn]

7.3 Adaptable and Component-Based Process
Management System

We are currently investigating the application of Fujaba
to process modeling and process management. Here, the
term ”process” refers to development processes in engineer-
ing disciplines - including, but not limited to software en-
gineering. Software processes - which we will assume for
the rest of this section - span a wide spectrum and vary
considerably depending on factors such as the size of the
organization, the domain to be covered (e.g., embedded sys-
tems vs. business applications), the maturity of process
capabilities, etc. Furthermore, they are usually dynamic
and may be planned in advance only to a limited extent
(in contrast to routine business processes). Therefore, de-
veloping appropriate tools for managing software processes
has proved to be a challenging task. In past research, we
have designed and implemented AHEAD [52], an adaptable
and human-centered environment for the management of de-
velopment processes. Unfortunately, AHEAD is adaptable
only to a limited extent: AHEAD can be adapted by (evolv-
able) process model definitions, but the underlying process
meta model is fixed. Our current research is target towards
a system which supports definition and customization of the
process meta model. Furthermore, the scope of support
should be customizable, as well (e.g., by interfacing with an
existing software configuration management system rather
than providing an own supporting component). The system
will be designed and implemented with the help of Fujaba.
Our intent is to structure it into a set of small and reusable
components from which the desired process support may be
configured. [bw]

REFERENCES
[1] Altheide et al. An Architecture for a Sustainable Tool

Integration. In Dörr and Schürr, editors, TIS 2003
Workshop on Tool Integration in System Development,
pages 29–32, 2003.

[2] C. Amelunxen. Building a MOF 2.0 Editor as Plugin
for FUJABA. In A. Schürr and A. Zündorf, editors,
FUJABA Days 2004, volume Technical Report
tr-ri-04-253, pages 43–47. Universität Paderborn, 2004.

[3] C. Amelunxen, T. Rötschke, and A. Schürr. Graph

Fujaba Days 2005 8

Transformations with MOF 2.0. In FUJABA Days
2005. Universität Paderborn, 2005. Accepted for
publication.

[4] C. Atkinson and T. Kühne. Aspect-oriented
development with stratified frameworks. IEEE
Software, 20(1):81–89, January/February 2003.

[5] B. Becker. Automatischer nachweis von induktiven
invarianten in unendlichen systemen. Bachelor thesis,
University of Paderborn, Paderborn, Germany, 2005.

[6] L. Bichler. Tool Support for Generating
Implementations of MOF-based Modeling Languages.
In J. Gray, J.-P. Tolvanen, and M. Rossi, editors,
Proceedings of The Third OOPSLA Workshop on
Domain-Specific Modeling, Anaheim, USA, October
2003.

[7] G. Bollella, B. Brosgol, S. Furr, S. Hardin, P. Dibble,
J. Gosling, and M. Turnbull. The Real-Time
Specification for JavaTM . Addison-Wesley, 2000.

[8] S. Burmester, M. Gehrke, H. Giese, and S. Oberthür.
Making Mechatronic Agents Resource-aware in order
to Enable Safe Dynamic Resource Allocation. In
B. Georgio, editor, Proc. of Fourth ACM International
Conference on Embedded Software 2004 (EMSOFT
2004), Pisa, Italy, pages 175–183. ACM Press,
September 2004.

[9] S. Burmester and H. Giese. The fujaba real-time
statechart plugin. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[10] S. Burmester and H. Giese. Visual Integration of UML
2.0 and Block Diagrams for Flexible Reconfiguration
in Mechatronic UML. In Proc. of the IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC’05), Dallas, Texas, USA, pages 1–8. IEEE
Computer Society Press, September 2005. (accepted).

[11] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The Fujaba Real-Time Tool Suite:
Model-Driven Development of Safety-Critical,
Real-Time Systems. In Proc. of the 27th International
Conference on Software Engineering (ICSE), St.
Louis, Missouri, USA, May 2005.

[12] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P.
Wadsack, R. Wagner, L. Wendehals, and A. Zündorf.
Tool integration at the meta-model level within the
fujaba tool suite. International Journal on Software
Tools for Technology Transfer (STTT), 6(3):203–218,
August 2004.

[13] S. Burmester, H. Giese, A. Seibel, and M. Tichy. Story
Patterns for Hard Real-Time Systems. In Proc. of the
Fujaba Days 2005, Paderborn, Germany, September
2005. submitted.

[14] S. Burmester, H. Giese, and M. Tichy. Model-Driven
Development of Reconfigurable Mechatronic Systems
with Mechatronic UML. In U. Assmann, A. Rensink,
and M. Aksit, editors, Model Driven Architecture:
Foundations and Applications, volume 3599 of Lecture
Notes in Computer Science, pages 1–15. Springer
Verlag, 2005. to appear.

[15] J. N. C. Schneider, A. Zündorf. Coobra - a small step
for development tools to collaborative environments.
In Workshop on Directions in Software Engineering
Environments; 26th international conference on
software engineering, Scotland, UK, 2004.

[16] I. Diethelm, L. Geiger, and A. Zündorf. Teaching
modeling with objects first. In Proc. of WCCE 2005,
8th World Conference on Computers in Education,
Cape Town, South Africa, July 2005.

[17] R. Dirckze. JavaTMMetadata Interface (JMI)
Specification, Version 1.0. Unisys, 1.0 edition, June
2002.

[18] T. Dresden. Dresden ocl toolkit.
http://dresden-ocl.sourceforge.net/, 2005.

[19] L. Geiger. Design level debugging mit fujaba. Bachelor
thesis, Technical University of Braunschweig,
Germany, 2002.

[20] H. Giese and S. Burmester. Analysis and Synthesis for
Parameterized Timed Sequence Diagrams. In H. Giese
and I. Krüger, editors, Proc. of the 3rd International
Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (ICSE 2003 Workshop W5S),
Edinburgh, Scotland, pages 43–50. IEE, May 2004.

[21] H. Giese, S. Burmester, W. Schäfer, and
O. Oberschelp. Modular Design and Verification of
Component-Based Mechatronic Systems with
Online-Reconfiguration. In Proc. of 12th ACM
SIGSOFT Foundations of Software Engineering 2004
(FSE 2004), Newport Beach, USA, pages 179–188.
ACM Press, November 2004.

[22] H. Giese, F. Klein, and S. Burmester. Pattern
Synthesis from Multiple Scenarios for Parameterized
Real-Timed UML Models. In S. Leue and T. Systä,
editors, Scenarios: Models, Algorithms and Tools,
volume 3466 of Lecture Notes in Computer Science,
pages 193–211. Springer Verlag, April 2005.

[23] H. Giese and D. Schilling. Towards the Automatic
Verification of Inductive Invariants for Invinite State
UML Models. Technical Report tr-ri-04-252,
University of Paderborn, Paderborn, Germany,
December 2004.

[24] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the Compositional Verification of
Real-Time UML Designs. In Proc. of the 9th European
software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE-11),
pages 38–47. ACM Press, September 2003.

[25] H. Giese, M. Tichy, and D. Schilling. Compositional
Hazard Analysis of UML Components and
Deployment Models. In Proc. of the 23rd International
Conference on Computer Safety, Reliability and
Security (SAFECOMP), Potsdam, Germany, volume
3219 of Lecture Notes in Computer Science. Springer
Verlag, September 2004.

[26] J. Jahnke and A. Zündorf. Rewriting poor design
patterns by good design patterns. In S. Demeyer and
H. Gall, editors, Proc. of the ESEC/FSE Workshop on
Object-Oriented Re-engineering, Paderborn, Germany.
Technischer Bericht TUV-1841-97-10, Technical
University of Vienna, Information Systems Institute,
Distributed Systems Group, September 1997.

[27] U. Kelter, J. Wehren, and J. Niere. A generic
difference algorithm for uml models. In Proc. of the
Software Engineering Conference (SE2005), Essen,
Germany, March 2005.

[28] F. Klar. SPin – Ein Werkzeug zur Realisierung von

9 Fujaba Days 2005

Architektur-Stratifikation. Diplomarbeit, April 2005.

[29] F. Klein and H. Giese. Ontologiebasiertes Rapid
Prototyping für kognitive Multiagentensysteme. In
Modellierung 2004 - Praktischer Einsatz von
Modellen, Workshop W4: Ontologien in der und für
die Softwaretechnik, Marburg, 2004, pages 33–42.
Conradin Verlag, Marburg, March 2004.

[30] F. Klein and H. Giese. Analysis and Design of
Physical and Social Contexts in MultiAgent Systems
using UML. In R. C. et al., editor, Proc. of the 4th
Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (in Conjunction with the
International Conference on Software Engineering),
St. Louis, MO, USA, pages 1–7. IEEE, May 2005.
accepted.

[31] F. Klein and H. Giese. Separation of concerns for
mechatronic multi-agent systems through dynamic
communities. In R. Choren, A. Garcia, C. Lucena, and
A. Romanovsky, editors, Software Engineering for
Multi-Agent Systems III: Research Issues and
Practical Applications, volume 3390 of Lecture Notes
in Computer Science, pages 272–289. Springer Verlag,
February 2005.

[32] Königs and Schürr. MDI - a Rule-Based
Multi-Document and Tool Integration Approach.
Special Section on Model-based Tool Integration in
Journal of Software&System Modeling, 2005.
submitted for publication.

[33] M. Matula. NetBeans Metadata Repository. SUN
Microsystems, März 2003.

[34] M. Meyer and J. Niere. Calculation and visualization
of software product metrics. In Proc. of the 3nd
Fujaba Days, Paderborn, Germany, September 2005.

[35] M. Meyer and L. Wendehals. Teaching object-oriented
concepts with eclipse. In Proc. of the Eclipse
Technology eXchange Workshop (ETX), Satellite
Event of the 19th Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), Vancouver, Canada, pages 1–5. ACM
Press, October 2004.

[36] Mosher. A New Specification for Managing Metadata.
Sun Microsystems, 2002.

[37] J. Niere. Visualizing differences of uml diagrams with
fujaba. In Proc. of the 2nd Fujaba Days, Darmstadt,
Germany, October 2004.

[38] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proc. of the 24th International
Conference on Software Engineering (ICSE), Orlando,
Florida, USA, pages 338–348. ACM Press, May 2002.

[39] J. Niere, J. P. Wadsack, and L. Wendehals. Handling
Large Search Space in Pattern-Based Reverse
Engineering. In Proc. of the 11th International
Workshop on Program Comprehension (IWPC),
Portland, USA, pages 274–279. IEEE Computer
Society Press, May 2003.

[40] Object Management Group. Meta Object Facility
(MOF) 2.0 Core Specification, March 2003.
ptc/03-10-04.

[41] D. Ohst, M. Welle, and U. Kelter. Difference Tools for
Analysis and Design Documents. In Proceedings of the
IEEE International Conference on Software

Maintenance 2003 (ICSM2003), Amsterdam, pages
13–22, September 2003.

[42] OMG. Model Driven Architecture.
http://www.omg.org/mda/.

[43] OMG. Request for Proposal: MOF 2.0
Query/Views/Transformations RFP, 2002.
http://www.omg.org/cgi-bin/doc?ad/2002-04-10.

[44] QVT-partners. QVT-partners revised submission to
QVT, 2003.
http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf.

[45] I. Rockel. Versionierungs- und mischkonzepte für uml
diagramme. Master’s thesis, University of Paderborn,
Germany, 2000.

[46] T. Rötschke. Adding Pluggable Meta Models to
FUJABA. In A. Schürr and A. Zündorf, editors,
FUJABA Days 2004, volume Technical Report
tr-ri-04-253, pages 57–62. Universität Paderborn, 2004.

[47] T. Rötschke. Re-engineering a Medical Imaging
System Using Graph Transformations. In J. L. Pfaltz,
M. Nagl, and B. Böhlen, editors, Applications of
Graph Transformations with Industrial Relevance
(AGTIVE 2003), volume 3062 of Lecture Notes in
Computer Science, pages 185–201. Springer, 2004.

[48] A. Schürr. Specification of graph translators with
triple graph grammars. In E. W. Mayr, G. Schmidt,
and G. Tinhofer, editors, Graph-Theoretic Concepts in
Computer Science, 20th International Workshop, WG
’94, volume 903 of LNCS, pages 151–163, Herrsching,
Germany, June 1994.

[49] M. Tichy and H. Giese. Extending Fault Tolerance
Patterns by Visual Degradation Rules. In Proc. of the
Workshop on Visual Modeling for Software Intensive
Systems (VMSIS) at the the IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC’05), Dallas, Texas, USA, September 2005.
(accepted).

[50] M. Tichy, H. Giese, D. Schilling, and W. Pauls.
Computing Optimal Self-Repair Actions: Damage
Minimization versus Repair Time. In R. de Lemos and
A. Romanovsky, editors, Proc. of the ICSE 2005
Workshop on Architecting Dependable Systems, St.
Louis, Missouri, USA. ACM Press, May 2005.

[51] L. Wendehals. Improving Design Pattern Instance
Recognition by Dynamic Analysis. In Proc. of the
ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, May 2003.

[52] B. Westfechtel. Ein graphbasiertes Managementsystem
für dynamische Entwicklungsprozesse. Informatik
Forschung und Entwicklung, 16:125–144, 2001.

[53] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.
Habilitation Thesis.

APPENDIX

A. AUTHORS

ak: Alexander Königs, Real-Time Systems Lab, Darmstadt Uni-
versity of Technology, Germany,
alexander.koenigs@es.tu-darmstadt.de

as: Andy Schürr, Real-Time Systems Lab, Darmstadt University
of Technology, Germany,
andy.schuerr@es.tu-darmstadt.de

Fujaba Days 2005 10

az: Albert Zündorf, Software Engineering Research Group, Uni-
versity of Kassel, Germany,
albert.zuendorf@uni-kassel.de

bw: Bernhard Westfechtel, Applied Computer Science 1, Univer-
sity of Bayreuth, Germany,
bernhard.westfechtel@uni-bayreuth.de

ca: Carsten Amelunxen, Real-Time Systems Lab, Darmstadt
University of Technology, Germany,
carsten.amelunxen@es.tu-darmstadt.de

cr: Carsten Reckord, Software Engineering Research Group, Uni-
versity of Kassel, Germany,
carsten.reckord@uni-kassel.de

cs: Christian Schneider, Software Engineering Research Group,
University of Kassel, Germany,
christian.schneider@uni-kassel.de

ds: Daniela Schilling, Software Engineering Group, University of
Paderborn, Germany,
das@uni-paderborn.de

fk: Felix Klar, Darmstadt University of Technology, Germany,
felix@klarEntwickelt.de

fl: Florian Klein, Software Engineering Group, University of
Paderborn, Germany,
fklein@uni-paderborn.de

hg: Holger Giese, Software Engineering Group, University of
Paderborn, Germany,
hg@uni-paderborn.de

id: Ira Diethelm, Software Engineering Research Group, Univer-
sity of Kassel, Germany,
ira.diethelm@uni-kassel.de

jn: Jörg Niere, Software Engineering Group, University of
Siegen, Germany,
joerg.niere@uni-siegen.de

lg: Leif Geiger, Software Engineering Research Group, Univer-
sity of Kassel, Germany,
leif.geiger@uni-kassel.de

lw: Lothar Wendehals, Software Engineering Group, University
of Paderborn, Germany,
lowende@uni-paderborn.de

mg: Martin Girschick, Darmstadt University of Technology, Ger-
many,
girschick@informatik.tu-darmstadt.de

mh: Martin Hirsch, Software Engineering Group, University of
Paderborn, Germany,
mahirsch@uni-paderborn.de

mm: Matthias Meyer, Software Engineering Group, University
of Paderborn, Germany,
mm@uni-paderborn.de

mtt: Matthias Tichy, Software Engineering Group, University of
Paderborn, Germany,
mtt@uni-paderborn.de

rw: Robert Wagner, Software Engineering Group, University of
Paderborn, Germany,
wagner@uni-paderborn.de

sb: Sven Burmster, Software Engineering Group, University of
Paderborn, Germany,
burmi@uni-paderborn.de

tk: Thomas Kühne, FG Metamodeling, Darmstadt University of
Technology, Germany,
kuehne@informatik.tu-darmstadt.de

tm: Thomas Maier, Software Engineering Research Group, Uni-
versity of Kassel, Germany,
thomas.maier@uni-kassel.de

tr: Tobias Rötschke, Real-Time Systems Lab, Darmstadt Uni-
versity of Technology, Germany,
Tobias.Roetschke@es.tu-darmstadt.de

B. PLUG-IN OVERVIEW

N
am

e
D

es
cr

ip
tio

n
C

on
ta

c t
S

ta
tu

s
V

er
si

on
D

om
ai

n
Fu

ja
ba

D
ep

en
de

nc
ie

s

D
iff

er
en

ce
A

lg
or

ith
m

P
lu

gi
n

D
iff

er
en

ce
 a

lg
or

ith
m

 c
on

fig
ur

ed
 fo

r c
la

ss
 d

ia
gr

am
s

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
re

le
as

ed
1.

1.
0

D
iff

er
en

ce
 S

up
po

rt
4.

x

D
iff

er
en

ce
V

ie
w

er
P

lu
gi

n
D

iff
er

en
ce

 c
la

ss
 d

ia
gr

am
 v

is
ua

liz
at

io
n

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
re

le
as

ed
1.

1.
0

D
iff

er
en

ce
 S

up
po

rt
4.

3
D

iff
er

en
ce

C
al

cu
la

to
rP

lu
gi

n

D
iff

er
en

ce
In

te
gr

at
or

P
lu

gi
n

C
om

fo
rta

bl
e

ha
nd

lin
g

di
ffe

re
nc

es
 o

f c
la

ss
 d

ia
gr

am
s

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
re

le
as

ed
1.

1.
0

D
iff

er
en

ce
 S

up
po

rt
4.

3
D

iff
er

en
ce

C
al

cu
la

to
rP

lu
gi

n,
D

iff
er

en
ce

V
ie

w
er

P
lu

gi
n

Figure 2: Diagram difference plug-ins

11 Fujaba Days 2005

N
a
m

e
D

e
s
c
ri

p
ti

o
n

C
o

n
ta

c
t

S
ta

tu
s

V
e
rs

io
n

D
o

m
a
in

F
u

ja
b

a
D

e
p

e
n

d
e
n

c
ie

s

M
O

FL
O

N
/E

di
to

r
M

O
F

2.
0

m
et

a
m

od
el

 e
di

to
r

To
bi

as
 R

öt
sc

hk
e

<t
ob

ia
s.

ro
et

sc
hk

e@
es

.tu
-d

ar
m

st
ad

t.d
e>

al
ph

a
0.

9.
1

M
et

a
M

od
el

lin
g

5.
0

M
O

FL
O

N
/C

om
pi

le
r

JM
I c

od
e

ge
ne

ra
to

r f
or

 M
O

F
2.

0
m

et
a

m
od

el
s

C
ar

st
en

 A
m

el
un

xe
n

<c
ar

st
en

.a
m

el
un

xe
n@

es
.tu

-
da

rm
st

ad
t.d

e>
al

ph
a

0.
9.

1
M

et
a

M
od

el
lin

g
5.

0
M

O
FL

O
N

/E
di

to
r

M
O

FL
O

N
/R

os
eX

M
I

R
at

io
na

l R
os

e
X

M
I i

m
po

rt
fo

r M
O

F
2.

0
m

et
a

m
od

el
s

To
bi

as
 R

öt
sc

hk
e

<t
ob

ia
s.

ro
et

sc
hk

e@
es

.tu
-d

ar
m

st
ad

t.d
e>

al
ph

a
0.

9.
1

M
et

a
M

od
el

lin
g

5.
0

M
O

FL
O

N
/E

di
to

r

M
O

FL
O

N
/J

C
on

st
ra

in
t

Ja
va

 C
on

st
ra

in
ts

 fo
r M

O
F

2.
0

m
et

a
m

od
el

s
To

bi
as

 R
öt

sc
hk

e
<t

ob
ia

s.
ro

et
sc

hk
e@

es
.tu

-d
ar

m
st

ad
t.d

e>
al

ph
a

0.
9.

1
M

et
a

M
od

el
lin

g
5.

0
M

O
FL

O
N

/E
di

to
r

M
O

FL
O

N
/O

C
L

O
C

L
C

on
st

ra
in

ts
 fo

r M
O

F
2.

0
m

et
a

m
od

el
s

C
ar

st
en

 A
m

el
un

xe
n

<c
ar

st
en

.a
m

el
un

xe
n@

es
.tu

-
da

rm
st

ad
t.d

e>
pl

an
ne

d
N

/A
M

et
a

M
od

el
lin

g
5.

0
M

O
FL

O
N

/E
di

to
r,

M
O

FL
O

N
/C

om
pi

le
r

M
O

FL
O

N
/T

G
G

Tr
ip

le
 G

ra
ph

 G
ra

m
m

ar
s

fo
r M

O
F

2.
0

m
et

a
m

od
el

s

A
le

xa
nd

er
 K

ön
ig

s
<a

le
xa

nd
er

.k
oe

ni
gs

@
es

.tu
-

da
rm

st
ad

t.d
e>

pl
an

ne
d

N
/A

M
et

a
M

od
el

lin
g

5.
0

M
O

FL
O

N
/E

di
to

r,
M

O
FL

O
N

/C
om

pi
le

r,
M

O
FL

O
N

/O
C

L

S
P

in
R

ea
liz

at
io

n
of

 A
rc

hi
te

ct
ur

e
S

tra
tif

ic
at

io
n

- N
av

ig
at

e
be

tw
ee

n
ab

st
ra

ct
io

n
le

ve
ls

 o
f a

 s
ys

te
m

 d
es

cr
ip

tio
n

Fe
lix

 K
la

r <
fe

lix
@

kl
ar

E
nt

w
ic

ke
lt.

de
>

re
le

as
ed

1.
4

M
od

el
 T

ra
ns

fo
rm

at
io

n
4.

3.
2

TG
G

E
di

to
r

E
di

to
r a

nd
 c

od
e

ge
ne

ra
to

r f
or

 tr
ip

le
 g

ra
ph

 g
ra

m
m

ar

sp
ec

ifi
ca

tio
ns

R
ob

er
t W

ag
ne

r <
w

ag
ne

r@
up

b.
de

>
re

le
as

ed
1.

0.
0

M
od

el
 T

ra
ns

fo
rm

at
io

n
4.

3.
2

M
oT

E
E

ng
in

e
fo

r m
od

el
 tr

an
sf

or
m

at
io

ns
 u

si
ng

 tr
ip

le
 g

ra
ph

gr

am
m

ar
 s

pe
ci

fic
at

io
ns

R
ob

er
t W

ag
ne

r <
w

ag
ne

r@
up

b.
de

>
al

ph
a

0.
1.

0
M

od
el

 T
ra

ns
fo

rm
at

io
n

4.
3.

2
TG

G
E

di
to

r

C
oM

a
A

 c
on

si
st

en
cy

 m
an

ag
em

en
t p

lu
gi

n
fo

r t
he

 s
pe

ci
fic

at
io

n
an

d
ex

ec
ut

io
n

of
 c

on
si

st
en

cy
 ru

le
s

R
ob

er
t W

ag
ne

r <
w

ag
ne

r@
up

b.
de

>
re

le
as

ed
1.

0.
0

M
od

el
 T

ra
ns

fo
rm

at
io

n
4.

3.
2

Figure 3: (Meta-)Model Driven Software Develop-
ment plug-ins

N
am

e
D

es
cr

ip
tio

n
C

on
ta

c t
S

ta
tu

s
V

er
si

on
D

om
ai

n
Fu

ja
ba

D
ep

en
de

nc
ie

s

Ja
va

 A
S

T
A

n
ab

st
ra

ct
 s

yn
ta

x
tre

e
(A

S
T)

 fo
r J

av
a

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

re
le

as
ed

1.
1.

1
R

ev
er

se
 E

ng
in

ee
rin

g
4.

2
Ja

va
 P

ar
se

r
A

 p
ar

se
r f

or
 J

av
a

so
ur

ce
 fi

le
s

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

re
le

as
ed

3.
1.

1
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3
Ja

va
 A

S
T

1.
1

P
at

te
rn

 S
pe

ci
fic

at
io

n
P

at
te

rn
 s

pe
ci

fic
at

io
n

fo
r s

ta
tic

 p
at

te
rn

 re
co

gn
iti

on
Lo

th
ar

 W
en

de
ha

ls
 <

lo
w

en
de

@
up

b.
de

>
re

le
as

ed
2.

1.
1

R
ev

er
se

 E
ng

in
ee

rin
g

4.
2

In
fe

re
nc

e
E

ng
in

e
In

fe
re

nc
e

en
gi

ne
 fo

r s
ta

tic
 p

at
te

rn
 re

co
gn

iti
on

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

re
le

as
ed

2.
1.

1
R

ev
er

se
 E

ng
in

ee
rin

g
4.

2
Ja

va
 A

S
T

1.
0

P
at

te
rn

 R
ec

og
ni

tio
n

E
ng

in
es

 G
en

er
at

or
R

ec
og

ni
tio

n
en

gi
ne

s
ge

ne
ra

to
r f

or
 s

ta
tic

 p
at

te
rn

 re
co

gn
iti

on
Lo

th
ar

 W
en

de
ha

ls
 <

lo
w

en
de

@
up

b.
de

>
re

le
as

ed
1.

1.
1

R
ev

er
se

 E
ng

in
ee

rin
g

4.
2

P
at

te
rn

 S
pe

ci
fic

at
io

n
2.

0,
 In

fe
re

nc
e

E
ng

in
e

2.
0

In
fe

re
nc

e
E

ng
in

e
S

ta
tis

tic
s

S
ta

tis
tic

 e
va

lu
at

io
n

of
 s

ta
tic

 p
at

te
rn

 re
co

gn
iti

on
Lo

th
ar

 W
en

de
ha

ls
 <

lo
w

en
de

@
up

b.
de

>
al

ph
a

0.
1.

0
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3
In

fe
re

nc
e

E
ng

in
e

2.
1

A
ss

oc
ia

tio
n

D
et

ec
tio

n
A

ss
oc

ia
tio

n
de

te
ct

io
n

fo
r U

M
L

cl
as

s
di

ag
ra

m
s

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

re
le

as
ed

1.
0.

0
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3
Ja

va
 P

ar
se

r 3
.1

, I
nf

er
en

ce
 E

ng
in

e
2.

1
Ja

va
 T

ra
ce

r
Tr

ac
in

g
of

 J
av

a
pr

og
ra

m
s

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

be
ta

1.
0.

1
R

ev
er

se
 E

ng
in

ee
rin

g
4.

0

B
eh

av
io

ra
l P

at
te

rn
 S

pe
ci

fic
at

io
n

B
eh

av
io

ra
l p

at
te

rn
 s

pe
ci

fic
at

io
n

fo
r d

yn
am

ic
 p

at
te

rn

re
co

gn
iti

on
Lo

th
ar

 W
en

de
ha

ls
 <

lo
w

en
de

@
up

b.
de

>
al

ph
a

0.
1.

0
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3
P

at
te

rn
 S

pe
ci

fic
at

io
n

2.
1,

 U
M

L
S

eq
ue

nc
e

D
ia

gr
am

s
0.

2
D

yn
am

ic
 D

es
ig

n
P

at
te

rn
 R

ec
og

ni
tio

n
D

yn
am

ic
 a

na
ly

si
s

fo
r d

yn
am

ic
 p

at
te

rn
 re

co
gn

iti
on

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

al
ph

a
0.

1.
0

R
ev

er
se

 E
ng

in
ee

rin
g

4.
3

In
fe

re
nc

e
E

ng
in

e
2.

1

B
eh

av
io

ra
l P

at
te

rn
s

E
ng

in
es

 G
en

er
at

or
B

eh
av

io
ra

l e
ng

in
es

 g
en

er
at

or
 fo

r d
yn

am
ic

 p
at

te
rn

 re
co

gn
iti

on
Lo

th
ar

 W
en

de
ha

ls
 <

lo
w

en
de

@
up

b.
de

>
al

ph
a

0.
1.

0
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3
B

eh
av

io
ra

l P
at

te
rn

 S
pe

ci
fic

at
io

n
0.

1,

D
yn

am
ic

 D
es

ig
n

P
at

te
rn

 R
ec

og
ni

tio
n

0.
1

M
et

ric
C

al
cu

la
tio

n
C

al
cu

la
tio

n
of

 s
of

tw
ar

e
pr

od
uc

t m
et

ric
s

M
at

th
ia

s
M

ey
er

 <
m

m
@

up
b.

de
>

al
ph

a
0.

1.
0

R
ev

er
se

 E
ng

in
ee

rin
g

4.
3

Ja
va

A
S

T
1.

1,
 J

av
aP

ar
se

r 3
.1

P
ol

ym
et

ric
V

ie
w

s
P

ol
ym

et
ric

 v
ie

w
s

ed
ito

r a
nd

 g
en

er
at

or
Jö

rg
 N

ie
re

 <
jo

er
g.

ni
er

e@
un

i-s
ie

ge
n.

de
>

al
ph

a
0.

0.
1

R
ev

er
se

 E
ng

in
ee

rin
g

4.
3

M
et

ric
C

al
cu

la
tio

n

S
P

in
 /

V
M

S
yn

ch
ro

ni
ze

r
co

ns
tru

ct
s

U
M

L
C

la
ss

es
 o

ut
 o

f J
av

a
B

yt
e

C
od

e
Fe

lix
 K

la
r <

fe
lix

@
kl

ar
E

nt
w

ic
ke

lt.
de

>
re

le
as

ed
1.

4
R

ev
er

se
 E

ng
in

ee
rin

g
4.

3.
2

Figure 4: Reverse Engineering plug-ins

Fujaba Days 2005 12

N
am

e
D

es
cr

ip
tio

n
C

on
ta

c t
S

ta
tu

s
V

er
si

on
D

om
ai

n
Fu

ja
ba

D
ep

en
de

nc
ie

s

R
ea

lti
m

eS
ta

te
ch

ar
t

A
 re

al
-ti

m
e

ex
te

ns
io

n
fo

r U
M

L
st

at
e

m
ac

hi
ne

s
S

ve
n

B
ur

m
es

te
r <

bu
rm

i@
up

b.
de

>
re

le
as

ed
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

R
ea

lti
m

eS
ta

te
ch

ar
tR

ea
lti

m
eJ

av
aC

od
eG

en
er

at
or

A
 c

od
e

ge
ne

ra
to

r f
or

 R
ea

l-T
im

e
S

ta
te

ch
ar

ts
 g

en
er

at
in

g
R

ea
l-

Ti
m

e
Ja

va
S

ve
n

B
ur

m
es

te
r <

bu
rm

i@
up

b.
de

>
re

le
as

ed
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

R
ea

lti
m

eS
ta

te
ch

ar
t 1

.0
U

M
LM

od
el

ch
ec

ki
ng

M
ai

n
m

od
el

 c
he

ck
in

g
pl

ug
in

M
ar

tin
 H

irs
ch

 <
m

ah
irs

ch
@

up
b.

de
>

re
le

as
ed

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
U

M
LR

T
1.

0
U

M
LM

od
el

ch
ec

ki
ng

-U
M

LR
T2

M
ai

n
m

od
el

 c
he

ck
in

g
pl

ug
in

M
ar

tin
 H

irs
ch

 <
m

ah
irs

ch
@

up
b.

de
>

al
ph

a
0.

0.
1

R
ea

l-T
im

e
4.

3.
2

U
M

LR
T2

 2
.0

U
pp

aa
lP

lu
gi

n
B

ac
ke

nd
 fo

r U
M

LM
od

el
ch

ec
ki

ng
 p

lu
gi

n
M

ar
tin

 H
irs

ch
 <

m
ah

irs
ch

@
up

b.
de

>
re

le
as

ed
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

U
M

LM
od

el
ch

ec
ki

ng
U

pp
aa

lP
lu

gi
n-

U
M

LR
T2

B
ac

ke
nd

 fo
r U

M
LM

od
el

ch
ec

ki
ng

 p
lu

gi
n

M
ar

tin
 H

irs
ch

 <
m

ah
irs

ch
@

up
b.

de
>

al
ph

a
0.

0.
1

R
ea

l-T
im

e
4.

3.
2

U
M

LM
od

el
ch

ec
ki

ng
-U

M
LR

T2
R

av
en

P
lu

gi
n

B
ac

ke
nd

 fo
r U

M
LM

od
el

ch
ec

ki
ng

 p
lu

gi
n

A
le

xa
nd

er
 S

te
ck

er
 <

pi
w

i@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
U

M
LM

od
el

ch
ec

ki
ng

In
va

ria
nt

C
he

ck
in

g
P

lu
gi

n
fo

r c
he

ck
in

g
in

du
ct

iv
e

in
va

ria
nt

s
on

 s
to

ry
 p

at
te

rn
s

B
as

il
B

ec
ke

r <
ba

si
lb

@
up

b.
de

>,
 D

an
ie

la

S
ch

ill
in

g
<d

as
@

up
b.

de
>

al
ph

a
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

U
M

LR
T

C
om

po
ne

nt
s

an
d

P
at

te
rn

S

ve
n

B
ur

m
es

te
r <

bu
rm

i@
up

b.
de

>,
 M

ar
tin

H

irs
ch

 <
m

ah
irs

ch
@

up
b.

de
>

re
le

as
ed

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
R

ea
lti

m
eS

ta
te

ch
ar

t 1
.0

U
M

LR
T2

C
om

po
ne

nt
s

an
d

P
at

te
rn

S

ve
n

B
ur

m
es

te
r <

bu
rm

i@
up

b.
de

>,
 M

ar
tin

H

irs
ch

 <
m

ah
irs

ch
@

up
b.

de
>

be
ta

2.
0.

0
R

ea
l-T

im
e

4.
3.

2
R

ea
lti

m
eS

ta
te

ch
ar

t 1
.0

E
m

be
dd

ed
S

to
ry

D
ia

gr
am

E
xt

en
si

on
s

to
 d

er
iv

e
W

C
E

Ts
 fr

om
 s

to
ry

 d
ia

gr
am

sp

ec
ifi

ca
tio

ns
A

nd
re

as
 S

ei
be

l <
as

ei
be

l@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2

U
M

LR
T2

C
pp

C
od

eG
en

er
at

io
n

C
++

 c
od

e
ge

ne
ra

tio
n

fo
r c

la
ss

 d
ia

gr
am

s
an

d
st

or
y

di
ag

ra
m

s
A

nd
re

as
 S

ei
be

l <
as

ei
be

l@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
E

m
be

dd
ed

S
to

ry
D

ia
gr

am
 1

.0

H
yb

rid
C

om
po

ne
nt

H
yb

rid
 c

om
po

ne
nt

s,
 h

yb
rid

 re
co

nf
ig

ur
at

io
n

ch
ar

ts
, a

nd
 C

++

co
de

 g
en

er
at

io
n

S
ve

n
B

ur
m

es
te

r <
bu

rm
i@

up
b.

de
>

al
ph

a
0.

1.
0

R
ea

l-T
im

e
4.

3.
2

U
M

LR
T2

 2
.0

,
U

M
LR

T2
C

pp
C

od
eG

en
er

at
io

n
1.

0
D

ep
lo

ym
en

tB
as

e
B

as
e

pl
ug

in
 fo

r a
ll

de
pl

oy
m

en
t r

el
at

ed
 p

lu
gi

n.

M
at

th
ia

s
Ti

ch
y

<m
tt@

up
b.

de
>

al
ph

a
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

U
M

LR
T2

 2
.0

D
ep

lo
ym

en
tT

em
pl

at
es

S
up

po
rt

fo
r f

au
lt

to
le

ra
nc

e
pa

tte
rn

s
an

d
th

ei
r d

ep
lo

ym
en

t
re

st
ric

tio
ns

.
M

at
th

ia
s

Ti
ch

y
<m

tt@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
D

ep
lo

ym
en

tB
as

e
1.

0

D
ep

lo
ym

en
tC

on
st

ra
in

ts
S

pe
ci

fic
at

io
n

of
 d

ep
lo

ym
en

t c
on

st
ra

in
ts

 fo
r i

nd
iv

id
ua

l
co

m
po

ne
nt

s.
M

at
th

ia
s

Ti
ch

y
<m

tt@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
D

ep
lo

ym
en

tB
as

e
1.

0
D

ep
lo

ym
en

tE
nv

iro
nm

en
t

S
pe

ci
fic

at
io

n
fo

r h
ar

dw
ar

e
re

ss
ou

rc
es

 fo
r d

ep
lo

ym
en

t.
M

at
th

ia
s

Ti
ch

y
<m

tt@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
D

ep
lo

ym
en

tB
as

e
1.

0

C
on

cr
et

eD
ep

lo
ym

en
t

P
lu

gi
n

fo
r c

on
cr

et
e

de
pl

oy
m

en
t o

f s
of

tw
ar

e
co

m
po

ne
nt

s
to

ha

rd
w

ar
e

re
ss

ou
rc

es
.

M
at

th
ia

s
Ti

ch
y

<m
tt@

up
b.

de
>

al
ph

a
1.

0.
0

R
ea

l-T
im

e
4.

3.
2

D
ep

lo
ym

en
tE

nv
iro

nm
en

t 1
.0

S
ce

B
aS

y
S

yn
th

es
iz

es
 re

al
-ti

m
e

pa
tte

rn
s

fro
m

 s
eq

ue
nc

e
di

ag
ra

m
s

w
ith

 re
al

-ti
m

e
an

no
ta

tio
ns

.
S

er
ge

j T
is

se
n

<s
er

ti@
up

b.
de

>
al

ph
a

1.
0.

0
R

ea
l-T

im
e

4.
3.

2
U

M
LS

eq
ue

nc
eD

ia
gr

am
s,

 U
M

LR
T2

Figure 5: Real-time and mechatronic plug-ins

N
a
m

e
D

e
s
c
ri

p
ti

o
n

C
o

n
ta

c
t

S
ta

tu
s

V
e
rs

io
n

D
o

m
a
in

F
u

ja
b

a
D

e
p

e
n

d
e
n

c
ie

s

A
sp

ec
tF

A
sp

ec
tJ

 fo
r F

uj
ab

a
C

hr
is

tia
n

S
ch

ne
id

er

<c
hr

is
tia

n.
sc

hn
ei

de
r@

un
i-k

as
se

l.d
e>

re
le

as
ed

0.
1

A
sp

ec
t O

rie
nt

ed
 P

ro
gr

am
m

in
g

4.
3

C
oO

bR
A

 P
lu

gi
n

G
en

er
at

e
C

oO
bR

A
 s

up
po

rt
fo

r t
he

 m
od

el
ed

 a
pp

lic
at

io
n

C
hr

is
tia

n
S

ch
ne

id
er

<c

hr
is

tia
n.

sc
hn

ei
de

r@
un

i-k
as

se
l.d

e>
re

le
as

ed
1.

1
P

er
si

st
en

cy
4.

3
D

ob
s

D
ob

s
D

yn
am

ic
 O

bj
ec

t B
ro

w
si

ng
 S

ys
te

m
Le

if
G

ei
ge

r <
le

if.
ge

ig
er

@
un

i-k
as

se
l.d

e>
re

le
as

ed
3.

3
V

is
ua

liz
at

io
n

/ D
eb

ug
gi

ng
4.

3

E
di

tM
od

es
A

lte
rn

at
e

ed
iti

ng
 m

od
e

fo
r F

uj
ab

a
D

ia
gr

am
s

(d
ia

lo
gl

es
s,

C

la
ss

di
ag

ra
m

s
on

ly
 a

tm
)

C
hr

is
tia

n
S

ch
ne

id
er

<c

hr
is

tia
n.

sc
hn

ei
de

r@
un

i-k
as

se
l.d

e>
al

ph
a

0.
1

G
en

er
al

4.
3

jE
di

t
R

ep
la

ce
 F

uj
ab

a'
s

te
xt

 e
di

to
r (

M
P

E
di

t)
by

 jE
di

t
C

hr
is

tia
n

S
ch

ne
id

er

<c
hr

is
tia

n.
sc

hn
ei

de
r@

un
i-k

as
se

l.d
e>

re
le

as
ed

0.
2

G
en

er
al

4.
3

R
ef

ac
to

rin
gs

P
ro

vi
de

 re
fa

ct
or

in
gs

 s
uc

h
as

 e
xt

ra
ct

 m
et

ho
d,

 c
ha

ng
e

si
gn

at
ur

e,
 im

pl
em

en
t/o

ve
rr

id
e

m
et

ho
d,

 …
C

hr
is

tia
n

S
ch

ne
id

er

<c
hr

is
tia

n.
sc

hn
ei

de
r@

un
i-k

as
se

l.d
e>

re
le

as
ed

0.
1

G
en

er
al

4.
3

S
V

G
G

en
P

rin
t F

uj
ab

a
di

ag
ra

m
s

to
 s

vg
, p

df
, p

ng
, …

M
at

th
ia

s
Ti

ch
y

<m
tt@

up
b.

de
>

re
le

as
ed

1.
1

G
en

er
al

4.
3

X
P

ro
M

eX
tre

m
e

P
ro

je
ct

 M
an

ag
em

en
t

Le
if

G
ei

ge
r <

le
if.

ge
ig

er
@

un
i-k

as
se

l.d
e>

re
le

as
ed

2.
1

P
ro

ce
ss

 M
an

ag
em

en
t

4.
3

X
M

LR
ef

le
ct

, D
ob

s,
 U

se
C

as
eP

lu
gi

n
U

M
L

S
eq

ue
nc

e
D

ia
gr

am
s

U
M

L
se

qu
en

ce
 d

ia
gr

am
s

Lo
th

ar
 W

en
de

ha
ls

 <
lo

w
en

de
@

up
b.

de
>

al
ph

a
0.

2.
0

G
en

er
al

4.
2

U
se

C
as

eP
lu

gi
n

U
M

L
us

e
ca

se
 d

ia
gr

am
s

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
be

ta
0.

9.
9

G
en

er
al

4.
3

X
M

IS
up

po
rtP

lu
gi

n
Im

po
rt

an
d

ex
po

rt
of

 c
la

ss
 d

ia
gr

am
s

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
re

le
as

ed
1.

0.
0

G
en

er
al

4.
3

C
on

so
le

P
lu

gi
n

S
im

pl
e

co
ns

ol
e

w
in

do
w

Jö
rg

 N
ie

re
 <

jo
er

g.
ni

er
e@

un
i-s

ie
ge

n.
de

>
re

le
as

ed
1.

0.
3

G
en

er
al

4.
0

B
lo

ck
D

ia
gr

am
E

di
to

r
E

di
to

r f
or

 S
D

L
bl

oc
k

di
ag

ra
m

 s
pe

ci
fic

at
io

ns
R

ob
er

t W
ag

ne
r <

w
ag

ne
r@

up
b.

de
>

re
le

as
ed

1.
0.

0
Fl

ex
ib

le
 P

ro
du

ct
io

n
S

ys
te

m
s

4.
3.

2

P
LC

C
od

eG
en

er
at

or
G

en
er

at
es

 c
od

e
fro

m
 s

ta
te

ch
ar

ts
 fo

r p
ro

gr
am

m
ab

le

lo
gi

c
co

nt
ro

lle
rs

R
ob

er
t W

ag
ne

r <
w

ag
ne

r@
up

b.
de

>
al

ph
a

0.
0.

1
Fl

ex
ib

le
 P

ro
du

ct
io

n
S

ys
te

m
s

4.
3.

2
C

oM
a,

 M
oT

E

Figure 6: Other plug-ins

13 Fujaba Days 2005

Fujaba Days 2005 14

Keynote Talk:
Recent Trends in MDE:
Principles, Standards,

Platforms and Applications

Jean Bézivin
ATLAS Group (INRIA & LINA)

University of Nantes
2, rue de la Houssinière
44322 Nantes cedex 3

France

Jean.Bezivin@univ-nantes.fr

ABSTRACT
Several initiatives like the European ModelWare Integrated Project
are currently investigating the applicability of Model Driven
Engineering (MDE) to change the current practices of software
development and maintenance. As an emerging area, MDE is still
very much in evolution. The industrial demand is quite high while
the research answer for a sound set of foundation principles is still
far from being stabilized. Since the MDA™ initial proposal by OMG
five years ago, MDE has much changed and gained in consideration
but still has to prove that it is really leading to a major long-term
technological evolution. To this end, what is much needed is a
precise definition of the MDE goals and non-goals and a stable
statement of the set of principles from which MDE foundations
could be assessed. One important question is how MDE relates to
other contemporary technologies (Object Technology, XML, etc.).
Another way to provide a characterization of MDE is by listing the
various operations like transformations that could be performed on
basic models. The talk will discuss the historical contributions of
MDE, its present state and potential future evolutions as well as
related open research issues.

15 Fujaba Days 2005

Fujaba Days 2005 16

SPin – A Fujaba Plugin for Architecture Stratification

Felix Klar, Thomas Kühne, Martin Girschick
Fachgebiet Metamodellierung

Fachbereich Informatik
Technische Universität Darmstadt, Germany

felix@klarentwickelt.de, {kuehne, girschick}@informatik.tu-darmstadt.de

ABSTRACT
SPin is a plugin for Fujaba that provides basic support for
architecture stratification. It enables Fujaba models to be
annotated with refinement directives which may then au-
tomatically be executed by the plugin. The corresponding
refinement transformations may be defined with a combi-
nation of story driven modeling and Java coding. These
transformations affect both model and associated code, and
may be defined interactively, i.e., do not require Fujaba to
be shutdown and started up again. In this paper we describe
the purpose of the plugin, how to use it, its realization, and
some supporting functionality.

Keywords
stratification, model driven development, model transforma-
tion, Fujaba plugin

1. INTRODUCTION
Today’s software systems have reached such a level of com-
plexity that a single view, e.g., architectural description, is
not sufficient anymore. If the system is described from a
bird’s eye view, using a very high level architecture descrip-
tion, many important details regarding performance, exten-
sibility, etc. remain hidden. If, however, one chooses a view
with a much lower level of abstraction, allowing the above
properties to be evaluated, the complexity will become un-
wieldy; it becomes difficult to see the forest for the trees.

Architecture stratification is an approach that connects mul-
tiple views on a single system with refinement translations,
so that each view describes the whole system on a particu-
lar level of abstraction. This way single levels do not only
present an optimal mix of overview and detail for various
stakeholders, but they also separate and organize a system’s
extension points, patterns, and concerns [1].

The Fujaba plugin SPin1 [4] supports the automatic trans-
formation of models into more detailed versions and thus
represents basic support for architecture stratification. How-
ever, it is not restricted to this particular flavor of model
driven development, but supports any development approach
that requires annotation-guided model transformations.

In the following, we first describe SPin from a user’s perspec-
tive (section 2) and then present an example demonstrating
the utility of SPin (section 3). Subsequently we take a closer

1An acronym for “Stratification Plugin”.

look at the inside of SPin (section 4), before we outline fu-
ture work (section 6) and finally conclude (section 7).

2. USING SPin
Figure 1 shows how SPin may be used in the context of
Fujaba. SPin supports two kinds of transformations, refine-
ment rules, yielding more concrete models and abstraction
rules, yielding more abstract models both of which can be
regarded as endogenous transformations [5]. In the following
we will concentrate on rules defining refinement transforma-
tions only, though.

Figure 1: SPin’s role within Fujaba

Since SPin’s transformation rules may not only transform
models (e.g., class diagrams) but also any associated code
(e.g., method implementations) it can be used to transform a
simple system description into a complex one, using multiple
steps. The most complex system description can then be
used to create an executable system by virtue of the Fujaba
code generation engine.

The prerequisite for automatically transforming models in
this top-down fashion, however, are directives, i.e., annota-
tions in a model.

2.1 Annotating a model
Annotations specify in which way a model element should
be refined in order to obtain a finer grained realization. To
provide additional information for the transformation, anno-
tations can be parameterized using basic types (e.g., a string
specifying the name of a class that should be generated) or
links to other model elements (e.g., specifying one or more
of the already existing elements to be used as observers for
a subject). We therefore chose a notation similar to UML
collaborations in UML class diagrams. Both notations share

17 Fujaba Days 2005

the need to specify which elements form a structure—such
as which other element(s) should be involved in the transfor-
mation process or what other element to use as a parameter
to the transformation—and the need to describe the role of
the referenced element.

SPin provides a dedicated annotation editor to support the
introduction and parameterization of annotations. Figure 2
shows a screenshot of the annotation editor displaying the
parameters of an “Observer” annotation (see the example
in section 3). The annotation is parameterized with two
links (“state” and “concreteObserver”) and one basic type
(“observerClassName”).

Figure 2: SPin’s annotation editor

Once a model is completely annotated, the user may use the
context menu of an annotation to initiate the corresponding
transformation process. Currently, SPin supports manual
transformation initiation only, i.e., it is not possible yet to
start a recursive unfold process which stops when no more
annotations exists.

2.2 Creating a rule
Unfolding an annotation triggers the corresponding refine-
ment rule. Such rules are completely user defined. SPin
only provides the machinery for creating, using, and execut-
ing rules. The rules themselves are part of a rule library,
which can be extended dynamically.

Let us step through the creation of a rule implementing the
GoF [3] pattern “singleton”. First, we create a UML class
diagram and then add a new rule class to it by invoking
the “create rule...”-action from the class diagram’s context-
menu. This causes SPin’s “new rule” dialog to open and we
use it to specify the rule type and a rule name. In our exam-
ple we choose a refinement rule with the name “Singleton”.
The rule’s name describes its intent, but will also later be
used to annotate a model.

Figures 3 and 4 show a part of what SPin automatically
generates after the “new rule” dialog has been closed.

Figure 3 shows the addition of a new refinement class (RR-
Singleton). Among other features it defines an ’apply’ method

String :) (toString
Boolean :)Info:p1 (setInfo

Info :) (parseInfo
Boolean :)ASGElement:p1 (isApplicable

String :) (getName
String :) (getKey
Info :) (getInfo

Boolean :)ASGElement:p1 (apply

TransformationRule

«reference»

Boolean :)Suggest:p1 (setSuggest
Suggest :)RAnnotation:p1 (matchingAnnotationPreDelete

Suggest :) (getSuggest
RAnnotation :) (getAnnotation

RefinementRule

«reference»

Suggest :)RAnnotation:annotation (matchingAnnotationPreDelete
Boolean :)ASGElement:element (isApplicable

RAnnotation :) (getAnnotation
Boolean :)ASGElement:element (apply

RRSingleton

Figure 3: A new refinement rule

that contains the actions to be performed when the rule is
triggered.

Figure 4 shows the automatically generated body for ’apply’.
As one can see Fujaba’s Story Driven Modeling (SDM) [6]
is used to implement the ’apply’-method. This results in a
semi-graphical implementation which is more self-explana-
tory and easier to create and to maintain than handwritten
Java-Code. The first check makes sure that the model ele-
ment to be transformed indeed has the correct annotation
(“Singleton” in this case). If yes, a reference to a UMLFac-
tory is created so that new UML elements may be created in
the core transformation part. Finally the annotation is de-
stroyed, i.e., removed from the diagram, since at this point
in time the annotation has served its purpose to create a
more concrete realization of its source structure. The rule
designer may still change any part of this, but this is how
most refinement rules look like, if one leaves out the core
transformation part and any further checks as to whether
the rule is really applicable.

]success[

]failure[

this.getName()==name

element) RAnnotation(:= annotation

RRSingleton::apply (element: ASGElement): Boolean

false

true

UMLFactory umlFactory = UMLFactory.get();
«destroy»
annotation

Figure 4: Generated ’apply’-method

In our example the rule’s precondition has to be enhanced to
check whether the annotation is bound to a UML class (see
figure 5). If this is the case, the class will be transformed
into a singleton class. The transformation code adds an at-
tribute holding the singleton-instance, a private constructor
and a get-method that returns the singleton-instance. Once
finished, the rule can be exported to the rule library, so that
it may be used to transform a UML class into a “singleton”.

3. CASE STUDY
We now demonstrate the utility of SPin by considering an
example system that simulates a quality control assembly
line. In this example we use the three design-patterns “Sin-

Fujaba Days 2005 18

]success[

]failure[

false

true

«destroy»
annotation

RRSingleton::apply (element: ASGElement): Boolean

elementReferences

UMLClass:targetClass

element

hasInReferences

RAnnotationToASGElement:targetAdapter

aSGAdapter

this.getName()==name

element) RAnnotation(:= annotation

annotations

haveTarget

UMLFactory umlFactory = UMLFactory.get();

// get name of the UMLClass
String className = targetClass.getName();

// prepare singleton-structure
String attributeName = "private static " + className + " singleton = null";
String constructorName = "private " + className + "()";
String getMethodName = "public static " + className + " get()";

UMLAttr singletonAttribute = umlFactory.createAttr(targetClass, attributeName);
singletonAttribute.setCreateAccessMethods(UMLAttr.CREATE_ACCESS_METHODS_NO);

UMLMethod constructor = umlFactory.createMethod(targetClass, constructorName);
UMLMethod getMethod = umlFactory.createMethod(targetClass, getMethodName);

// now implement the structure
UMLStatement constructorStatement = umlFactory.generateEmptyMethodBody(constructor, "");
constructorStatement.setStatement("super();");

UMLStatement getStatement = umlFactory.generateEmptyMethodBody(getMethod, "singleton");
String getImplementation = new String(
"if (singleton == null)\r\n" +
" singleton = new " +
className +
"();\r\n" +
"\r\n"
);
getStatement.setStatement(getImplementation);

Figure 5: Fully implemented ’apply’-method

gleton”, “Observer”, and “Visitor” [3] in order to obtain a
high-level view on the system’s structure (see Figure 6).

3.1 System description
The system has a main quality control unit (QualityCon-
trol) that should be realized as a singleton instance (hence
the corresponding annotation). Quality control is realized as
an assembly line that consists of a variable number of con-
trol stations (class ControlStation). These stations check
items (abstract class Item) passed to them by the assem-
bly line. Our example features only one concrete item type
(class Screw).

Control stations feature a tester which checks the current
item. For each observed item a test report (class ItemTest)
is created. Testers come in two kinds: manual testers, like
humans, that are able to perform very complex tests and
automatic testers, like industry-robots that are specialized
for testing a single property of an item. Here, a robot (class
Scale) is used, that checks an item’s weight.

Let’s have a closer look at the annotations “Observer” and
“Visitor”. Annotation “Observer” is parameterized with two
links. Link “state” binds attribute currentItem:Item of class
ControlStation to the annotation to define which state should
be observed. Link “concreteObserver” binds class Tester
which should observe the specified state. An additional pa-

rameter “observerClassName”of base-type String with value
“ControlStationObserver” has been added to the annota-
tion.2 This parameter specifies the name of the generated
observer interface. Annotation “Visitor” has two links as
well: “element” specifies which class should be the element
of the visitor pattern and “concreteVisitor” specifies which
class should visit the element. For a more detailed descrip-
tion of the rules corresponding to “Observer” and “Visitor”
please see [4].

3.2 Refining the system
We now refine this system, by unfolding annotations step by
step, until we reach the most detailed system description.

After unfolding the “Singleton” annotation we may then un-
fold “Observer”. Note that we have to attach/detach con-
crete observers to/from their subjects (in this case: class
ControlStation), so that observers will be notified of state
changes. As we want these code-fragments to be placed in
method ’setTester(Tester)’ in class ControlStation, we need
to implement this method manually, so it will attach/detach
tester instances accordingly. We also want to specify what
should be done when an observer is updated by its subject.
This is accomplished by adding a call to method ’createIt-
emTest(Item)’ within the method ’update(ControlStation)’
in class Tester.

Finally, we resolve “Visitor”. Of course we need to provide
the code for the visit-methods in each concrete visitor. This
is currently done manually after the transformation step,
but alternatively one may also provide the method bodies
as parameter values to a correspondingly defined “Visitor”
rule.

All other pattern-related method bodies will be automat-
ically generated of by the respective rules. The resulting
system structure is visualized in figure 7.

3.3 Completing the system
After the system has been refined to its most detailed ver-
sion, we now have to complete the implementation by filling
in the missing method bodies.

We only need to deal with two methods in our example: (a)
’process(Item)’ in class ControlStation, which has to notify
its observers, if an item receives the focus of a control station
and (b) ’createItemTest(Item)’ in class Tester, which has to
initialize the visit-process by invoking method ’accept(Item-
Visitor)’ on the passed Item-instance.

Now that the most detailed model has been completed, Fu-
jaba’s codegenerator can be used to generate executable
code from it.

4. INSIDE SPin
The following section describes some of the internal aspects
of SPin, in particular how SPin provides support for the
creation of new transformation rules.

2However, this parameter is not visible in figure 6. It may
only be seen or changed through the annotation editor (see
figure 2).

19 Fujaba Days 2005

Scale

Float : length
Float : diameter

ScrewManualTester

String :) (toString
LongInteger :) (getTestDuration

String : whatTested
String : testerID
Date : testEnd

Date : testBegin
Boolean : itemValid
String : itemType

String : itemID

ItemTest

controlStation

0..1tester
worksAt

Human

AutomaticTester

ItemTest :)Item:item (createItemTest

ItemTest : currentItemTest
String : ID

Tester
concreteObserver

Observer

state
0..*

controlStations

1

qualityControlSingleton
Boolean :)Item:item (process

QualityControl

Boolean :)Item:item (process

Item : currentItem
String : ID

ControlStation

 {ordered}has

concreteVisitor
Float : weight

String : ID

Item

element

Visitor

Figure 6: Most abstract system version of our example

4.1 Dynamic Rule Additions
Once a rule is created and added to the library, it can im-
mediately be used in models without requiring manual shut-
down, recompilation, etc. This is achieved in the following
way: After creating or modifying a rule in the form of a UML
class, the rule developer asks SPin to export the rule. SPin
thereupon first employs Fujaba’s code generator to generate
the corresponding Java-code and then the Java compiler to
create the respective Java bytecode. Subsequently, all new
generated files are moved into the rule library directory and
finally the library is reloaded.

4.2 Modifying Activity Diagrams
Often rules need to transform behavior in the form of method
bodies. In Fujaba, method bodies are specified with story-
diagrams, a combination of activity and collaboration dia-
grams [6].

In order to support the analysis and modification of such
storydiagrams SPin introduces a standard mechanism (avail-
able through class UMLActivityDiagramModifier) that en-
ables rule developers to visit each element of a storydia-
gram. It simply iterates over each element and invokes
element-specific code on a visitor (class UMLActivityDia-
gramVisitor) that performs operations on those elements.
This mechanism can easily be adapted by rule developers
through implementing their own visitor classes and passing
them to the diagram modifier. For instance, rule developers
may use it to modify text within method bodies.

4.3 Element Creation and Initialization
A common activity of rules is the creation of new model
elements. SPin provides factories (see UMLFactory in Fig-
ure 4), whose task is to reduce the effort for creating model

elements to a minimum. In the ideal case just one function
call is required to create and initialize an element and then
add it to a diagram. SPin provides two factories: One sup-
porting the creation of transformation rules and the other
to create elements of the annotation metamodel.

One aspect of these factories—creation of elements—will be
obsolete with Fujaba 5, when the creation of UML elements
through factories will be natively supported. Yet, the other
aspect—initialization of elements—will still be useful, since
Fujaba 5 will still require manual initialization, requiring
potentially many function calls. Hence, SPin’s UML factory
may even proof to be useful in Fujaba 5.

4.4 Metamodel Synchronization
One way to specify transformation rules is to use the SDM
approach available in Fujaba [2]. Figure 4 shows how a
story diagram is used to check the applicability of a rule.
The transformation process itself may also be specified us-
ing SDM (instead of using Java).

However, in order to be able to employ SDM in this man-
ner, Fujaba requires a UML classdiagram containing the ap-
propriate metamodel to be present in the current Fujaba-
project. The challenge is hence how to get this metamodel
into a Fujaba-project, since one clearly does not want to do
it manually. This would not only be a very time-comsuming
but also a very error-prone task.

One solution to automate this process is the JavaParser-
plugin (see also Figure 1). It can be used to generate a UML
classdiagram from the Java sourcecode which represents the
metamodel. If the source code and the actual metamodel
built into Fujaba differ, though, e.g., because of a version
mismatch, incompatibilities will arise.

Fujaba Days 2005 20

0..*controlStationObservers

subject
holds

Void :)Subject:subject (update
Void :)ControlStation:controlStation (update

ControlStationObserver

«interface»

Void :) (notifyObservers
Boolean :)ControlStationObserver:observer (detach

Boolean :)ControlStationObserver:observer (attach

Subject

Void :)Screw:screw (visitScrew
Void :)Item:item (visitItem

Scale

ManualTester

controlStation

0..1tester

worksAt

Void :)Screw:screw (visitScrew
Void :)Item:item (visitItem

Human

AutomaticTester

0..*

controlStations

1

qualityControl

 {ordered}has

String :) (toString
LongInteger :) (getTestDuration

String : whatTested
String : testerID
Date : testEnd

Date : testBegin
Boolean : itemValid
String : itemType

String : itemID

ItemTest

Void :)ItemVisitor:visitor (accept

Float : weight
String : ID

Item

Void :)ItemVisitor:visitor (accept

Float : length
Float : diameter

Screw

Void :)Subject:subject (update
Void :)ControlStation:controlStation (update

ItemTest :)Item:item (createItemTest

ItemTest : currentItemTest
Item : currentItemObservedFromControlStation

String : ID

Tester

Void :)Screw:screw (visitScrew
Void :)Item:item (visitItem

ItemVisitor

«interface»

Boolean :)Item:item (process
QualityControl :) (get

) (QualityControl

null = QualityControl : singleton

QualityControl

Boolean :)Item:item (process
Boolean :)Tester:value (setTester

Void :) (notifyObservers

Item : currentItem
String : ID

ControlStation

Figure 7: Most detailed system version of our example

SPin therefore uses a Virtual Machine synchronizer (VM-
synchronizer) [4]. It takes the actual—and thus guaranteed
to be of the correct version—Java bytecode of the respective
part of Fujaba as input, extracts structural information us-
ing a Java classloader in conjunction with the Java reflection
API and generates a UML model from the extracted infor-
mation using a UML factory. Finally a post processing step
detects associations between UML classes and adds them
to the metamodel which then can subsequently be used by
SDM.

5. RELATED WORK
Most MDA tools specialize on generating code from a model
or migrating models in one modeling language to another,
i.e., exogenous transformations [5]. Tools that support model
refactorings can—according to [5]—be classified as support-
ing horizontal endogenous transformations. In contrast, ar-
chitecture stratification realizes vertical endogenous trans-
formations. In other words, refactorings maintain the same
level of abstraction whereas architecture stratification cre-
ates different levels of abstraction expressed in the same
modeling language.

Only few commerical tools, such as Together Architect3 and

3http://www.borland.com/us/products/together/

ArcStyler4 provide basic support for defining vertical en-
dogenous transformations as well.

Together Architect provides an extendable template-based
mechanism for creating patterns. This mechanism can be
used to create rules that perform vertical endogenous trans-
formations. A pattern manager is used to apply patterns to
class diagram elements. In contrast to SPin, however, this
way transformations are executed in a step by step fashion,
whereas SPin automates the transformation of all annota-
tions of one kind and will eventually support a fully auto-
mated application of all applicable transformations from top
to bottom.

The MDA tool ArcStyler supports both model-to-model and
model-to-code transformations, which are defined in so called
cartridges5. A cartridge defines a source and target meta-
model (or inherits the UML metamodel) and the transforma-
tions from the source to the target. UML stereotypes may
be used to guide the transformation process. In addition so
called marks are used to allow further parameterization of
the model, e.g. for different target platforms. Transforma-

4http://www.interactive-objects.com/
5http://www.interactive-objects.com/support/doc/
doc/Carat_Guide.pdf

21 Fujaba Days 2005

http://www.borland.com/us/products/together/
http://www.interactive-objects.com/
http://www.interactive-objects.com/support/doc/doc/Carat_Guide.pdf
http://www.interactive-objects.com/support/doc/doc/Carat_Guide.pdf

tions are described using the script language JPython. This
is supplemented by the concept of blueprints which are simi-
lar to model templates. ArcStyler follows the MDA approach
where a platform independent model (PIM) is completely
parameterized and then transformed to a new platform spe-
cific model (PSM). If this approach is used in a staged, in-
cremental manner, it very much resembles the abstraction
level stratification approach of SPin.

Neither Together Architect nor ArcStyler support Fujaba’s
Story Driven Modeling, which is very useful for the semi-
graphical specification of transformation rules as used in
SPin.

6. FUTURE WORK
The current version of SPin offers a limited set of transfor-
mation rules. Although these are user extensible, the utility
of SPin would be increased if it came with a rich set of
ready-to-use rules. By applying the stratification process
to big and complex software systems it will be possible to
extract useful rules which can then be added to SPin.

Employing stratification in its intended form with SPin is
currently hindered by the fact that only manual, stepwise
initiations of transformations are supported. In order to
fully automate the generation of a complex system from a
given simple and abstract view, it is necessary to automate
the process of unfolding annotations. This includes the spec-
ification of the order in which annotations are to be unfolded.
However, this ordering is neither difficult to work out, nor
should it be part of an automated process. Annotations ex-
hibit natural dependencies and lend themselves to generate
levels of system concerns [1]. It is therefore the task of the
system architect to select which of the annotations are ad-
dressed at each specific abstraction level. As a result, future
versions of SPin should provide a configuration system that
allows users to specify and store their annotation processing
orders.

SPin will significantly benefit from the new features of Fu-
jaba 5. For instance, the then available support for multiple
projects will enable developers to create rules in one project
and immediately apply them in another. Moreover, users
then might be able to easily navigate back and forth be-
tween different levels of abstraction.

Moving up in the hierarchy of abstraction levels is already
possible as long as the more detailed versions were generated
by SPin. This is accomplished by using Fujaba’s built in
“undo” mechanism.

In the current release of SPin the transformation rules are
expressed using arbitrary Java code. This implies that there
is no way to execute them “backwards” or to automatically
generate inverse rules. The “reverse application” of forward
directed generation rules is, however, an attractive facility
for reverse engineering systems. This way, one may start
from a complex system and simplify the system by either
creating and applying “abstraction rules” or by using refine-
ment rules in the“reverse”direction. This, however, requires
rules that can either be transformed into their inverse or
rules that work bi-directionally. Hence, we are planning to
investigate replacing Java for specifying transformation rules

with an approach that supports bi-directional rule applica-
tion from the start, e.g., Triple Graph Grammars [7].

7. CONCLUSION
SPin is the result of a diploma thesis conducted at the meta-
modeling department of the Darmstadt University of Tech-
nology [4]. Although it currently provides only basic support
for architecture stratification, it represents a starting point
that can be extended into full stratification support.

Even the current SPin version, however, already demon-
strates the feasibility of transforming both model elements
and associated code in sync with each other, in order to
obtain a fully specified complex system from a simple sys-
tem, after a number of transformation steps. Current rule
definitions sometimes require manual edits to the generated
models—for user code, such as implementations of “visit”
methods for the visitor pattern—however, this is no prin-
ciple limitation of the approach. More sophisticated rules
and corresponding annotation dialogs will allow the contin-
uous and fully automated generation of models from top to
bottom.

Transformation rules are user-definable, typically using a
convenient mix of SDM (for pattern matching) and Java
(for an unconstrained definition of transformations). Since
SPin is able to dynamically integrate new rules, the devel-
opment of the main system model and corresponding rules,
can proceed in an interleaved and very interactive manner.

The creation of new rules in SPin is heavily assisted by a
number of convenient utilities, such as support for modifying
method bodies, element creation, and the synchronization of
the UML metamodel.

In addition, the work on SPin resulted in a pattern-like no-
tation for refinement annotations that enable transforma-
tion parameters to be specified both graphically (through
labeled links) and non-graphically (through primitive pa-
rameter types entered into a corresponding dialog). This
way one achieves fine grained control of the transformation
process, using a concise notation.

We believe that SPin already represents an interesting start-
ing point for supporting architecture stratification, but as we
have outlined in the previous section on future work, we are
convinced that it has an even higher potential for further
development.

8. REFERENCES
[1] C. Atkinson and T. Kühne. Aspect-Oriented

Development with Stratified Frameworks. IEEE
Software, 20(1):81–89, 2003.

[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A new Graph Rewrite Language based on
the Unified Modeling Language and Java. Technical
report, AG-Softwaretechnik, Fachbereich 17,
Universität Paderborn, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Entwurfsmuster. Addison-Wesley, 1996.

Fujaba Days 2005 22

[4] F. Klar. SPin – Ein Werkzeug zur Realisierung von
Architektur-Stratifikation. Diplomarbeit, Technische
Universität Darmstadt, April 2005,
http://www.klarentwickelt.de/doc/science/

diplomarbeit_klar.pdf.

[5] T. Mens, K. Czarnecki, and P. V. Gorp. A taxonomy of
model transformations. In J. Bezivin and R. Heckel,
editors, Language Engineering for Model-Driven
Software Development, number 04101 in Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl, Germany,
2005.

[6] U. Nickel, J. Niere, and A. Zündorf. The FUJABA
Environment. Technical report, Computer Science
Department, University of Paderborn, 2000.

[7] A. Schürr. Specification of graph translators with triple
graph grammars. Germany, June 1994. Herrschin,
Springer Verlag. Proceedings of the 20th International
Workshop on Graph-Theoretic Concepts in Computer
Science.

23 Fujaba Days 2005

http://www.klarentwickelt.de/doc/science/diplomarbeit_klar.pdf
http://www.klarentwickelt.de/doc/science/diplomarbeit_klar.pdf

Fujaba Days 2005 24

Graph Transformations with MOF 2.0

Carsten Amelunxen, Tobias Rötschke, Andy Schürr
Technische Universität Darmstadt

Institut für Datentechnik, FG Echtzeitsysteme
Merckstr. 25

Darmstadt, Germany
[carsten.amelunxen|tobias.roetschke|andy.schuerr]@es.tu-darmstadt.de

ABSTRACT
The MOFLON framework aims to contribute to various as-
pects of meta model-based software engineering on top of the
Fujaba Tool Suite. Currently, Fujaba operates on an inter-
nal UML 1.4-like meta model to represent graph schemata.
Graph transformations are formulated in terms of this inter-
nal model. With the upcoming Fujaba 5 release, plugins will
be able to provide their own meta models which are mapped
onto the internal one. MOF 2.0 as the standard meta mod-
eling language provides improved new concepts compared to
older versions of UML and MOF. By implementing a MOF
2.0 editor and a related JMI compiler as plugins for Fujaba,
we are now able to define graph schemata with MOF 2.0.
In this paper, we discuss the implications of our choice of
MOF 2.0 as schema language on the existing graph transfor-
mations in Fujaba and we sketch a roadmap how to adapt
the Fujaba SDM editor and code generator appropriately.

1. INTRODUCTION
Meta modeling languages are used to describe other mod-
eling languages. The Object Management Group (OMG)
adopted MOF 2.0 [9] as standard meta modeling language.
To be able to work with meta-modelled languages, tool pro-
viders need to map meta models on source code. Sun defined
the Java Metadata Interface (JMI) [3] as standard mapping
of MOF-compliant meta models to Java code. As we see
interesting opportunities in the combination of MOF 2.0 as
meta modelling language and Fujaba for graph transforma-
tions, we decided to bring both together.

During the last months, we have been busy on the first re-
lease of the MOF 2.0 plugin for Fujaba which, in more gen-
eral terms, is a part of the MOFLON meta modeling frame-
work1, that had been proposed in [2] for the first time. On
the last FujabaDays, we discussed the new association con-
cept [1] of MOF 2.0 and how we can improve Fujaba so that
the internal meta model used for graph transformations is
separated from the external meta model defining the editor
features visible to the user [12].

Meanwhile we have made major progres with the MOF 2.0
editor and the accompanied JMI code generator. We are
able to bootstrap the creation of the underlying MOF 2.0
meta model. A MOF instance can be either directly created
using the MOFLON/Editor plugin for Fujaba or drawn in
Rational Rose, exported as XMI and finally imported in

1http://www.moflon.org

the plugin. Using our MOFLON/Compiler plugin, we can
not only provide JMI interfaces, but also an implementation
that is able to store a consistent model with respect to fea-
tures like subsetting, redefinition, union, composition, and
multiplicities.

2. MOFLON INSIDE FUJABA
Figure 1 provides a sketch of the relationships between Fu-
jaba and MOFLON. The MOFLON/Editor plugin realizes a
MOF 2.0 meta model editor based on JMI-compliant MOF
meta-meta model, and its adaption to the internal Fujaba
meta model. The MOFLON/Compiler plugin adds a JMI-
compliant Java code generator for MOF 2.0 instances cre-
ated using the editor component. The MOFLON/RoseXMI
plugin allows to import UML class diagrams from Rational
Rose using XMI. During the import, a corresponding MOF
2.0 instance is created by our plugin, which can be further
processed using the editor and compiler component.

MOFLON

Compiler

MOFLON

RoseXMI

FMA / FME

<<event>> <<call>>

MOFLON

Editor

MOF / JMI

Rational

Rose

<<extends>><<implements>>

XMI

Fujaba Tool Suite

FMetamodel ASG FSA

Figure 1: Sketch of MOFLON dependencies

The Fujaba framework provides the internal meta model
(FMetamodel) together with a basic abstract implementa-
tion (ASG). The MOFLON/Editor plugin contains a gen-
erated JMI implementation of the MOF 2.0 meta model
(MOF). This implemention fires MDR-like [7] events when-
ever a model instance is changed, and hence has no static
dependencies on any Fujaba packages.

The internal Fujaba metamodel and the MOF metamodel
are coupled via the Fujaba MOF Adapter (FMA) layer.
Within the MOFLON/Editor plugin, every diagram item
in terms of the internal Fujaba meta model is an adapter
referring to a MOF element as adaptee (cf. Object Adapter

25 Fujaba Days 2005

design pattern in [4], p. 141). For every adapter there is an
adequate unparse module to visualize the item in the editor
using the Fujaba Swing Adapter (FSA) layer. It must be
mentioned that we proposed class adapters inheriting from
ASGElement in [12] to implement the JMI interface, but
we decided that our default implementation should be self-
contained.

Method invocations to an adapter are directly delegated to
the corresponding MOF element, which contains the actual
state of the item. In the opposite direction, the Fujaba
MOF EventListener (FME) package receives change events
from the MOF implementation and fires the corresponding
property change events to update the GUI.

In some cases (e. g. association ends, generalizations, mu-
tual references), a number of adapters correspond to a single
MOF element. In such a case, the adapters must remem-
ber their relationships with other adapters referring to the
same MOF element. Besides, the adapters keep informa-
tion related to those parts of the Fujaba meta model, that
do not correspond to standard UML or MOF elements (e.g.
projects, diagrams, files, and programming language-related
data).

2.1 MOFLON vs. Fujaba
In the following the new features of MOFLON compared to
Fujaba are listed, i.e. the delta from the Fujaba implemen-
tation of UML 1.4 class diagrams to MOF 2.0.

• Packages are namespaces in MOFLON and can be
combined by two kinds of package merges2. Each pack-
age holds a diagram. The package concept replaces
Fujaba’s view diagrams.

• Attributes with collections as values can be subset-
ted, redefined, unique, ordered or an union of all their
subsets. As a result of combining ordering and unique-
ness, multi-valued association ends are realized by four
different kinds of collections3.

• Associations are distinguished into ”real” associa-
tions and (mutual) references. References correspond
to associations in Fujaba as they are mapped on at-
tributes whereas associations are mapped on classes.
Navigable association ends are treated like attributes
of the appropriate classes. Thus the features concern-
ing attributes are also relevant for navigable associa-
tion ends. For the purpose of graph transformation
both concepts of references and associations can be
treated equally since there are no link objects for as-
sociations.

• Navigability specifies how association instances can
be queried in MOFLON. Navigable association ends
can be handled like attributes with the appropriate
access methods. This easy access is only available for
navigable association ends. Non-navigable association
ends can be queried by using the methods of the class
representing the association. By making use of the

2There are two kinds of package merge (merge and combine).
See [9] and [10] for details.
3Set, OrderedSet, Bag, Sequence

class for an association each link can be queried inde-
pendently of the navigability. Associations are always
navigable in terms of Fujaba.

• Composition is semantically relevant since all chil-
dren of a composite are deleted together with their
parent.

• Multiplicities are dynamically evaluated similar to
composites. For a given object, multiplicity deter-
mines the required number of linked objects of the
associated class. If the number of linked objects falls
below the lower bound the given object is deleted, as
in our opinion it cannot exist if the lower bound is
violated. This evaluation is just processed with each
deletion of an object since not every update can result
in a consistent meta model instance. The demand of a
consistent meta model instance after each deletion has
been proven to be very useful. A more sophisticated
approach is a matter of current work.

3. NEW FEATURES OF MOF 2.0
Figure 2 shows an example from the domain of reengineering
in which we demonstrate some MOF 2.0 features that are
new compared to UML 1.x and previous MOF versions. The
FileSystem package defines the general concepts of UNIX-
like file system with files and directories. The second pack-
age specializes the first one for the purpose of typical C
programming.

Note, that we drew the diagrams for package contents inside
the package to achieve a more compact visualization. In the
MOFLON/Editor component, a dedicated diagram exists
for every package. Package dependencies are drawn in the
diagram of the parent package or in the root diagram for
root packages.

Directory

SourceFolder SourceFile HeaderFile

has

IncludeFolder

File

FileSystem

CProject

{ordered}
*

containedElement

0..1containingDirectory

Directory File
{subsets containedElement}

/subdirectory
*

/extension : String

Element
name : String

<<merge>>

file
*

{redefines containedElement} includingFile *

includedFile
*

exportedFile
{seq}

{seq}

{subsets
 importedFile}

*exportingFile

*
{redefines file}

providedFile

{subsets folder}

providingFolder
0..1 *

folder
0..1
{redefines containingDirectory}

Figure 2: A sample MOF 2.0 diagram

To start with package relationships, consider the merge de-
pendency between package FileSystem and CProject. This is
one of the new package relationships, that are coming with
MOF 2.04. Every public Element5 of package FileSystem is

4Other package relationships are import and combine which
have different semantics
5PackageableElement to be exactly

Fujaba Days 2005 26

automatically available in the namespace of package CPro-
ject. If a new element with an existing name is introduced,
a generalization relationship to the existing element in the
merged package is established by the semantics of the merge
dependency. So CProject::Directory is a subclass of FileSys-
tem::Directory and CProject::File is a subclass of FileSys-
tem::File. As they are different elements, CProject::File
may be abstract, while FileSytem::File is not. In case of a
combine relationship the elements of FileSystem would have
been (deep) copied into CProject. Equally named classes
would have been merged instead of inherited. In case of
an import relationship the elements of the imported pack-
age would have just been added to the namespace of the
importing package.

Considering the revised definition of navigability in MOF
2.0 in combination with the relations between association
ends, associations evolved to a more sophisticated concept.
In MOFLON, associations are only allowed between classes
and always drawn with a diamond to distinguish them from
(mutual) references, like the relationship between File and
Headerfile. References are a means to define ”light-weight”
unidirectional relationships between classes or data types
and other classes without instantiating associations. Pairs
of mutual references are treated as one ”light-weight” bi-
directional relationship. Taking into account that adorn-
ments like aggregation and composite have no semantics in
Fujaba, these ”light-weight” relationships correspond closely
to Fujaba’s association concept.

In UML 1.x, association ends are always unique, but in MOF
2.0, they may be non-unique as well. In combination with
ordering, multi-valued association ends have to be realized
by four different kinds of collections.

Probably the strongest improvement in MOF 2.0 is the pos-
sibility to define union-, subset-, redefinition-releationships
between properties and hence association ends. In figure
2, the property subdirectory is defined as subset of con-
tainedElement. So only containedElements of type Direc-
tory can be a subDirectory. But without further constraints,
there might be contained Directories that are not consid-
ered subDirectories. A redefinition relation allows to express
stronger restrictions. The property providedFile redefines
file and hence a IncludeFolder may only contain files, i.e.
providedFiles of Type HeaderFile.

Having discussed the new concepts in MOF 2.0, we should
mention that some features of UML 1.x do not exist in MOF
2.0. The most important features are stereotypes and qual-
ifiers, but in our opinion, these are not essential for the
purpose of meta modeling. The lack of stereotypes is barely
a problem, as Fujaba only interpretes stereotypes to dis-
tinguish classes, interfaces, data types, references and Java
Beans. In MOF 2.0, there are dedicated meta classes for
most of these stereotypes, i.e. classes, data types, primi-
tive types, enumerations and element imports. Qualifiers
determine keys to quickly retrieve association ends from the
collections implementing them. As meta modelling is about
defining modelling languages, the name of a model element
can be assumed to serve as qualifier where needed. So ex-
plicit qualifiers are not needed for meta modelling. Obvi-
ously, every known MOF or UML meta model has been de-

fined without using qualifiers. Even if these meta models are
far from perfect, most issues result from lacking constraints
rather than missing qualifiers.

4. ADAPTING THE SDM EDITOR
Based on the internal meta model which is introduced in Fu-
jaba 5, either UML or MOF can be used to define schemata
for graph transformations. As we have seen in section 3,
MOF provides some extensions that must be integrated in
the graph transformation concept. In this section, we discuss
how MOF 2.0 as schema language influences graph transfor-
mations in Fujaba.

Graph transformations in Fujaba, also referred to as Story
Driven Modelling (SDM), require only very few concepts.
On the one hand, activities, transitions and related guards
allow to define the control flow of complex graph transfor-
mations. Choosing MOF 2.0 as schema language has no
impact on these concepts at all. On the other hand, simple
graph transformations are visually defined using a variation
of collaboration diagrams. They consist of objects, links
and multi-links, which are slightly affected by changing the
schema language.

First of all, the advanced package concepts allow a bet-
ter means to find available types for objects, associations
and attributes than the existing solution with diagrams and
views does. Namespaces and visibilities are taken into ac-
count and less name clashes occur, which result in nasty
effects in the existing Fujaba implementation. For instance,
a package merge as used in 2, effectively produces implicit
generalization relationships between classes with identical
names in both packages. When editing Story Diagrams,
these additional generalization relationships must be con-
sidered during the creation of links, i.e. when the choice of
possible edge types is determined.

The different kinds of inter-class relationships (associations
and (mutual) references) in MOF 2.0 do not have impact
on links in the first place. But when taking generalization,
union, subsetting and redefinition into account, there are
some affects on links.

The meta model implementation automatically maintains
derived links which result from subsetting or redefintion.
For instance, if an association end is marked as subset of
another more general association end, changes to the sub-
setting end are automatically propagated to the subsetted
end due to our meta model implementation. Considering
the example in fig. 2, after creating a subdirectory link be-
tween two Directories, the containedElement link between
Directory and Element does automatically exist as well and
can be queried accordingly.

Next, if a general association end is marked as union, the
association may not be directly modified by graph transfor-
mation rules. However, propagation from special association
ends is still effective. Hence, the association becomes ”ab-
stract” so to speak. Unlike redefinition of association ends
which will be discussed in section 5, the restrictions of union
association ends can be analyzed statically.

In Fujaba, links in the set of Edges E have approximately

27 Fujaba Days 2005

the following form [13]:

E ⊂ N × EL× I ×Q×N (1)

The first element denotes the source node, the second the
edge label, the third the index (applies only for ordered asso-
ciations), the fourth the qualifier (applies only for qualified
associations), and the last the target node. Edge labels cor-
resond to associations in the class diagram. Associations can
be either plain, ordered or sorted, although UML like MOF
2.0 assigns this feature to association ends instead. However,
MOF 2.0, does not feature sorted association ends.

Figure 3: Remove redundant includes

Figure 3 shows an example of how non-unique association
ends can be used to define a useful graph transformation
for the schema in figure 2. If a File includes a HeaderFile
more than once, the redundant includes should be deleted.
Currently, Fujuba does not support these kinds of rules. The
link is matched only once and then deleted. As a result, all
inlude links will be removed.

In the case of ordered, non-unique association ends (se-
quences), multi-links might ostensibly allow to distinguish
both links using multilinks. But a closer look to the gener-
ated source code in combination with the implementation of
the related collection class reveils that in the general case,
the multi-link cannot be matched.

]success[]failure[

A::isUnique (): Boolean

b

a

this
a

b

B:b
ab

ab

{...}

truefalse

Figure 4: Detect non-unique links

Consider the example in fig. 4, and the resulting generated,
but slightly condensed source code in fig. 5. The rule tries
to detect two different links of the same ordered association
between the same objects a and b. According to [13], p.

103, this should be possible: ”..., in case of sorted or qual-
ified associations there may exist multiple edges with the
same label connecting nodes n1 and n2 as log as they carry
different values for their index i or their qualifier q.” We be-
lieve, that ”sorted” in fact means ”ordered”, has sorted as-
sociation ends are implemented using FTreeSets rather than
FLinkedLists and hence no indices exist.

public boolean isUnique()
{

boolean fujaba__Success = false ;
B b = null ;
Iterator iterB = null ;

try {
fujaba__Success = false ;

// multilink bind b : B iMultiLinkSearchNormTop
iterB = this.iteratorOfB() ;
while (!fujaba__Success && iterB.hasNext()) {

try {
b = (B) iterB.next () ;

// check To-Many-Link ’b’ between this and b
JavaSDM.ensure (this.hasInB(b)) ;

// check multilink b to b
JavaSDM.ensure (this.isBeforeOfB (b, b)) ;

fujaba__Success = true ;
// iMultiLinkSearchNormBottom

}
catch (JavaSDMException e) {
} // try catch

} // while OOVariable[B,OOVariableType[12],]
}
catch (JavaSDMException e) {

fujaba__Success = false ;
}

if (fujaba__Success) {
return (false) ;

}
else {

return (true) ;
}

}

Figure 5: Source code for fig. 4

The crucial part is the call A.isBeforeB(b,b). Tracing the
call, it results in another call of FLinkedList.isBefore(b,b)
(cf. fig 6), which obviously results in false, if left and
right are identical as in this case, as indexOf(b) always
finds the first occurence of b. The rule would probably work,
if a method like nextIndexAfter(b,b) would be invoked for
the second argument.

//returns true if left object is before right object
public boolean isBefore (Object left, Object right)
{

return (indexOf (left) < indexOf (right));
}

Figure 6: Source code for FLinkedList.isBefore(l,r)

As a result, association ends in Fujaba must always be unique
with respect to the current implementation. Even the excep-
tion of ordered associations mentioned in [13] seems not to
be implemented correctly. So dealing with non-uniqueness

Fujaba Days 2005 28

requires modifications to Fujaba’s graph model, although
the precise impact is still under investigation. In case of or-
dered, non-unique association ends, this only seems to be a
matter of improving the implementation of access methods.
In case of unordered, non-unique association ends however,
the formal definition of graph model would be affected. This
does not necessarily mean to give edges an identity, but we
would at least have to count plain links of the same edge
type between identical nodes (LC), like

E ⊂ N × EL× I ×Q× LC×N (2)

The semantics of the rule in fig. 3 would be, that there is
at most one tuple for every pair of instances of File and
HeaderF ile, with a number c on the last but one position,
representing the number of links. The rule matches, if such
a tuple exists for this and hf and c > 1. After the transfor-
mation, the tuple is modified and c′ = c− 16.

5. BRINGING SDM AND JMI TOGETHER
The Java Metadata Interface (JMI) [3] is a standardized
mapping of MOF compliant meta models onto Java. As the
Java representation of MOF it specifies the generation of
tailored interfaces for the creation and access of meta data
as well as a set of reflective interfaces for a unified discovery
of meta data. Furthermore, a JMI compliant meta model
has to provide XMI [11] import and export functionality to
facilitate an easy exchange of meta data. JMI compliant
meta models can be implemented through various strategies
and technologies. An implementation is compliant to the
standard as long as the interfaces are met. The standardized
interfaces facilitate an easy exchange and adaptation of meta
models which make JMI a beneficial standard.

Thus, for the purpose of MOF based graph transformation
JMI is the appropriate choice. Currently, MOFLON is able
to generate an JMI compliant implementation for MOF 2.0
compliant (meta) models. Future versions will be able to
complete that static implementation with the code which is
generated by Fujaba SDM. The static part of the generated
meta models will be generated by MOFLON’s code genera-
tor and the dynamic parts with the graph rewriting engine of
Fujaba. The current version of Fujaba uses proprietary Java
interfaces for the static model representation (e. g. for multi
valued association ends as listed in Table 1) which are used
by Fujaba’s graph tranformation. An utilization of Fujaba’s
graph transformation engine for the needs of MOF affords
first of all a mapping between the interfaces generated by
Fujaba and the interfaces demanded by JMI.

5.1 Mapping of Fujaba’s interfaces on JMI
The major differences7 between JMI and the code generated
by Fujaba consist in the different handling of packages, class
and association instances. These are differences on a large

6In the practice, this association should be ordered, as it
matters which include has to be removed. But we decided
not to introduce another example to discuss multi-relations
here.
7The following comparison relates to the tailored (typed)
interfaces of JMI because the reflective interfaces can easily
be mapped on the tailored interfaces.

scale, but with just a limited impact on Fujaba’s code gen-
eration as the static structure of the code will be generated
by MOFLON. The most relevant parts concerning the dy-
namic implementation are the instantiation and deletion of
class and association instances as well as the possibilities to
navigate on the instance level.

Table 1 gives an exemplary overview how the mapping for
the relevant parts might look like. For instance, JMI de-
mands a more complicated class instantiation based on proxy
classes representing the meta class. From the view of a code
generator, the instantiation by calling a factory method is
just syntactically overhead compared to the direct instan-
tion using the new operator. The mapping for the deletion
of instances and for single valued association ends is even
more simple since the methods in both interface variants are
nearly or even exactly the same. Multi-valued association
ends are treated in JMI by making use of Java’s Collection
interface. Thus association ends are treated like ordinary
attributes.

This feature reduces the interface to one single method but
provides even more functionality through the Collection in-
terface than the expanded interface generated by Fujaba
does. There are other implementation concepts [6] that also
reduce the interface to a single method. The main differ-
ence is that in [6] the links are stored in generic association
end objects by using Java reflection for the creation of the
backlink. In contrast, MOFLON generates a class for each
association which centrally maintains the backlinks by using
a listener concept. Due to the centralized storage the usage
of Java reflection is not necessary. Nevertheless, the map-
ping still is no problem at all since each method of Fujaba’s
interface has a counterpart in the Collection interface. In the
case of an ordered multi-valued association end8 Fujaba gen-
erates convenience methods that do not have a counterpart
in the List interface which JMI uses for ordered association
ends. Those are methods that operate relative to the posi-
tion of another linked object (e.g. addBeforeOfX). They will
have to be replaced by an additional workaround of that
parts of the implementation which use the non-mappable
methods.

Considering navigability, some further aspects have to be
taken into account. In terms of Fujaba, every association
in MOFLON is navigable. The difference is, that navigable
associations in MOFLON can be accessed as described in
Table 1, whereas non-navigable associations can only be ac-
cessed by using the class representing the association. As a
consequence, the call for accessing associations is expanded
in such a way that the class representing the association
has to be fetched from the package extent. After that, the
handling of association instances is the same as for naviga-
ble associations. In general the interface mapping does not
cause major problems at all.

5.2 Code generation for MOF 2.0
There are five major aspects that have to be considered as
already mentioned in section 3. The package merge as one of
the most significant features of MOF 2.0 demands no change
in Fujaba’s code generation subsystem for graph transfor-

8The listing of that case is omitted.

29 Fujaba Days 2005

Fujaba JMI
new Class() package.getClass().create()
removeYou() refDelete()

0..1 getX () getX ()
setX (..) setX (..)

0..n getX ().
java.util.Collection

addToX (..) add(..)
addAll(..)

removeAllFromX () clear()
hasInX (..) contains(..)

containsAll(..)
equals(..)
hashCode()
isEmpty()

iteratorOfX () iterator()
removeFromX (..) remove(..)

removeAll(..)
retainAll(..)

sizeOfX () size(..)
toArray()
toArray(..)

Table 1: Comparison of code generated by Fujaba
and JMI

mation since both kinds of package merge can be unfolded
into regular model instances. After the process of unfold-
ing the model instance is free of any package merges. A
preprocessor which is part of the MOFLON/Compiler will
execute this task directly before code generation. Thus the
graph transformation will not even notice the existence of a
package merge. After the code generation all changes in the
meta model instance will be rolled back to prevent changes
in the model due to the process of code generation.

Beside the package merge the subsetting and redefinition of
association ends are major differences between Fujaba and
MOF 2.0. Subsetting and redefinition are specified on the
instance level and therefore potentially relevant for graph
transformation. The subsetting of association ends causes
instances of the subsetting association to be part of the ex-
tent of the subsetted association. Thus, the dynamic se-
mantics of an ordinary subsetting do not cause any kind of
restriction. The combination with union respectively with
derivation in general at least demands a static analysis,
which we have already discussed in section 3.

By definition, the redefinition of association ends causes the
redefining and the redefined association end to share exactly
the same set of links. Due to this constraint the instantiation
of the redefined association is restricted. That restriction
demands a runtime analysis to prevent forbidden instanti-
ations as we will demonstrate using the CProject example.
In Fig. 2 the redefinition of the association end file by the
association end providedFile prevents an instance of associ-
ation has between an instance of class IncludeFolder and an
instance of class File since the collections of the association
end file and providingFile for a given instance of Include-
Folder need to be the same. Thus, a rule as depicted in Fig.
7 may not be executed in the case that the rule is matching

an instance of class IncludeFolder with an element which is
not of type HeaderFile, whereas an execution in any other
case does not cause any problems. Note, that the general
rule defined for the package FileSystem is interfered by the
more special package CProject. But such a case can only
be detected during runtime and not by static analysis. In
our opinion, wrong usage of redefined association ends is a
specification error and should result in a runtime exception.

Figure 7: A general rule affected by redefinition

Other features whose compliance can only be checked at
runtime are the upper and lower bounds of association ends
and the composite constraint. Currently, Fujaba ignores the
dynamic semantics of those features, whereas MOFLON at
least tries to keep models consistent by deleting those ob-
jects whose lower bounds and composite constraints are not
met. Such a solution guarantees consistent meta model in-
stances in cases without an automated transformation. Dur-
ing automated transformation temporary inconsistent meta
model instances might be desirable. Therefore, in future ver-
sions a sophisticated constraint evaluation mechanism com-
bined with repair actions comparable to similar concepts in
PROGRES [8] will control the compliance of any kind of
constraint. This mechanism will keep the graph rewriting
engine free of any contact with constraints.

A last aspect that has to be considered is the different usage
of MOFLON’s kinds of associations. Since both associations
and (mutual) references in MOFLON are mapped on asso-
ciations in Fujaba, stereotypes have to be used to control
Fujaba’s code generation regarding the usage of different
code variants for associations. The code generation needs
to be flexible enough to take this aspect into account.

6. SUMMARY
In this paper, we have discussed the implications of using
MOF 2.0 as schema language for Fujaba graph transforma-
tions. This adaption involves some modifications of differ-
ent parts of Fujaba which are summed up in Table 2. As
already indicated in [13], the introduction of unique associ-
ation ends requires modifications of the graph model. Fea-
tures like union require additional statical analysis rules,
whereas others (e.g. redefinition) demand an analysis dur-
ing runtime. The remaining features are already covered by
our implementation of the MOF meta model.

Fujaba Days 2005 30

SDM SDM MOF
Editor Compiler Compiler

Packages static
√

preprocesing
analysis

Attributes
union static

√ √

analysis
subset

√ √
runtime

propagation
redefines

√
(
√

) runtime
runtime propagation

exeception
handler

unique
√

?
√

ordered
√

?
√

Navigability
√

parameterized
√

code generator
templates

Composition flexible constraint checking
Multiplicity and repair action concept

Table 2: Impacts of the adaption of MOF 2.0

Apart from the ongoing effort to integrate MOF 2.0 in the
Fujaba 5 main branch, the next steps from our point of view
are the integration of OCL constraints with repair actions
and triple graph grammars [5]. Besides, we have to put some
more effort in the correct implementation of namespaces de-
fined by packages.

7. REFERENCES
[1] C. Amelunxen. Building a MOF 2.0 Editor as Plugin

for FUJABA. In A. Schürr and A. Zündorf, editors,
FUJABA Days 2004, volume Technical Report
tr-ri-04-253, pages 43–47. Universität Paderborn, 2004.

[2] C. Amelunxen, A. Königs, T. Rötschke, and
A. Schürr. Adapting FUJABA for Building a Meta
Modelling Framework. In H. Giese and A. Zündorf,
editors, FUJABA Days 2003, number tr-ri-04-247 in
Reihe Informatik, pages 29–34. Universität Paderborn,
2003. Technical Report.

[3] R. Dirckze. JavaTMMetadata Interface (JMI)
Specification, Version 1.0. Unisys, June 2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] A. Königs and A. Schürr. Tool integration with triple
graph grammars - a survey. Electronic Notes in
Theoretical Computer Science, 2005. Submitted for
publication.

[6] T. Maier and A. Zündorf. Yet Another Association
Implementation. In A. Schürr and A. Zündorf, editors,
FUJABA Days 2004, volume Technical Report
tr-ri-04-253, pages 67–72. Universität Paderborn, 2004.

[7] M. Matula. NetBeans Metadata Repository. SUN
Microsystems, March 2003.

[8] M. Münch, A. Schürr, and A. Winter. Integrity
constraints in the multi-paradigm language progres. In
Proc. 6th International Workshop on Theory and
Application of Graph Transformations TAGT,
Paderborn, volume 1764 of Lecture Notes in Computer
Science, pages 338–351, Heidelberg, 2000. Springer
Verlag.

[9] Object Management Group. Meta Object Facility
(MOF) 2.0 Core Specification, March 2003.
ptc/03-10-04.

[10] Object Management Group. Unified Modeling
Language: Infrastructure, Version 2.0, September
2003. ptc/03-09-15.

[11] Object Management Group. XML Metadata
Interchange (XMI) Specification, Version 2.0, May
2003. formal/2003-05-03.

[12] T. Rötschke. Adding Pluggable Meta Models to
FUJABA. In A. Schürr and A. Zündorf, editors,
FUJABA Days 2004, volume Technical Report
tr-ri-04-253, pages 57–62. Universität Paderborn, 2004.

[13] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.
Habilitation Thesis.

31 Fujaba Days 2005

Fujaba Days 2005 32

Detection of Incomplete Patterns Using FUJABA Principles

Sven Wenzel
Tampere University of Technology, Finland

University of Dortmund, Germany
email@svenwenzel.com

ABSTRACT
An approach for the detection of structural patterns in UML
class diagrams is presented. It picks up some principles of
the reverse engineering component of Fujaba, such as a
hierarchical pattern definition and an alternating bottom-
up/top-down analysis. Furthermore it uses a fuzzy-like eval-
uation mechanism so that it is able to recognize not only
entire patterns but also incomplete instances.
The knowledge about incomplete instances, which obviously
occur rather often during the developing process, assists de-
velopers not only while maintaining or reverse engineering
existing software but already while designing and imple-
menting new software.

1. INTRODUCTION
Since software systems become larger and more complex,
the task of understanding while developing and especially
while maintaining software becomes more and more diffi-
cult. Therefore the use of patterns has become a helpful
methodology to develop software in a more structured and
understandable way.

In general, a pattern is a scheme that consists of three main
parts: a context, a problem, and a solution. They discuss
a particular recurring problem which arises in a particular
situation – the context. Furthermore they offer a proven
solution to this problem.

Several pattern families focus on different aspects of soft-
ware development and take place in the different stages of
the development process. The main interest within the de-
sign and implementation phases is directed towards those
patterns that focus on problems of software design. These
are behavioral patterns that focus on the run-time behavior
of software elements and structural patterns that concen-
trate on the structural arrangements of software elements.
Both types can be separated into more abstract and more
concrete problems.

Design patterns [1] are more abstract and focus on prob-
lems in object-oriented software in general. For example,
the Composite pattern describes how to compose several ob-
jects into a part-whole hierarchy with a uniform interface.
Specialization patterns [2] do not discuss general project-
independent problems, but focus on more specific topics
of concrete projects. They describe, for example, how to
extend a particular framework and support users in this
process.

It is well-known that the knowledge about patterns used in
a software helps the developer to get a better understanding
of it. Therefore, Fujaba [3] and other tools (see Section 7,
Related Work) offer mechanisms to detect pattern instances
in given software. Especially in maintenance and reverse
engineering the occurrence of the solution parts of particu-
lar patterns help the developer to understand the original
problems.

But the knowledge about used patterns – especially with re-
gard to structural patterns in general – assists the developer
already while designing or implementing new software. As
in maintenance and reverse engineering, the reason is a bet-
ter understanding, but the circumstances are quite different.
Since the software is currently in development, the likelihood
of partly instantiated patterns is rather high. However, the
knowledge about those incomplete patterns helps the devel-
oper and should not be neglected.

An example is the use of specialization patterns guiding a
developer while extending a framework. The patterns de-
fine the classes that have to be created, the interfaces that
have to be implemented, or the operations that have to be
overwritten, etc. Furthermore, architectural rules may be
defined as a pattern to enforce structural properties of the
developed software. The developer would like to check if
her design satisfies these architectural rules during develop-
ment and she also wants to have information about the work
progress, in other words, the tasks that have to be done.

Consequently, an approach for the detection of structural
patterns should be able to recognize these incomplete in-
stances as well as entire ones. A possible realization of the
detection of incomplete patterns based on the Unified Mod-
eling Language (UML) [4] is generally presented in [5] and
is also discussed on the next pages. It picks up some funda-
mental ideas of the Fujaba approach, such as a hierarchical
pattern definition and an alternating bottom-up/top-down
analysis. Furthermore it uses a fuzzy-like evaluation mech-
anism so that the introduced approach is able to recognize
not only entire patterns, but also incomplete instances.

Due to its parallels to Fujaba, this paper focuses on the
differences between this approach and the one underlying
Fujaba. The following Section 2 introduces the Fujaba
approach itself, while Section 3 discusses the characteristics
of incomplete pattern instances and the limits of Fujaba.
Sections 4 and 5 present an improved model for pattern

33 Fujaba Days 2005

definitions and the new recognition approach itself. The
implementation of this approach is discussed in Section 6.
Finally, Section 7 summarizes related approaches for pattern
detection and Section 8 summarizes current and future work.

2. DETECTION WITH FUJABA
Fujaba stands for “From UML to Java and back again”
and provides a round-trip engineering tool based on UML.
It allows developers to design and implement software both
visually and code-based. UML class and behavior diagrams
allow the formal definition of software design and run-time
behavior, while the source code is generated automatically
from the diagrams. In turn, changes in the source code cause
changes in the diagrams to keep the whole system consistent.

The reverse engineering component of Fujaba furthermore
offers a powerful tool to detect design patterns automati-
cally and gives thereby developers a better understanding
of the software they reverse-engineer with the Fujaba as
motivated in the introduction.

The detection mechanism itself [6] works on the abstract
syntax graph (ASG) of the investigated software, which is a
formal software representation eliminating most of the syn-
tactical variants and formatting problems. The mechanism
is based on graph grammars working on the ASG and the
patterns to be detected are defined by graph transformation
rules.

Each rule transforms a particular graph structure, i.e. a
pattern or a subpattern, and annotates it with an additional
node to indicate the found instance and additional edges to
indicate the participants of this instance. Accordingly, the
patterns are defined as compositions of other patterns or
structures.

As an example Figure 1 shows the transformation rule for
the generalization structure in Fujaba. The three nodes
and two edges on the right side represent a small extract
of the ASG that shows the inheritance between two classes.
The transformation rule annotates this structure as a gen-
eralization and indicates the super class and the sub class
as participants. Furthermore, it is possible to add optional
nodes to the rule. These optional participants of a pattern
are annotated, too, if they are found, but they are not nec-
essary for the pattern instance itself.

The annotation node is additionally tagged with two per-
centage values. The first value is the reliability expressing
how sure the pattern instance can be assumed, if the an-
notated participants are found. The second value provides
a threshold defining the minimal necessary reliability of all
subpatterns to mark the found pattern as an instance.

Once this generalization is found and annotated in the ASG,
larger patterns or structures using it can be detected. Figure
2 for example shows the rule for the Strategy design pattern.
It consists, among others, of the generalization structure.

All patterns and structures are organized in a graph that
shows the compositions of patterns and substructures and
builds a dependency hierarchy between them. Based on this
hierarchy the detection algorithm is able to find pattern in-

Figure 1: The generalization structure in FUJABA
(taken from [7]). The oval node indicates the gen-
eralization structure in the ASG. The edges refer to
the participants of the generalization.

Figure 2: The Strategy pattern in FUJABA (taken
from [7]).

stances, proceeding in an alternating bottom-up/top-down
analysis that annotates the ASG stepwise with new ele-
ments.

In the beginning all transformation rules of the lowest level
in the hierarchy are applied to the ASG, assuming that the
circumstances permit it. Then the algorithm starts in a
bottom-up strategy. It analyzes the rules applied to the
ASG, and also tries to apply the transformation rules of the
above patterns which depend on these rules. In the case
that a higher rule cannot be applied because one or more
prerequisites are missing, the algorithm switches to a top-
down analysis to apply the necessary rules. If these rules are
applicable, the algorithm applies them and switches back to
the bottom-up mode afterwards to proceed normally. In case
the necessary rules cannot be applied, the prerequisites of
the higher rule are missing. Thus the rule is not applicable
and the algorithm continues with the other rules in bottom-
up strategy.

3. INCOMPLETE PATTERNS
The detection algorithm of Fujaba does not apply a trans-
formation rule, if some of its prerequisites are missing, as it
is usual for a grammar-based approach. Thus, unsatisfiable
pattern candidates are eliminated immediately.

However, sometimes the pattern is formally not there, but
it is supposed to be there – either because parts of the pat-
tern are missing or because some properties are wrong. If
the strategy class is not defined as abstract, for example,
the whole pattern would not be detected, even though it is
actually there.

Of course, if we talk about patterns that are described in a
formal and precise way, the instances of those patterns have

Fujaba Days 2005 34

to be precise as well. However, the absence of some condi-
tions does not necessarily mean a nonexistence of the pat-
tern, but it can mean the incompleteness of the pattern in-
stance. Especially while developing new software, this kind
of incomplete instances occurs rather often. To refer to the
last example, the developer had just not marked the strategy
class as abstract yet.

According to the fact that pattern instances might exist even
if some of their conditions are not totally satisfied or some
of their roles are missing, a detection mechanism should be
able to deal also with these incomplete instances. The first
step in that direction is already given by the optional nodes
of Fujaba. In this case each pattern is defined several times
– each time with different nodes marked as optional. This
procedure might end up in a cumbersome task for the user
and provides furthermore insufficient information about the
quality of found instances. Therefore, the following sections
present a new approach that provides a mechanism to deal
with incomplete instances.

4. ROLE-BASED PATTERN DEFINITION
Since the new approach focuses on the search of those in-
complete instances that cannot be found with Fujaba, it
avoids the use of grammar-based mechanisms. Thus, the
patterns are not expressed as transformation rules, but a
pattern definition is used that is applicable to the detection
of incomplete patterns, so that the absence of some parts or
properties can be easily reflected to the pattern definition.

Detached from the pattern type, the solution part of a struc-
tural pattern defines an arrangement of software elements to
solve a particular problem. However, the problem itself is
not of interest here and the arrangement of software ele-
ments is rather a template than a combination of concrete
software elements. These template elements are called roles.
They are placeholders which can be taken from concrete el-
ements in the instance of the pattern. Each role has a type
(e.g. classifier or association) to determine the kind of soft-
ware elements that can act as the role. Since software el-
ements allow the nesting of other elements, each role may
contain several subroles representing nested elements as the
patterns in Fujaba allow the nesting of subpatterns.

However, the existence of roles and their nesting relations
in between is not sufficient to express complex arrangements
of software elements, so that roles can be enhanced by con-
straints. These constraints are given in the Object Con-
straint Language (OCL) [4, Chap. 6] and enforce certain
properties of the concrete elements acting as the role. They
define, for example, visibility or stereotype properties. Fur-
thermore they may refer to other roles to express particular
relations like inheritance or parameter types.

By default every role has to be played exactly once in a
pattern instance, but it is possible to define multiplicities
to give limitations for the amount of elements acting as a
role in a pattern instance. The multiplicity provides a lower
and an upper range as it is done for association ends in
UML. A lower range of zero makes a role optional and an
infinite upper range allows as many elements acting the role
as possible.

Figure 3: The Strategy pattern pictured as (1) a
UML class diagram (from [1]) and (2) as a role-based
pattern definition. In this example the pattern is
extended by an operation for registering a strategy.

An example for the role-based representation is shown for
the Strategy pattern in Figure 3. Each element of the UML
class diagram describing the pattern like in [1] is translated
to a role. The type of the UML element determines the
type of the role. Child elements (e.g. parameters of op-
erations) become subroles and properties of elements (e.g.
abstraction or inheritance) are replaced by constraints for
the corresponding role.

The graphical notation for the pattern definition used in
this article is a UML object diagram extended by some fea-
tures of UML class diagrams. Object nodes represent roles
– labeled with the name and the type of the role, separated
by a colon. Aggregations express containments of subroles
and constraints are represented by notation elements. For
dependencies between roles dashed arrows are used. Note
that the constraints are given informally to simplify the di-
agram. Usually they are expressed in OCL like for example
context:TypedElement inv:self.type=... instead of “is
of type”.

5. THE NEW DETECTION APPROACH
The previously presented pattern definition has its advan-
tages in its notation and in its structure that can be trans-
formed to a hierarchy as the one in the Fujaba approach.

The notation based on a UML object diagram describes ex-
actly what to search for. The developer wants to find an
object of the type class that acts as the context role (cf.
Figure 3). Furthermore this class object should contain an
operation object that acts as the register operation. This
operation object again should contain a parameter and so
on.

This situation of picking elements for particular roles can
be compared to a casting for a theater play. Result of the

35 Fujaba Days 2005

search is a set of mappings between particular roles and
the elements acting as these roles, whereas the elements are
called candidates and the whole set is called a cast. The
single mapping between one role and a candidate for this
role is called a binding ; it binds a candidate to its role.

Each binding is associated with a quality value that ex-
presses how well the candidate acts as the role. As in the
world of theater there will exist several candidates for a par-
ticular role or one candidate for several roles, however, in
each case the role is treated with a different quality. There-
fore the algorithm does not bind candidates to roles by sim-
ple yes-or-no decisions, but rather uses assignments with
intermediate values similar to those usual in fuzzy-logic.

These intermediate values are expressed in the quality of a
binding. The quality values range between 0% and 100%.
The value is zero, if the candidate cannot act as the role
at all; 100% means that the candidate satisfies all of its re-
quirements. The value itself is calculated by the constraints
and the subroles.

Generally it is possible to create every binding right from
the start, because if there is a role of type class, every class
could be a candidate for this role. Even if all constraints and
subroles are unsatisfied, it is still a class and consequently
a candidate for this role. This technique will obviously end
up in an unmanageable set of bindings and has to be more
organized.

Here the second advantage of the role-based pattern defini-
tion comes into play. The roles can easily be classified into a
dependency hierarchy like the one in the Fujaba approach
to improve the binding process. This classification is the first
phase of the detection algorithm. Then the detection pro-
ceeds with a bottom-up/top-down analysis. Different from
the Fujaba approach, the bottom-up and top-down strate-
gies do not alternate several times during the detection of a
pattern, but only once. Therefore, they can be regarded as
the second and third phase. The bottom-up phase locates
all candidates for each role and is hence comparable to the
bottom-up phase of Fujaba that marks subpatterns by an-
notating them. The successive top-down phase selects the
best candidates for the searched pattern. Similar to Fujaba
it thereby validates the pattern instance.

5.1 Classifying Phase
The definition of the pattern is a graph of roles connected
by child or dependency relationships. The child relation-
ships can also be considered dependencies because an ele-
ment should act as a particular role only if also its children
act as the corresponding subroles.

Thus, the graph can be sorted by those dependencies to
organize the roles into different levels (see Figure 4). The
lowest level contains all roles that have no dependencies to
other roles. Every next level contains all roles that have de-
pendencies only to roles from the lower levels. The highest
level contains only one virtual role that represents the pat-
tern itself. It depends on its children – the main roles of a
pattern.

The generated hierarchy is the basis for the detection simi-

Figure 4: The ordered role graph of the Strategy
pattern. The roles are arranged on different levels
based on their dependencies which are either caused
by constraints or parent-children relationships.

lar to the one in the Fujaba approach. If the hierarchy is
processed level-by-level from the bottom to the top as it is
done in the bottom-up phase, it is ensured that supplying
roles are always checked before their clients.

5.2 Bottom-Up Phase
The bottom-up phase searches the candidates for each role.
It starts with the roles at the lowest level of the beforehand
generated hierarchy, as they are independent from any other
role.

In the beginning the algorithm locates all elements from the
model, which can act as the particular role by their type and
creates a temporary binding. Different from the procedure
in Fujaba, the binding process does not pay any attention
to the constraints or prerequisites here. Thus, in our exam-
ple every operation of the entire model could act as the role
AlgoInterface (cf. Figure 4) and for each of those operations
a temporary binding is created. Indeed, this procedure will
cause a huge amount of bindings. If r roles are bound to n
model elements, the number of bindings equals the variation
of r out of n elements regarding the order and allowing re-

peats, which is V
(r)

n = nr. However, this is an upper limit,
since the problem is divided into several smaller variations,
as for example class roles are only bound to classes. The
method might still be inefficient for large software models,
but two arguments legitimate this lack of efficiency. First,
the approach is supposed to be applied on UML models
during the design phase. Thereby a natural limitation of
elements can be assumed as the models are developed by
human beings. Second, the developer is especially inter-
ested in incomplete instances and thereby it is necessary to
investigate each part of the model in detail. Too fast an

Fujaba Days 2005 36

elimination of candidates could cause an overlooking of pos-
sible instances.

Once a role is temporarily bound to elements, the con-
straints assigned to the role are evaluated for the bound
element, because the element type is not the one and only
criterion for bindings. In contrast to the idea in Fujaba,
the constraints do not determine the applicability of bind-
ings, but rather their quality, because also partially satisfied
bindings are of interest. Thus, the evaluation of a constraint
results in a value between 0% and 100% expressing how well
the constraint is satisfied. The value of a simple constraint,
e.g., “is abstract”, is 100% in case of satisfaction, 0% oth-
erwise. A more complex constraint may also return inter-
mediate values if it is satisfied partially. An example is a
naming constraint where only the prefix of the name fulfills
the requirements.

If a role of the lowest level has no constraints at all, there are
no constraints to assess the binding and it is taken as fully
satisfied. Otherwise the quality of the binding is reflected
by the average quality of the constraints. Thus the mean of
all constraint evaluation results is calculated and taken as
the quality of the binding:

q(b) =
1

|C| ·
|C|X

i=1

eval(Ci) if |C| > 0 (1)

whereas q(b) is the calculated quality of a binding b, C is
the set of constraints, and eval(Ci) is the evaluated quality
of the constraint with index i.

After all the roles of the lowest level have been bound and
their constraints evaluated, the algorithm continues with the
roles from the next higher level. In contrast to the bottom-
up strategy of Fujaba, the bottom-up phase of this ap-
proach does not only process the clients of the previously
processed role, but all roles of the next level.

Constraints of roles from all levels higher than zero depend
on other roles. Thus, the returned value of the constraint
evaluation is dependent on the quality of the binding re-
ferred to by the constraint. An example is the constraint
evaluation of Implementation (cf. Figure 4): The overrides
constraint defines that the operation bound to Implemen-
tation has to override an operation bound to AlgoInterface.
The evaluation returns 0%, if the operation found does not
override another operation at all or the overridden opera-
tion is not bound to AlgoInterface. Otherwise it returns
the quality of the binding between the overridden operation
and the role AlgoInterface which should be overridden here.
Since this binding has a particular quality, the constraint is
satisfied by this quality.

Furthermore, the roles from all levels higher than zero may
contain also subroles. Each of those subroles, Si, can be in-
terpreted as a constraint “has a child of type Si”. Thereby,
missing subroles do not eliminate a candidate, but they re-
duce its quality. Consequently, the calculation of the quality
is extended by those subroles S, which are handled in the

same manner as additional constraints.

q(b) =
1

|C| + |S| ·
|C|X

i=1

eval(Ci) +
1

|C| + |S| ·
|S|X

i=1

q(Si) (2)

whereas S is the set of subroles of the role of the binding
b (i.e. the currently analyzed) and q(Si) is the quality of
the binding found for subrole Si. The other variables and
functions are equal to the ones in equation (1).

These subrole constraints are calculated like those constraints
depending on other roles – here, the subroles. If no candi-
date for the subrole (i.e. a child element in the model) is
found, the constraint is treated as 0%. Otherwise it has the
quality of the binding of the candidate found.

The algorithm traverses upwards the dependency graph from
level to level as described above and for each role new tempo-
rary bindings are created and evaluated. Unlike in Fujaba,
the algorithm does not change to the top-down phase, since
all roles are processed level-by-level and consequently the
necessary suppliers for each binding are calculated before-
hand.

All unsatisfied bindings (i.e. those with a quality of 0%)
are deleted. The other bindings, which satisfy at least some
constraints or subroles, are stored in a cast for the later top-
down phase. Thereby, the threshold for keeping and deleting
bindings can optionally be changed from zero to any other
value. For example, to 50% to keep only bindings which
are half satisfied. Choosing 100% would yield a detection of
complete patterns.

The result of the bottom-up phase is a set of bindings from
roles to different elements. Each binding has a particular
quality that expresses how well the role is acted by its ele-
ment.

5.3 Top-Down Phase
The detection algorithm switches to the top-down phase
when the virtual role representing the pattern is reached
(i.e. the role of the highest level). The cast generated so
far contains a lot of bindings that are not necessarily part
of a pattern instance, especially if the threshold was set to a
small value or zero. These bindings are called false bindings
and are filtered out in this phase of the algorithm.

Therefore the original pattern definition is now handled as
a role tree by taking the child relationships as edges and the
virtual role of the pattern as the root. Different from the
dependency graph, the dependencies are not taken as edges,
they just give the information how many clients a role has.

This role tree is now traversed downwards in a breadth-first
search order. For each role the binding with the highest
quality is selected to be kept in the final cast. In case of
equal qualities of multiple bindings for a role it is checked
which binding is supplier for other bindings. Bindings with
more clients than others are preferred. Also the information
about other roles acted by the element of the binding is an-
alyzed. It might be that an element that acts as the current
evaluated role is the only candidate for another role. Espe-
cially if an element is supposed to act as only one role at a

37 Fujaba Days 2005

time, it has serious consequences for which role the element
is taken.

During the entire procedure the child relationships of the ac-
tual elements in the investigated model are considered and
thus only the children of a particular element in the model
can act as the subroles of the role of that element. Further-
more the role multiplicities are considered in a way that roles
with an upper range greater than one allow the selection of
a suitable amount of bindings.

The top-down phase results in the cast that contains all
bindings representing an instance of the searched pattern.

5.4 Several Pattern Instances
The usage of graph grammars in the Fujaba approach sup-
ports the detection of multiple pattern instances a priori,
because the transformation rules can annotate the ASG at
several locations, once for each pattern instance.

Consequently, this support for finding multiple pattern in-
stances has to be added to the new algorithm. If taken as
presented, the algorithm would just result in one pattern
instance found. It would be the most satisfied one; however,
the developer is interested in all instances.

Therefore, the bottom-up phase is accompanied by an as-
signment procedure that maps the found bindings to possi-
ble pattern instances with respect to the fact that one bind-
ing can occur in several overlapping patterns. For example,
a model contains different Contexts that use the same Strat-
egy.

Each newly found binding either belongs to a new pattern in-
stance that has not been touched so far, or it belongs to one
that has already other bindings assigned. Thus, each bind-
ing is assigned to a new pattern instance, or, if the binding
has relationships to other bindings (i.e. children or depen-
dencies), it is mapped to the same instances those related
bindings belong to. If the role AlgoInterface for example is
bound, the binding is assigned to a new pattern instance,
because it has no dependencies. Whereas the binding of
Strategy belongs to the same pattern instance as the bind-
ing of its child (i.e. the AlgoInterface operation) belongs
to.

These assignments between bindings and pattern instances
are later respected in the top-down phase. The phase is not
performed only once, but for each possible pattern instance.
The top-down analysis thereby consults only those bindings
that belong to the currently investigated pattern instance.

Once again, a predefined threshold ensures that dispensable
pattern instances are deleted. For example, a binding has
been assigned to a pattern instance but it has never been
referred to by another binding; obviously this instance con-
taining one binding only is not very promising. The default
value is set to 50%. Of course, a threshold of 100% would
just keep complete instances.

With respect to the assignments between bindings and pat-
tern instances, the algorithm results in a set of casts for
different pattern instances. Each found pattern instance is

Figure 5: An exemplary result of the new approach
detecting the Strategy pattern.

annotated with a quality value, in the same way as the qual-
ities of single bindings. Figure 5 shows an exemplary result
of the new approach detecting the Strategy pattern in a class
diagram. Two instances have been found; one with a qual-
ity of 100% and another one with a quality of 75%, since
its role ContInterface is missing. Both instances share the
same Strategy. A third possible instance has only a quality
of 43% and does not reach the threshold, since the Register
role is missing and the abstraction constraint is unsatisfied.
Of course, there are also a lot of other instances containing
one element only.

In contrast to Fujaba, the result of this approach is enriched
with the information about incomplete pattern instances.

6. IMPLEMENTATION
The previously introduced approach has been implemented
as a layered architecture to keep it as independent as possi-
ble from any particular semantics of the investigated models.

The core algorithm works just with semantic-less objects.
The only assumption made is that the models on which it
works have a compositional structure, so that the parent-
children relations of the roles are reflected in the model.
That way the bottom-up and top-down phases of the algo-
rithm can work independently from the model by using an
adapter encapsulating the model access.

Since the adapter hides the semantic-specific implementa-
tions, the algorithm can request the parent of an element
regardless of the element being an operation nested by a
class or a class nested by a package. The handling of con-
straints is also processed by this semantics adapter. Thereby
it is possible to provide different types of constraints, check-
ing for instance stereotypes in UML diagrams which is un-
practical for Java code. Furthermore the usage of adapters
supports different evaluation methods, so that for example
the OCL interpreter working on class diagrams is differently
implemented than the one working on syntax graphs.

As shown in Figure 6, the search engine itself takes just the
pattern definition as an input. This definition consists of
roles and constraints and is consequently independent from
any specific pattern type. The roles themselves just know
their relations to other roles and store the information on
assigned constraints. Furthermore, they know the element
type they can be bound to. Only the constraints are re-
lated to the model semantics and are therefore placed on
the second level.

Fujaba Days 2005 38

Figure 6: The introduced approach has been imple-
mented as a layered architecture.

So far, the semantics have been implemented only for UML
class diagrams. The Eclipse UML2 project [8] provides the
basis for representing the models and the implementation of
the semantics layer works directly on these models. Most
of the constraints have been realized on basis of OCL us-
ing the Kent OCL Library [9]. Simple boolean OCL ex-
pressions allow to check if a particular property is satisfied,
e.g., context NamedElement inv: visibility=’public’.
Other OCL expressions can return an element of the model
that is checked to be bound to a particular role, like context
Class inv: self.generalization.general= [Strategy]

to check inheritance. Naming and stereotype constraints use
proprietary implementations that allow regular expressions.

A graphical user interface is not provided so far. Hence,
the visualization of patterns and their instances in a class
diagram is not given. The current implementation is rather
a library providing the search mechanism to be integrated
in other tools.

7. RELATED WORK
Obviously the Fujaba Tool Suite RE is the most related
approach to detect patterns, as some basic ideas have been
reused in the introduced approach, even if Fujaba focuses
on detection of complete pattern instances. So far the Fu-
jaba approach concentrates on structural patterns, but the
support for behavioral patterns is already researched [10].
Among Fujaba, there exist a lot of other solutions noted
for automated detection of design patterns while maintain-
ing or reverse engineering software.

Heuzeroth et al. [11] present an approach based on predi-
cate logic. It operates in two phases and is able to detect
behavioral patterns as well. First, candidates for pattern
instances are searched with the help of predicates in a static
analysis. Second, the runtime behavior is analyzed to check
if the expected behavior for the candidates is satisfied.

An approach based on software metrics is presented by Anto-
niol et al. [12]. It calculates class level metrics and compares
them to a previously defined catalog of pattern metrics.

Keller et al. [13] deal with an intermediate representation
of source code. It is held in a design repository that is
based on a relational database and provides storage as well
as querying of abstract design components that are in fact
nothing else than pattern definitions.

Krämer and Prechelt [14] present an approach based on
PROLOG. Both, design patterns and software designs, are

expressed in PROLOG terms. The search for patterns is
then done by the PROLOG engine.

An approach to detect design patterns with relational al-
gebra is researched by Fronk and Berghammer [15]. Design
patterns and structural information of a software system are
expressed in relational terms. A relational calculator is used
to solve the relational equations and recognizes the pattern
instances.

8. CURRENT AND FUTURE WORK
The current work focuses on the integration of the search
engine into MADE [16], an architecting tool that assists de-
signers to define pattern-based architectures and developers
to instantiate them. The knowledge of incomplete instances
will assist the developer and allows the tool to process some
tasks automatically.

As part of this integration it is aimed to allow a manual
definition of bindings. Thus the users are able to assign el-
ements to roles by themselves and the tool finds the related
roles or reports their absence respectively. Furthermore, the
integration of the new approach into the tool will allow em-
pirical case studies to prove the usability in industrial-size
software systems.

One future objective will be the extension to semantics of
programming languages, such as Java. This would increase
the possible field of application of this approach, especially
in reverse-engineering. A realization by using the abstract
syntax graph of the source code would yield in a solution
that might be integrated into Fujaba.

However, the main future objective is continual improve-
ment of the search engine itself. The possibility to assign
single constraints with weights will allow a more precise
pattern definition, as some roles or constraints are more im-
portant than other ones. Furthermore it is planned to add
support for behavioral patterns. In case of handling them as
well as structural patterns the possible field of application
will be increased much more.

9. ACKNOWLEDGEMENTS
The approach has been developed as part of the author’s
diploma thesis, written in cooperation between the Tam-
pere University of Technology, Finland, and the University
of Dortmund, Germany. The thesis is funded financially
by the Martin-Schmeißer-Stiftung of the University of Dort-
mund.

10. REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[2] Markku Hakala, Juha Hautamäki, Kai Koskimies,
Jukka Paaki, Antti Viljamaa, and Jukka Viljamaa.
Annotating reusable software architectures with
specialization patterns. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture
(WICSA’01), pages 171–180, Amsterdam, August
2001.

39 Fujaba Days 2005

[3] FUJABA Tool Suite Developer Team - University of
Paderborn. FUJABA Tool Suite.
http://www.fujaba.de/, June 2005.

[4] The Object Management Group. Unified Modeling
Language Specification – version 1.5
(formal/03-03-01). Online at
http://www.omg.org/uml/, March 2003.

[5] Sven Wenzel. Automatic detection of incomplete
instances of structural patterns in UML class
diagrams. In Proc. of the 3rd Nordic Workshop on
UML and Software Modeling (NWUML’05), Tampere,
Finland, August 2005. [to appear].

[6] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar
Wendehals, and Jim Welsh. Towards pattern-based
design recovery. In Proc. of the 24th ICSE’02, pages
338–348, Orlando, Florida, USA, May 2002.

[7] Lothar Wendehals. Cliché- und Mustererkennung auf
Basis von Generic Fuzzy Reasoning Nets. Diploma
thesis, University of Paderborn, Germany, October
2001.

[8] Eclipse Foundation. Eclipse UML2 Project.
http://www.eclipse.org/uml2/, June 2005.

[9] Dave Akehurst and Octavian Patrascoiu. Kent OCL
Library. http://www.cs.kent.ac.uk/projects/ocl/,
June 2004.

[10] Lothar Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Proceedings of the
ICSE’03 Workshop on Dynamic Analysis
(WODA’03), Portland, USA, May 2003.

[11] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and
Welf Löwe. Automatic design pattern detection. In
Proc. of the 11th IWPC’03, pages 94–103, Portland,
Oregon, USA, May 2003.

[12] Giuliano Antoniol, Roberto Fiutem, and Luca
Cristoforetti. Design pattern recovery in
object-oriented software. In Proc. of the 6th IWPC’98,
pages 153–160, Ischia, Italy, June 1998.

[13] Rudolf Keller, Reinhard Schauer, Sébastien Robitaille,
and Patrick Pagé. Pattern-based reverse-engineering
of design components. In Proc. of the 21st ICSE’99,
pages 226–235, Los Angeles, California, USA, May
1999.

[14] Christian Krämer and Lutz Prechelt. Design recovery
by automated search for structural design patterns in
object-oriented software. In Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE’96),
pages 208–215, Monterey, CA, USA, November 1996.

[15] Alexander Fronk and Rudolf Berghammer.
Considering design problems in oo-software
engineering with relations and relation-based tools.
Journal on Relational Methods in Computer Science
(JoRMiCS), 1:73–92, Dezember 2004.

[16] Imed Hammouda, Juha Hautamäki, Mika Pussinen,
and Kai Koskimies. Managing variability using
heterogeneous feature variation patterns. In Proc. of
FASE’05, pages 145–159, Edinburgh, UK, March 2005.

Fujaba Days 2005 40

Calculation and Visualization of Software Product Metrics

Matthias Meyer∗
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany

mm@uni-paderborn.de

Jörg Niere
Software Engineering Group

Department of Computer Science
University of Siegen

Hölderlinstr. 3
57068 Siegen, Germany

joerg.niere@uni-siegen.de

ABSTRACT
The paper presents a further step of the Fujaba Tool Sui-
te RE to support coarse-grained analyses based on metrics
and especially polymetric views. Polymetric views are gra-
phical representations of certain metric combinations. Fol-
lowing an interactive reverse engineering approach, polyme-
tric views can be created on demand. The reverse engineer is
able to define new polymetric view descriptions and create
new views afterwards.

1. INTRODUCTION
Software product metrics are one opportunity to perform

coarse-grained analyses. Metrics such as lines of code, num-
ber of attributes or methods of a class, lack of cohesion or
depth of inheritance hierarchies ([3, 4, 5, 7]) allow for pro-
ducing quantitative analysis results of a software system.
A combination of different metrics allows to draw conclu-
sions such as problematic or high influencing system parts.
To overcome the flood of numbers produced by the metrics,
Lanza proposes in [6] a graphical representation of the me-
tric combinations. So-called polymetric views are an ideal
means to get a first impression of a system.

The Fujaba Tool Suite RE is a collection of reverse engi-
neering tools based on the Fujaba Tool Suite [10] and several
Fujaba plug-ins. The Fujaba Tool Suite RE allows for par-
sing Java source code into an Abstract Syntax Graph (ASG)
representation, which serves as central repository to all fur-
ther analyses. Currently the Tool Suite RE consists of static
and dynamic analysis techniques to recognize implementa-
tions of patterns [8], such as design patterns or antipatterns
[1]. The techniques allow for performing a fine-grained ana-
lysis of a system. Coarse-grained analyses are also possible,
but produce too many uncertain results.

In order to support also fast and reliable coarse-grained
analyses, we extended the Fujaba Tool Suite RE with two
plug-ins. The first plug-in, called MetricsCalculation and de-
scribed in Section 2, offers the calculation of several object-
oriented software product metrics. The second plug-in Po-
lymetricViews, described in Section 3, allows for viewing the
metric results calculated by the first plug-in in polymetric
views as introduced by Lanza. The paper closes with some
future work issues.

∗This work is part of the Finite project funded by the Ger-
man Research Foundation (DFG), prj-no. SCHA 745/2-2.

2. METRICS CALCULATION
Before the MetricsCalculation plug-in is able to calculate

software product metrics for certain model elements, the sy-
stem to be analyzed has to be parsed into the Abstract Syn-
tax Graph (ASG) representation. Therefore the MetricsCal-
culation plug-in uses the JavaAST plug-in and the JavaParser
plug-in. The ASG comprises UML elements such as classes,
attributes and methods as well as elements corresponding to
classical syntax trees such as literals or assignments. Where-
as the UML elements are used to represent declaration parts,
the other elements are used to represent method bodies. In
the following we call the whole representation the model of
the source code.

Each metric has a unique acronym, e.g. LOC which stands
for Lines Of Code or NOC, Number Of Children, which is
the number of direct sub classes of a class. The user may
select the metrics to be calculated from the list of all sup-
ported metrics (cf. Table 1). Each metric value together with
its acronym is stored in a separate result object that is linked
to the corresponding model element via Meta-Model Inte-
gration (MMI) pattern [2]. The plug-in offers to present all
results in a table.

2.1 Contributing a new metric
Far more metrics exist than currently are supported by

the plug-in. Therefore, the plug-in was designed to be easily
extended by new metrics. Each metric can be calculated for
a particular type of model element. LOC, for example, is
calculated for a method, the metric WLOC computes the
lines of code for a whole class, and the number of children
(NOC) is calculated on classes as well. For each metric, a
calculator class exists which takes a model element of the
appropriate type as input and calculates its metric value.
All calculator classes implement a common interface. The
data about available metrics is stored in an XML file. The
file contains an XML element for each metric, which besides
the unique acronym contains a name, a description, and the
fully qualified name of the calculator class. Thus, in order to
contribute a new metric, a calculator class that implements
the common interface must be developed and an element
describing the metric has to be added to the XML file.

2.2 Metric thresholds
For each metric, the user may additionally configure a

threshold. If the metric value of a model element exceeds
this threshold, an annotation is created which connects the
model element and the result object (again via MMI pat-
tern). Currently, the annotations are only visible in class

1

41 Fujaba Days 2005

mtt
Rectangle

DIT = 1
Metrics

DIT = 2
Metrics

NOM = 24
DIT = 1

Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 2
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 2
Metrics

DIT = 2
Metrics

DIT = 1
Metrics

DIT = 1
Metrics

DIT = 2
Metrics

hjljh

Integer :) (sizeOfTemplates
Void :)TemplateManager:manager (set

Void :) (resetTemplates
Boolean :)String:key (removeKeyFromTemplates

Boolean :)TemplateFile:obj (removeFromTemplates
Void :) (removeAllFromTemplates

Iterator :) (keysOfTemplates
Iterator :) (iteratorOfTemplates

Boolean :)String:key (hasKeyInTemplates
Boolean :)TemplateFile:obj (hasInTemplates

TemplateFile :)String:filename (getTemplate
TemplateFile :)String:key (getFromTemplates

TemplateManager :) (get
Iterator :) (entriesOfTemplates

Boolean :)TemplateFile:obj (addToTemplates

FHashMap : templates
TemplateManager : manager

TemplateManager

Boolean :)String:name, File:dir (accept
)String:start (NameFilter

String : start

NameFilter

Void :)String:line (parseLine
Vector :) (getFileVector

File[] :) (getFileArray
Integer :) (getErrorState

String :) (getCommandLine
String :)String:selection, String:line (createPathListSelection

)Integer:type, String:selection, String:line (CommandLineParser
)String:line (CommandLineParser

 0 = Integer : mode
 NO_ERROR = Integer : errorType

 "" = String : commandLine
 new Vector() = Vector : allFiles

 1 = Integer : WRONG_EXPRESSION
 8 = Integer : PATH_NOT_EXISTS

 2 = Integer : PATH_LIST
 0 = Integer : NO_ERROR

 2 = Integer : NO_COMMAND
 4 = Integer : EMPTY_COMMANDLINE

 1 = Integer : COMMAND_LINE

CommandLineParser

Integer :)Object:o2, Object:o1 (compare

TreeNodeComparator

String :)String:strg (upFirstChar
String :)Integer:width, String:text (textToWidth

String :)String:string (quote
String :)String:s (nullIfEmpty

Boolean :)String:s (isNullOrEmpty
String :)String:strg (downStart

String :)String:strg (downFirstChar

Utility

Void :)FIncrement:increment (objectSelected

FujabaObjectSelectListener

«interface»

Entry

«interface»

«reference»

String :) (toString
Object :)Object:value (setValue

Object :) (getValue
Object :) (getKey

)Object:value, String:key (KeyValuePair
)BasicIncrement:value, BasicIncrement:key (KeyValuePair

Object : value
Object : key

KeyValuePair

ListIterator

«interface»

«reference»

Integer :) (size

Void :) (reset
Integer :) (previousIndex

Object :) (previous
Integer :) (nextIndex

Object :) (next
Boolean :) (hasPrevious

Boolean :) (hasNext
Object :)Integer:index (get

Integer :) (currentIndex
)Integer:start (AbstractListIterator

) (AbstractListIterator

Integer : start
Integer : pos

 true = Boolean : first

AbstractListIterator

String :)Object:obj (toString
String :)FType:type (toString

String :)FParam:incr (toString
String :)FMethod:incr (toString

String :)FClass:incr (toString
String :)FBaseTypes:incr (toString

String :)BasicIncrement:incr (toString
Void :)Boolean:value (setRemoveYouPrinted

Void :)String:out (println
Void :)Object:out (println

Void :)String:out (print
Void :)Object:out (print

Boolean :) (isRemoveYouPrinted
Boolean :)String:debugValue (isOn
Boolean :)Integer:debugValue (isOn

Boolean :) (isOn

 false = Boolean : removeYouPrinted
 false = Boolean : DEF_DEFAULT_PLUGIN_DEBUG

FD

Void :) (init
Class :)String:name (getClass

ClassMap :) (get
Class :)String:name (forName

) (ClassMap

 null = ClassMap : theInstance
 new Hashtable (128) = Hashtable : map

ClassMap

Void :)String:s (setComment
String :) (getComment

Boolean :)ClassLoader:classLoader, String:fileName (doFile
Boolean :)String:fileName (doFile

Void :)String:currentLine (doCurrentLine

 Logger.getLogger (FileStringReader.class) = Logger : log
 null = String : comment

FileStringReader

Void :)FTypeList:types (setTypes
Void :)String:fpackage (setFpackage

Void :)FHashMap:classes (setClasses
Void :)FClassDiagram:classDiag (setClassDiag

FTypeList :) (getTypes
String :) (getFpackage

FHashMap :) (getClasses
FClassDiagram :) (getClassDiag

Void :)String:currentLine (doCurrentLine
FClassDiagram :)String:name (createClassDiagram

FClass :)Boolean:interf, String:packageName, FClass:genClass, FDiagram:diag, String:className (createClass
FAttr :)FClass:clazz, FType:type, String:name (createAttr

FAssoc :)Integer:sel, String:rightCard, String:rightName, String:leftCard, String:leftName, FClass:right, FClass:left, String:name (createAssoc
)ClassLoader:loader, String:path, String:name (ClassDiagTemplateLoader

)ClassLoader:loader, String:name (ClassDiagTemplateLoader

 null = FTypeList : types
 null = String : fpackage

 new FHashMap() = FHashMap : classes
 null = FClassDiagram : classDiag

ClassDiagTemplateLoader

Void :)String:str (append
)JScrollPane:scrollPane (AutoScrollTextArea

JScrollPane : scrollPane

AutoScrollTextArea

Void :) (stop
Void :) (run

)JTextArea:out, InputStream:in (StreamPoller

 false = Boolean : stopped
 null = JTextArea : out

 null = InputStreamReader : in

StreamPoller

Void :)Integer:exitValue, String:output (outputFinished
Void :) (outputCleared

Void :)String:newLine (outputAppended

OutputListener

«interface»

Thread

«reference»

Void :) (run
)JInternalFrame:aframe (MyThread

JInternalFrame : frame

MyThread

JInternalFrame

«reference»

Void :) (switchProcessState
Void :) (stopThreads
Void :) (startThreads

Void :)MouseListener:mouseListener (setMouseListener
Void :)ActionListener:act (setExitAction

Void :)String:commandLine (setCommandLine
Void :) (resetProcessState

Void :)OutputListener:listener (removeOutputListener
Void :) (recompileButtonPressed

Void :)String:commandLine (quietExecuteCommand
Void :)ProcessEvent:event (notifyAllProcessListeners

Void :)String[]:argv (main
Boolean :) (isRunning

Boolean :) (isAutoContinueEnabled
Map :) (getenv

String :) (getOutput
ActionListener :) (getExitAction

Map :) (getEnvironment
String :) (getCommandLine

Void :) (exitButtonPressed
Void :)String:title, String:commandLine (executeCommand

Void :)String:commandLine (executeCommand
Void :) (executeButtonPressed

String[] :)Map:properties (convertEnvironment
Boolean :)String:cmdLine (compileAndWaitForResult

Void :)ProcessListener:newListener (addProcessListener
Void :)OutputListener:listener (addOutputListener

)Boolean:show, Boolean:calledByCompileAction (ProcessOutputViewer
) (ProcessOutputViewer

 {"waiting...", "starting...", "running...", "finished"} = String[] : states
 new JButton ("Again") = JButton : recompile

 new JLabel ("State: " + states[0]) = JLabel : processStateLabel
 new FTreeSet() = FTreeSet : processListeners

 new JLabel ("Command: ") = JLabel : processCommandLabel
 null = Process : process

 null = StreamPoller : normalOutputPoller
 new JTextArea() = JTextArea : normalOutput

 4 = Integer : maxProcessStates
 Logger.getLogger (ProcessOutputViewer.class) = Logger : log

Collection : listeners
 "Exit" = String : exitText

 null = ActionListener : exitAction
 new JButton (exitText) = JButton : exit

 new JButton ("Execute") = JButton : execute
 null = StreamPoller : errorOutputPoller

 getenv() = Map : environment
 0 = Integer : curProcessState

 new JComboBox() = JComboBox : commandLineBox
 new JButton ("Clear History") = JButton : clearHistory
 new JButton ("Clear Display") = JButton : clearDisplay
Boolean : calledByCompileAction

JPanel : advancedPanel

ProcessOutputViewer

Void :) (start
Void :) (interrupt

Object :) (get
Void :) (finished

Object :) (construct

) (SwingWorker

Object : value
Thread : thread

SwingWorker

String :) (toString
Integer :) (sizeOfCodeBlocks

Void :)LongInteger:tag (setModifiedTag
Boolean :)TemplateManager:obj (setManager

Void :)String:filename (setFilename
String :)String:line (retrieveCodeBlockName

Boolean :)String:key (removeKeyFromCodeBlocks
Boolean :)TemplateCodeBlock:obj (removeFromCodeBlocks

Void :) (removeAllFromCodeBlocks
Void :)BufferedReader:in, String:line (processLine

Void :) (parse
BufferedReader :) (open

Iterator :) (keysOfCodeBlocks
Iterator :) (iteratorOfCodeBlocks

Boolean :) (isModified
Boolean :)String:key (hasKeyInCodeBlocks

Boolean :)TemplateCodeBlock:obj (hasInCodeBlocks
LongInteger :) (getModifiedTag

TemplateManager :) (getManager
TemplateCodeBlock :)String:key (getFromCodeBlocks

String :) (getFilename
Iterator :) (entriesOfCodeBlocks

Boolean :)TemplateCodeBlock:obj (addToCodeBlocks
)String:filename (TemplateFile

 0 = LongInteger : modifiedTag
TemplateManager : manager

 Logger.getLogger (TemplateFile.class) = Logger : log
 "" = String : filename

FHashMap : codeBlocks

TemplateFile

Void :)FLinkedList:lastSelected (setLastSelected
Void :)String:incrID (selectIncrByID

Void :) (removeLastSelected
Void :)ASGElement:element (gotoElement

FLinkedList :) (getLastSelected
IncrSelector :) (get

) (IncrSelector

 new IncrSelector() = IncrSelector : selector
 Logger.getLogger (IncrSelector.class) = Logger : log

 null = FLinkedList : lastSelected

IncrSelector

Class :)Boolean:resolve, String:name (loadClass
ClassLoader :) (get

URL :)String:name (findResource
) (UnifiedClassLoader

ClassLoader : instance

UnifiedClassLoader

String :) (getDescription
Void :)String:ext (addExtension

Boolean :)String:name, File:f (accept
Boolean :)File:f (accept

)String:description, String:ext (SchemaFilter

 new LinkedList() = LinkedList : extensions
String : description

SchemaFilter

Integer :) (sizeOfTokens
Boolean :)TemplateFile:obj (setTemplate

Void :)String:name (setName
Boolean :)TemplateToken:obj (removeFromTokens

Void :) (removeAllFromTokens
Void :)BufferedReader:in, String:line (processLine

Void :)BufferedReader:in (parse
Iterator :) (iteratorOfTokens

Boolean :)TemplateToken:obj (hasInTokens
TemplateFile :) (getTemplate

Iterator :)FHashMap:parameter (getSourceCodeLines
String :)FHashMap:parameter (getSourceCode

String :) (getName
Boolean :)TemplateToken:obj (addToTokens

Void :)String:placeholder (addPlaceholderToken
Void :)String:code (addCodeToken

)String:name (TemplateCodeBlock

FLinkedList : tokens
TemplateFile : template

 "" = String : name
 Logger.getLogger (TemplateCodeBlock.class) = Logger : log

TemplateCodeBlock

Integer :) (getReturnCode
)Integer:rc (ProcessEvent

Integer : returnCode

ProcessEvent

Initializer{}
Comparator :) (getPackageComparator

Comparator :) (getLessType
Comparator :) (getLessString

Comparator :) (getLessClassName
Comparator :) (getLessBasicIncr
Comparator :) (createLessString

 Logger.getLogger (FujabaComparator.class) = Logger : logger
Comparator : lessString

FujabaComparator

Void :)String:out (println
Void :)Object:out (println

Void :)String:out, Integer:debugValue (println
Void :)Object:out, Integer:debugValue (println

Void :)Integer:debugValue (println
Void :) (println

Void :)Integer:end, Integer:begin (printStackTrace
Void :)Integer:depth (printStackTrace

Void :) (printStackTrace
Void :) (printRemoveYouStack

Void :)String:out (print
Void :)Object:out (print

Void :)String:out, Integer:debugValue (print
Void :)Object:out, Integer:debugValue (print

Void :)Integer:debugValue (print
Void :) (print

String :)Integer:end, Integer:begin, Throwable:throwable (getStackTrace
String :)Integer:end, Integer:begin (getStackTrace

Void :)Object:out (_println
Void :)Object:out (_print

 DebugPreferences.get() = DebugPreferences : options
 true = Boolean : SETATTRSTONULL

FujabaDebug

StringBuffer :)String:strg (upFirstChar
Void :)String:newStrg (setIndentString

String :)Boolean:aggregation, Boolean:isUsingAttr, Boolean:isPartnerQualified, Boolean:isQualified, Boolean:toOne, String:type, String:roleName (removeYouBody

StringBuffer :) (newLine
StringBuffer :)Character:c, Integer:n (itChar

Void :) (incIndent
String :) (getIndentString

String :)Integer:type, String:fieldTypeName, String:name (getFullAccessMethodName

String :)Boolean:selfQualified, Boolean:qualifier, Integer:upperBound, String:name, Integer:type (getAssocAccessMethodLine

String :)Boolean:selfQualified, Integer:upperBound, String:name, Integer:type (getAssocAccessMethodLine

String :)Integer:type, String:name (getAccessMethodName
Void :) (decIndent

String :)sIsAggr, Boolean:fIsAggr, Boolean:sIsRef, Boolean:fIsRef, String:sQualifierName, String:fQualifierName, String:sCard, String:sRoleName, String:sClassName, String:constraint, String:assocName, String:fCard, String:fRoleName, String:fClassName (assocCommentary

 " " = String : indentString
 0 = Integer : indent

 REMOVE_YOU_METHOD + 1 = Integer : SIZE_OF_METHOD
 IS_METHOD + 1 = Integer : SET_METHOD

 ADD_AFTER_OF_METHOD + 1 = Integer : SET_IN_METHOD
 GET_FROM_METHOD + 1 = Integer : REMOVE_YOU_METHOD

 REMOVE_KEY_FROM_METHOD + 1 = Integer : REMOVE_VALUE_FROM_METHOD
 ADD_METHOD + 1 = Integer : REMOVE_METHOD

 KEYS_OF_METHOD + 1 = Integer : REMOVE_KEY_FROM_METHOD
 REMOVE_VALUE_FROM_METHOD + 1 = Integer : REMOVE_ENTRY_FROM_METHOD

 SIZE_OF_METHOD + 1 = Integer : REMOVE_ALL_FROM_METHOD
 INDEX_OF_METHOD + 1 = Integer : LAST_INDEX_OF_METHOD

 GET_KEY_FOR_METHOD + 1 = Integer : KEY_CHANGED_IN_METHOD
 HAS_ENTRY_IN_METHOD + 1 = Integer : KEYS_OF_METHOD

 HAS_IN_METHOD + 1 = Integer : ITERATOR_OF_METHOD
 GET_METHOD + 1 = Integer : IS_METHOD

 LAST_INDEX_OF_METHOD + 1 = Integer : IS_BEFORE_OF_METHOD
 IS_BEFORE_OF_METHOD + 1 = Integer : IS_AFTER_OF_METHOD

 GET_AT_METHOD + 1 = Integer : INDEX_OF_METHOD
 GET_KEY_FROM_METHOD + 1 = Integer : HAS_VALUE_IN_METHOD

 HAS_VALUE_IN_METHOD + 1 = Integer : HAS_KEY_IN_METHOD
 SET_METHOD + 1 = Integer : HAS_IN_METHOD

 HAS_KEY_IN_METHOD + 1 = Integer : HAS_ENTRY_IN_METHOD
 REMOVE_ALL_FROM_METHOD + 1 = Integer : GET_VALUE_FROM_METHOD
 GET_NEXT_INDEX_OF_METHOD + 1 = Integer : GET_PREVIOUS_OF_METHOD

 GET_PREVIOUS_OF_METHOD + 1 = Integer : GET_PREVIOUS_INDEX_OF_METHOD
 GET_LAST_OF_METHOD + 1 = Integer : GET_NEXT_OF_METHOD

 GET_NEXT_OF_METHOD + 1 = Integer : GET_NEXT_INDEX_OF_METHOD
 REMOVE_METHOD + 1 = Integer : GET_METHOD

 GET_FIRST_OF_METHOD + 1 = Integer : GET_LAST_OF_METHOD
 GET_VALUE_FROM_METHOD + 1 = Integer : GET_KEY_FROM_METHOD

 SET_IN_METHOD + 1 = Integer : GET_KEY_FOR_METHOD
 ITERATOR_OF_METHOD + 1 = Integer : GET_FROM_METHOD

 IS_AFTER_OF_METHOD + 1 = Integer : GET_FIRST_OF_METHOD
 ENTRIES_OF_METHOD + 1 = Integer : GET_AT_METHOD

 REMOVE_ENTRY_FROM_METHOD + 1 = Integer : ENTRIES_OF_METHOD
 0 = Integer : ADD_METHOD

 GET_PREVIOUS_INDEX_OF_METHOD + 1 = Integer : ADD_BEFORE_OF_METHOD
 ADD_BEFORE_OF_METHOD + 1 = Integer : ADD_AFTER_OF_METHOD

SourceCodeFactory

String :)Boolean:aggregation, Boolean:isInternalQualified, Boolean:isPartnerQualified, Boolean:isQualified, Boolean:toOne, String:type, String:roleName (removeYouBody
String :)Boolean:selfQualified, Boolean:qualifier, Integer:upperBound, String:name, Integer:type (getAssocAccessMethodLine

String :)Boolean:sIsAggr, Boolean:fIsAggr, Boolean:sIsRef, Boolean:fIsRef, String:sQualifierName, String:fQualifierName, String:sCard, String:sRoleName, String:sClassName, String:constraint, String:assocName, String:fCard, String:fRoleName, String:fClassName (assocCommentary

JavaFactory

Void :)Integer:newScale (setScale
Integer :) (getScale

Font :) (getJavaSourceFont
Font :)Integer:size, Integer:style, Integer:type (getFont

Font :)Integer:size, Integer:type (getFont
Font :)Integer:type (getFont

Font :) (getDefaultFont

 0 = Integer : scale
 new FHashMap() = FHashMap : fonts

 1 = Integer : JAVA_SOURCE_FONT
 12 = Integer : DEFAULT_FONT_SIZE

 0 = Integer : DEFAULT_FONT

FontContainer

«final»

Void :)ProcessEvent:event (processFinished

ProcessListener

«interface»

Integer :)Object:o2, Object:o1 (compare

ObjectComparator

PropertyChangeSupport

«reference»

TestRunner

«reference»

Void :)String[]:args (main
TestSuiteLoader :) (getLoader

FujabaTestRunner

Iterator

«interface»

«reference»RuntimeException

«reference»

FElement :) (getContext

)FElement:context, Throwable:cause (RuntimeExceptionWithContext

)FElement:context, Throwable:cause, String:message (RuntimeExceptionWithContext
)FElement:context, String:message (RuntimeExceptionWithContext

)FElement:context (RuntimeExceptionWithContext

FElement : context

RuntimeExceptionWithContext

Integer :)Object:o2, Object:o1 (compare
) (IncrementComparator

IncrementComparator

Integer :)String:propertyName (sizeOfListeners
Integer :) (sizeOfListeners

Integer :) (sizeOfChildren
Integer :) (sizeOfAllListeners

Boolean :)Object:source (setSource
Void :) (removeYou

Void :)PropertyChangeListener:listener, String:propertyName (removePropertyChangeListener
Void :)PropertyChangeListener:listener (removePropertyChangeListener

Boolean :)PropertyChangeListener:listener, String:propertyName (removeFromListeners
Boolean :)PropertyChangeListener:listener (removeFromListeners

Iterator :) (keysOfChildren
Iterator :)String:propertyName (iteratorOfListeners

Iterator :) (iteratorOfListeners
Iterator :) (iteratorOfChildren

Iterator :) (iteratorOfAllListeners
Boolean :)String:propertyName (hasListeners

Boolean :)PropertyChangeListener:listener, String:propertyName (hasInListeners
Boolean :)PropertyChangeListener:listener (hasInListeners

Boolean :)PropertyChangeListener:listener (hasInAllListeners
Object :) (getSource

FujabaPropertyChangeSupport :)String:propertyName (getFromChildren
Void :)Object:newValue, Object:oldValue, String:propertyName (firePropertyChange

Void :)PropertyChangeEvent:evt (firePropertyChange
Iterator :) (entriesOfChildren

Boolean :)PropertyChangeListener:listener, String:propertyName (addToListeners
Boolean :)PropertyChangeListener:listener (addToListeners

Void :)PropertyChangeListener:listener, String:propertyName (addPropertyChangeListener
Void :)PropertyChangeListener:listener (addPropertyChangeListener

)Object:sourceBean (FujabaPropertyChangeSupport

Object : source
 7162625831330845068L = LongInteger : serialVersionUID

Vector : listeners
Hashtable : children

FujabaPropertyChangeSupport

Boolean :)String:name, File:dir (accept
)String:ext (ExtFilter

String : ext

ExtFilter

Void :) (remove
Object :) (next

Boolean :) (hasNext
)Iterator:second, Iterator:first (CombinedIterator

 null = Iterator : second
 false = Boolean : firstDone

 null = Iterator : first

CombinedIterator

Class :)Class:aClass (reload
Class :)String:suiteClassName (load

FujabaTestSuiteLoader

CC getFullAccessMethodName(String,String,Integer) = 22
CC getAccessMethodName(String,Integer) = 44
DIT = 1

Metrics

String :)String:code (setCode
String :)FHashMap:parameter (getSourceCode

String :) (getCode
)String:code (SourceCodeToken

 "" = String : code

SourceCodeToken

String :)String:token (setToken
String :) (getToken

String :)FHashMap:parameter (getSourceCode
)String:placeholder (PlaceHolderToken

 "" = String : token

PlaceHolderToken

Void :) (updateActions
Void :) (saveHistoryToProperties

Void :) (removeNotExistingFiles
Void :) (loadHistoryFromProperties

Boolean :)File:file (isInHistory
FileHistory :) (get

File :) (firstOfHistory
Boolean :)File:file (addToHistory

) (FileHistory

FileHistory : singleton
 Logger.getLogger (FileHistory.class) = Logger : log

Vector : fileVector
 "core/FileHistory.properties" = String : FILE_HISTORY_KEY

 "FileHistory" = String : FILE_HISTORY

FileHistory

String :) (toString
Void :)Integer:y (setY
Void :)Integer:x (setX

Void :)Point:value (setPoint
Void :) (removeYou

Void :)String:property, ASGElement:parent, ASGElement:asgElement (notifyUponChange
Point :) (getPoint

)Point:value (PointIncrement
) (PointIncrement

 Integer.MAX_VALUE = Integer : y
 Integer.MAX_VALUE = Integer : x

String : notifyUponChangeProperty
ASGElement : notifyUponChangeParent

ASGElement : notifyUponChange

PointIncrement

collapsed

collapsed

BasicIncrement

Comparable

«interface»

«reference»

String :) (getID

UniqueIdentifier

«interface»

Boolean :)TemplateCodeBlock:obj (setCodeBlock
String :)FHashMap:parameter (getSourceCode

TemplateCodeBlock :) (getCodeBlock

TemplateCodeBlock : codeBlock

TemplateToken

NewClassA

NOM = 70
WNOC = 58
High Influence Class

CC setValue(Field,Object,Hashtable,FDuplicatedTreeMap,FHashMap) = 61
CC callWriteToStringBuffer(Object,Field,FTreeSet) = 24
NOM = 70
DIT = 1

Metrics

Figure 1: A class diagram with metric annotations.

diagrams. The shape of an annotation is a rectangle labeled
with “Metrics”. The rectangle is connected to the shape of
the class containing the annotated model element (cf. Figu-
re 1). In addition, if a class contains several model elements
with metric annotations, only one annotation which is a uni-
on of all metric annotations is shown.

The results shown in Figure 1 were produced by first par-
sing the source code of the basic, asg, and uml packages
of Fujaba (including sub packages). Afterwards, the metrics
DIT, NOM and CC were selected to be calculated and anno-
tated with thresholds 0, 20, and 20, respectively. The results
show that the class BasicIncrement is at the first level in its
inheritance hierarchy (DIT = 1) and defines 70 methods
(NOM = 70). It has two methods with cyclomatic comple-
xity (CC) 24 and 61, respectively. All other methods have
CC values lower than 20. According to [9], CC values from
11 to 20 are still acceptable whereas higher values should be
avoided.

2.3 Metric combinations
Single metric values are sometimes not very expressive.

The fact, for example, that BasicIncrement has 70 methods,
is not too edifying but not too interesting either. However,
BasicIncrement has also a rather high number of all descen-
dant classes (WNOC), i.e. 58. The 58 subclasses of Basi-
cIncrement inherit its 70 methods which means that Basi-
cIncrement has a high influence in its inheritance hierarchy.
Note that the WNOC value was calculated when only the
source files in the basic, asg, and uml packages of Fujaba
(including sub packages) were parsed. The WNOC value of
BasicIncrement would be much higher if Fujaba had been
parsed completely.

To detect combinations of certain metric values, we of-
fer the specification of boolean expressions over the values
calculated by (possibly different) metrics for the same mo-
del element. A metric combination for high influence classes
could be specified as e.g. (WNOC ≥ 10) & (NOM ≥ 20). In
metric combination expressions the logical operators AND
(&), OR (|), and NOT (!) may be used to join an arbi-
trary number of terms, possibly nested with parentheses.
Each term may compare a metric value, represented by its
acronym, with a number. As comparison operators ==, <,
≤, >, and ≥ are supported.

If a metric expression evaluates to true, an annotation is
created and linked to the respective model element. The an-
notations created by metric combinations are displayed on
class diagrams as well. They are also rendered as rectangles
labeled with a name for the combination, e.g. High Influ-
encing Class (cf. Figure 1), and linked to the class containing
the annotated model element. In addition, the annotation
shows the values of all metrics involved in the combination.

Width Metric (w)

Relationship

Entity

Color Metric

Position Metric (x,y)

Height Metric (h)

Color Metric

Color Metric

Figure 2: Up to 5 metrics can be visualized for one
entity. In addition, entities may have relationships
that do not carry metric values.

3. METRICS VISUALISATION
Metrics are numbers representing facts. We use class me-

trics such as number of methods (NOM) or number of attri-
butes (NOA) or method metrics such as number of parame-
ters (NOP). At the end of the previous section we argue that
combinations of metric values are more expressive than a sin-
gle value. We used a certain combination to give some hints
to interesting parts in a software system, i.e. high influence
classes. This approach has some drawbacks. We firstly have
used absolute values and secondly the values are based on
experience. Whereas normalization is a solution for the first
problem, the second still remains, namely the definition of
what are runaways in the context of the actual software sy-
stem to be analyzed. In [6] Lanza presents Polymetric Views,
which provide a visual representation of metric combinati-
ons. Detecting runaways is done manually by a developer
looking at the produced pictures. Starting from the work
presented in [6], we developed a Fujaba plug-in to visualize
metric values as polymetric views.

3.1 Polymetic Views
Polymetric views are two-dimensional graphs containing

nodes and sometimes edges, which are arranged in a certain
layout. Nodes represent entities of the analyzed software sy-
stem and edges represent relationships between the entities.
Each node is a rectangle and can carry up to 5 metric values
depending on the certain layout, whereas edges do not carry
any metric information. Figure 2 illustrates the 5 potential
metrics of an entity:

• Size: Either the width and height of a node (w,h) can
represent a metric value. Both values have to be grea-
ter than 0.

• Color: The color of a node may also represent a me-
tric. Valid values are one of 256 gray-scale values from
black to white.

• Position: The position of a node (x,y) are the forth
and fifth possible metric values of an entity. This assu-
mes that the used layout allows for positioning nodes
freely.

• Layout: Lanza proposes five major layout algorithms:
Tree, Scatterplot, Histogram, Checker, and Stapled. Our
prototype currently provides Tree and Checker layout.

2

Fujaba Days 2005 42

mtt
Rectangle

Figure 3: System-Hot-Spot view of the de.uni-
paderborn.fujaba.uml package.

The first considers relationships as hierarchical order
to arrange nodes and the second places nodes with the
same metric value in the same row or column.

Absolute metric values may be problematic in polymetric
views. High metric values used for the size or the position of
a node may result in views where only a limited part is visi-
ble on the screen. For example a white colored node with a
width and height larger than 3-5 times of the screen size may
result in a white screen showing the inner part of the node
only. Thus, a developer is not able to get an overview of all
nodes in the view. To solve this problem, we use a mapping
function that maps metric values to values better suited for
the screen-size. Mainly the mapping function scales absolute
metric values. To let the developer see all entities even the
ones with metric values of 0, we add a constant value (mi-
nimal node size) to the scaled metric values. Both values,
the zoom factor as well as the minimal node size value are
interactively changeable for a certain view.

3.2 Prototype
Entities of a polymetric view correspond to parts of the

software system currently under investigation. A certain po-
lymetric view is an instance of a polymetric view description
on a certain part of the software, called polymetric view con-
text. Hence we currently focus on coarse-grained analysis to
get a first impression of the software, the context is a set of
classes. Our prototype consists of a dialog to select the con-
text based on the current package structure of the software.

Figure 3 shows the prototype of the PolymetricViews plug-
in. The project tree on the left hand side shows all currently
available polymetric view descriptions. The current view is
the System-Hot-Spot view of the core meta-model classes of
Fujaba located in the uml and all sub packages.

Each of the 203 entities in the polymetric view corre-
sponds to one class. The width and height of a node carry
the number of methods of the class (NOM) and the color
carries the class’ depth in the inheritance tree (DIT). The
checker layout arranges the nodes according to their size in
ascending order. Due to the 2-column layout of this paper,
each line has a fixed number of 10 nodes, except the last line.

Figure 4: High-Influence-Class view example.

The zoom value can be modified with the slider on the right
hand side. Going over a node, the appearing tool tip note
shows the absolute metric values of the entity. For example,
the UMLAttr class has 78 methods and 4 super classes in the
inheritance tree.

What is the interpretation of this polymetric view? The
meta-model classes of Fujaba have usually small interfaces,
i.e. number of methods. The UMLAttr entity is at a depth
of 5 in the inheritance tree. The black color of the UMLAt-
tr entity indicates that this is also the maximum depth of
the tree. Furthermore, there is no really dominating color,
which would indicate an inheritance level with many clas-
ses. More problematic is the rightmost node in the last line.
The node that corresponds to the UMLClass class is near-
ly double sized compared to the next smaller one, which
means the entity has nearly twice the number of methods.
Such classes in general need further analysis. In this case
we observed that UMLClass is the central part of the meta-
model of Fujaba and has many associations to other classes
in the meta-model. Hence we originally generated the class
and map associations to access methods, it has a huge num-
ber of association access methods. Thus it would be better to
count only non-access methods. Unfortunately software pro-
duct metrics are inappropriate to classify methods in that
way. For this purpose, the already existing pattern instance
detection is better suited.

3.3 Defining Polymetric Views
Lanza proposes 12 polymetric views organized in 3 cate-

gories for a coarse-grained analysis of a system. The first
category is titled First Contact Views such as the System
Hot Spot view shown in Figure 3. The second category In-
heritance Assessment Views contains views to analyze the

3

43 Fujaba Days 2005

mtt
Rectangle

inheritance structure. Views in the third category Candidate
Detection Views detect entities that need further analysis.

In Section 2 we have proposed a metric combination of
the number of methods (NOM) metric and the number of
all descendant classes (WNOC) metric. Classes with metric
values (WNOC ≥ 10) & (NOM ≥ 20) got a High Influencing
Class annotation. Non of Lanza’s polymetric views offers
this metric combination, thus we have to define a new one.

The PolymetricViews plug-in allows the developer to dy-
namically define new view descriptions. A new polymetric
view description consists of the following parts:

• the assignment of metrics to the size, position and color
of an entity.

• a layout that arranges the entities and relationships.

• a factory that provides entities and relationships.

After the developer has defined the new polymetric view
description, new views can be created. For example, Figure
4 shows the above described combination of the NOM and
WNOC metrics of classes. The largest sized node is the Ba-
sicIncrement class. To our surprise the second largest sized
node corresponds to class UMLIncrement that is located 2
inheritance levels below the BasicIncrement class. The UM-
LIncrement entity has a WNOC value of 56 that is 2 less than
the BasicIncrement entity but much more methods, i.e. 195.
We can not make the statement that this is ugly design, be-
cause the methods in UMLIncrement may override the ones
in BasicIncrement. To strengthen an ugly design statement
we have to make further investigation, perhaps enhance the
new polymetric view description with the number of over-
ridden methods (NMO) metric.

4. FUTURE WORK
Primary future work is the seamless integration of the me-

tric analysis techniques into the overall reverse engineering
process supported by the Fujaba Tool Suite RE. In particu-
lar, the existing pattern instance recognition and the metrics
calculation will be integrated in such a way, that certain me-
tric values or combinations may be used as triggers for fine-
grained analyses with the pattern recognition. Furthermore,
pattern specifications will be enabled to require that the
metric values calculated for certain model elements do (not)
exceed specific threshold values. The polymetric views will
be used to determine those threshold values for the actual
system to be analyzed.

Acknowledgments
We thank Lukas Roth and Jens Falk who implemented the
MetricsCalculation and the PolymetricViews plug-ins, respec-
tively, as part of their bachelor theses.

5. REFERENCES
[1] W. Brown, R. Malveau, H. McCormick, and

T. Mombray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and
Sons, Inc., 1998.

[2] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P.
Wadsack, R. Wagner, L. Wendehals, and A. Zündorf.
Tool integration at the meta-model level within the
fujaba tool suite. International Journal on Software
Tools for Technology Transfer (STTT), 6(3):203–218,
Aug. 2004.

Acronym Short description Scope
ADIT Attribute Depth of Inheritance Tree Attribute
AvgCC Average cyclomatic complexity Class
AvgNLA Average number of local accesses Class
CC McCabes cyclomatic complexity Method
DIT Depth of inheritance tree Class
LCOM Lack of cohesion in methods Class
LOC Lines of code in method Method
MDIT Method depth of inheritance tree Method
NAM Number of abstract methods Class
NBLD Nested block depth Method
NCV Number of class variables Class
NI Number of invocations Method
NIA Number of inherited attributes Class
NIV Number of instance variables Class
NLA Number of local accesses Attribute
NMA Number of methods added Class
NMAA Number of accesses on attributes Method
NME Number of methods extended Class
NMI Number of methods inherited Class
NMO Number of methods overridden Class
NOA Number of attributes Class
NOC Number of children Class
NOCL Number of classes Project
NOINT Number of interfaces Project
NOM Number of methods Class
NOP Number of parameters Method
NOS Number of statements Method
NPA Number of public attributes Class
PLOC Lines of code in project Project
SIX Specialization index Class
WLOC Lines of code in class Class
WMC Weighted methods per class Class
WNI Number of all method invocations Class
WNLA Sum over NLA Class
WNMAA Sum over NMAA Class
WNOC Number of all descendant classes Class
WNOS Number of statements in class Class

Table 1: Currently supported metrics. Each metric
has a unique acronym, a name, and a scope, which
indicates the type of ASG element the metric can
be calculated for.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

[4] N. E. Fenton and S. L. Pfleeger. Software Metrics - A
Rigorous & Practical Approach. International
Thompson Computer Press, second edition edition,
1996.

[5] B. Henderson-Sellers. Object-Oriented Metrics:
Measures of Complexity. Prentice-Hall, 1996.

[6] M. Lanza. Object-Oriented Reverse Engieering. PhD
thesis, University of Berne, Switzerland, 2003.

[7] M. Lorenz and J. Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

[8] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards pattern-based design recovery.
In Proc. of the 24th International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338–348. ACM Press, May 2002.

[9] Software Engineering Institute, Carnegie Mellon
University, USA. Cyclomatic Complexity: Software
Engineering Roadmap. Online at
http://www.sei.cmu.edu/str/descriptions/
cyclomatic body.html.

[10] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

4

Fujaba Days 2005 44

mtt
Rectangle

A Plugin for Checking Inductive Invariants when
Modeling with Class Diagrams and Story Patterns∗

Basil Becker, Holger Giese, and Daniela Schilling†

Software Engineering Group, University of Paderborn, Germany
[basilb|hg|das]@uni-paderborn.de

ABSTRACT
Systems with complex structures that change at run-time
can be specified with UML class diagrams and Story Pat-
terns. Available verification techniques, which can check
required safety properties automatically, only cover less ex-
pressive behavioral descriptions or finite state models of
moderate size. In [4], an approach to check whether a given
safety property is an inductive invariant of the system has
been developed where no such restrictions apply. Within
this paper we describe our Fujaba Plugin which realizes this
approach by means of an example and present some first
evaluation results for the Plugin.

1. INTRODUCTION
UML class diagrams and Story Patterns [3], as supported
by the core of Fujaba, can be employed to model and simu-
late systems where the structure of the system is subject to
frequent changes. However, if safety properties have to be
ensured, the rather strong expressiveness of the underlying
typed graph transformation systems renders an automatic
verification impossible in the general case.

Formal verification techniques to check required safety
properties automatically for systems with possibly infinite
state spaces are only available for less expressive modeling
techniques and usually provide only approximations (cf. [1]).
The problem can be addressed with model checking if the
employed models have a finite state space of moderate size
(cf. [7, 6]).

Therefore, we have developed an approach to check
whether a given safety property is an inductive invariant
of the system in [4] which supports Story Patterns and is
applicable without considering the possibly infinite set of
relevant system configurations. Within this paper we de-
scribe the Fujaba Plugin which supports this approach.

The paper initially outlines the modeling concepts em-
ployed in the approach in Section 2. In Section 3 the back-
ground for the verification task is described and the verifica-
tion of the example with the Plugin including the generation
of a counterexample is outlined. The architecture of the Plu-
gin and first evaluation results for the Plugin are presented
in Section 4. The paper is closed with some final conclusions

†Supported by the International Graduate School of Dy-
namic Intelligent Systems at the University of Paderborn.
∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

and an outlook on future work.

2. MODELING
This Section sketches our modeling concepts. They are ex-
plained by using a simplified example taken from the Spe-
cial Research Initiative 614 “Self-optimizing Concepts and
Structures in Mechanical Engineering”. The example are
autonomously driving shuttles which can save energy by
building contact free convoys while driving. For these shut-
tles software has to be developed that meets several safety
properties.

In a first step, the physical domain is considered and all
elements for which software has to be developed or which
influence those elements are modeled as classes in a class
diagram which is called the system’s ontology. The depen-
dencies between these elements are modeled as associations.
Figure 1 depicts such a diagram. Software has to be devel-
oped for the Shuttles and the BaseStations which monitor the
railway system. The railway system is modeled by Tracks
which are connected by a successor link.

Figure 1: Ontology of the system

As the system is safety-critical the communication be-
tween several elements has to follow strict protocols which
are also specified as classes in the diagram. The class Pub-
lication is such a protocol. It provides the communication
between a Shuttle and a BaseStation. Each shuttle driving
on a certain track has to be registered at that BaseStation
which monitors the track the shuttle is located on. A shuttle
is registered at a BaseStation if the Publication protocol is
instantiated between them. The protocol ensures that the
BaseStation gets to know if a shuttle failed and in this case
warns the other shuttles.

After all relevant elements are identified and added to the
ontology the system behavior can be specified. The behavior
is described by Story Patterns.

A Story Pattern describes how a system state given as in-
stance graph is modified. A Story Pattern consists of several
objects and links which can be annotated with� destroy �
or � create �. To apply a Story Pattern all elements (ob-
jects and links) which are not annotated or annotated with

45 Fujaba Days 2005

� destroy � have to be mapped to the instance graph. If
this is possible all elements annotated with� destroy � are
removed from the instance graph. Then all elements which
are annotated with � create � are added to the instance
graph. An example for a Story Pattern is given in Figure
2. This Story Pattern, called move, models the movement
of a shuttle from one track to the following one. Thereto
the locatedOn link between the shuttle s and the track ta is
deleted and a new locatedOn link between the shuttle and
the track tb is created.

Figure 2: Story Pattern move describing a shuttle’s
movement

Figure 3 gives another example for a Story Pattern. It
describes the instantiation of a Publication protocol. The
crossed out elements require that the instantiation may only
take place if the protocol is not yet instantiated between a
certain pair of Shuttle and BaseStation. The crossed out ele-
ments are called negative elements. The Story Pattern may
only be applied to an instance graph if all positive elements
can be mapped to elements of the instance graph but the
negative ones cannot.

Figure 3: Story Pattern instPub describing the in-
stantiation of the Publication protocol

The behavior of systems, like e.g. the shuttle system, has
to be developed in a way that hazards are avoided. A hazard
is a critical situation, like e.g. the impending of a shuttle
collision. Such a hazard can itself be described by a Story
Pattern. In our example one possible hazard is that a shuttle
is not registered at the BaseStation which monitors the track
it is located on. In this case the BaseStation would not be
able to detect if the shuttle failed and therefore could not
warn the other shuttles. The Story Pattern describing this
hazard is given in Figure 4.

Figure 4: Story Pattern describing a hazard

A hazard occurred if the Story Pattern describing the haz-
ard can be applied to the instance graph.

As a Story Pattern describing a hazard must never be
applicable they are called forbidden patterns.1

1In the following we use the term forbidden pattern if we
are concerning Story Patterns that describe hazards and by
Story Pattern mean those Story Patterns that describe sys-
tem behavior.

3. VERIFICATION
In this Section we show how to verify that the Story Patterns
do never create instance graphs that contain any forbidden
pattern. A system state is correct if it does not contain any
forbidden pattern. The system itself is correct if only correct
states are reachable.

In general such systems have so many states that it is
not possible to check for every reachable state that it is
correct. A system state is reachable if there is a sequence
of Story Patterns that are applied to the initial instance
graph and result in the considered state. In other words
such techniques check whether a state can be reached that
is incorrect w.r.t. given forbidden patterns.

One specific case of system properties to be checked are
invariants. An invariant makes a statement on all (reach-
able) states. There are two different kinds of invariants,
operational and inductive ones. An operational invariant
is a property that is fulfilled by the initial state and each
state that is reachable from this initial state also fulfills the
property. Considering the above given forbidden patterns
the absence of these forbidden patterns is an operational in-
variant if the initial state does not contain any forbidden
pattern and each reachable state does neither.

A stronger form of invariants are the inductive invariants.
A property is an inductive invariant of a system if each cor-
rect state can only be transformed into other correct states,
regardless whether the first state is reachable at all. If in ad-
dition the initial state is correct then an inductive invariant
is also an operational one.

To check whether a system’s behavior is correct one has
to check whether each of the reachable states are correct,
i.e. the absence of any forbidden pattern is an operational
invariant of the system. Such an analysis suffers from two
problems. At first the set of initial instance graphs can
contain arbitrarily many graphs. For each of these initial
graphs the reachability analysis has to be performed which
is usual not feasible. Second, systems specified by Story
Patterns can have infinite many reachable states and thus
such a reachability analysis is impossible. Instead we check
whether the absence is an inductive invariant. Thereby we
do not have to consider the reachability of certain states.

There are two cases how a Story Pattern can transform a
correct instance graph into an incorrect one. At first, there
is no forbidden pattern which can be mapped to the instance
graph because some of the forbidden pattern’s positive ele-
ments are missing but the application of the Story Pattern
creates these missing elements. Second, there is a forbidden
pattern with negative elements for which the positive ele-
ments can be mapped to the instance graph but in addition
also one of the negative elements can be mapped too. In
this case the forbidden pattern did not occur so far, but the
application of the Story Pattern deletes all elements from
the instance graph to which the negative elements of the
forbidden pattern are mapped.

As there can be also infinite many of such transformations
we are interested in representatives that show the invalida-
tion of a property. To find such representatives we exploit
the fact that the application of a Story Pattern has only
local effects. Therefore it is not necessary to consider com-
plete graphs rather than parts of them. To do so we build so
called target graph patterns (tgp) each of which represents a
possibly infinite set of graphs. Such a tgp is built by merg-

Fujaba Days 2005 46

ing a forbidden pattern with a Story Pattern2. The result
is a pattern representing all those incorrect instance graphs
which contain the pattern as a subgraph. To this pattern
the Story Pattern is applied in back-wards direction which
again results in a pattern, called the source graph pattern
(sgp). If this sgp does not contain any of the forbidden pat-
terns a witness is found that the considered Story Pattern
can be responsible for the creation of a forbidden pattern.
Otherwise, the application of the Story Pattern transforms
an incorrect pattern into another incorrect one which is of
no interest.

Consider the Story Pattern move and the forbidden pat-
tern given above. One possible tgp for these two Story Pat-
terns is given in Figure 5. To this tgp the Story Pattern is
applicable in back-wards direction by construction. The sgp
resulting from the Story Pattern application is depicted in
Figure 6. This sgp is correct as the forbidden pattern can-
not be applied to it. Thus a witness is found which indicates
that the application of the Story Pattern move can produce
an instance graph containing a forbidden pattern. A for-
bidden pattern will occur in a system if there is a reachable
instance graph that contains the sgp and the move Story
Pattern is applied to this instance graph. Then the result-
ing graph will contain the tgp and contains therefore the
forbidden pattern. Thus our verification technique delivers
a counterexample showing what can go wrong. This coun-
terexample consists of two graph patterns and one Story
Pattern.

Figure 5: Example for a target graph pattern

Figure 6: Example for a source graph pattern

After the mistake has been identified the corresponding
Story Pattern can be adjusted such that the forbidden pat-
tern cannot occur anymore. In our example we have to
ensure that the Publication protocol is running before the
shuttle is moving to a track which is monitored by a new
BaseStation. This adjustment is performed by extending

2In the case that a property is invalidated by creating some
elements the building of the tgps is quiet similar to the glu-
ing presented in [5]. While we check that a given rule set is
correct, in [5] a correct rule set is derived by adding poten-
tially exponentially many morphisms to its application con-
ditions. Such additional conditional constraints of the appli-
cation condition might contradict given system constraints
and have to be checked at runtime. They can even result for
rule sets that are checked as correct by our approach, due
to our additional check of the resulting sgp for forbidden
patterns.

the move Story Pattern by additional objects of type BaseS-
tation and Publication. Now the Story Pattern may only
be applied if the Publication protocol is instantiated with
the BaseStation which monitors the succeeding Track. The
corrected Story Pattern is depicted in Figure 7.

Figure 7: Story Pattern describing the corrected
shuttle movement

4. THE PLUGIN
The plugin presented in [2] only depends on the Fujaba

Kernel (version 4.2.1 or later).
To verify that a system given as set of Story Patterns is

correct w.r.t. a set of forbidden patterns there are two main
sub algorithms, one to merge Story Patterns and one to find
matching of Story Patterns.

Merge-algorithm.The Merge-Algorithm is used to build
the tgps. To build the pattern a partial matching m, which
maps some elements (objects or links) of a Story Pattern
to a forbidden pattern, is needed as input. The algorithm
builds the tgp by extending the forbidden pattern by all
elements of the Story Pattern which are not mapped by m
to any element of the forbidden pattern.

Matching of Story Patterns.The Matching-Algorithm is
needed to find all matching between a Story Pattern and a
forbidden pattern.

The algorithm starts with two objects, one of the Story
Pattern and one of the forbidden pattern. For these objects
it is checked whether they can be matched, i.e. they are of
the same type, either both positive or both negative and are
not matched so far. If this is a valid matching it has to be
tested whether all links which are incident to both of these
objects can be matched too. Two links can be matched if
the matching fulfills the same requirements as in the case of
objects and additionally if the links are adjusted in the same
direction. In the case that this test delivers a positive result
the algorithm succeeds recursively with the pair of objects
which is incident to the links but not visited before. If the
test delivers a negative result some backtracking steps have
to be performed.

Verification Algorithm.The Verification-Algorithm decom-
poses all Story Patterns into all their possible sub Story
Patterns. Doing so negative objects are treated as non neg-
atives. For each sub Story Pattern its matching with all
forbidden patterns is calculated using the algorithm given
above. If such a matching can be found it serves as in-
put for the Merge-Algorithm which then computes the tgp.
To this tgp the corresponding Story Pattern is applied in
back-wards direction which results in the sgp. The algo-
rithm checks for each forbidden pattern whether there is a
matching which maps the forbidden pattern to the sgp. If
no such matching can be found the algorithm tries to find

47 Fujaba Days 2005

another Story Pattern which is applicable to the sgp and
which has a higher priority then the currently considered
one. If there is no such other Story Pattern which prevents
the currently considered Story Pattern a witness is found
that the application of the considered Story Pattern can
produce an incorrect instance graph. The verification stops
and the algorithm outputs the found counterexample. In the
case that either for each sgp a matching can be found that
maps a forbidden graph to it or if otherwise a Story Pattern
with a higher priority can be found which is proved to be
correct the verification delivers that the considered system
is correct w.r.t. the set of forbidden graphs.

For the above given algorithms we roughly estimated their
complexity and evaluated them on several test cases. For the
evaluation we used an AMD Athlon Processor with 1.4GHz
and 512MB working capacity.

The exact calculation of the matching algorithm’s com-
plexity is hard to determine, as it is a highly recursive al-
gorithm. In [2] a rough estimate has been done. Assume
that G is the Story Pattern and H is the forbidden pattern.
∆(G) is the highest degree of all objects n in G and d is
the depth of the search tree the algorithm traverses. Then
the complexity is about: O(|VG|∗|VH |∗∆(H)∆(G)∗d). This
estimation has been calculated for the worst case where all
objects and links have the same type.

The complexity presented above is a theoretical result that
does not allow to give evidence about the time the algorithm
needs to complete its computation. Therefore the matching
algorithm has been evaluated in [2] using untyped graphs.

Figure 8: Diagram that shows the evaluation of the
graph matching algorithm

We took one Story Pattern, representing a complete graph
of order 3, and computed all matchings between this Story
Pattern and several randomly chosen forbidden patterns of
different size. At each run the number of objects and / or
links was increased step by step. The larger the randomly
created forbidden patterns became, the longer the compu-
tation lasted. Figure 8 displays the results we found out.

The Merging-Algorithm’s complexity is linear in the size
of the both Story Patterns that have to be merged. Let
G = (OG, LG) and H = (OH , LH) be these two Story
Patterns, with O is the set of objects and L the set of
links. The complexity then can be expressed as follows:
O(|VG|+|EG|+|VH |+|EH |). This estimation is very obvious
as it is clear that the algorithm has to visit each item of
both graphs only once.

The verification algorithm’s complexity is mainly deter-
mined by two parts. At first the number of Story Pat-
terns and the number forbidden patterns, and second the
size of the single patterns. The complexity is quadratic in

the number of the Story Patterns and forbidden patterns
and exponential in the maximum size of a single pattern.
The exponential complexity is indebted by the fact, that
the verification algorithm invokes the matching algorithm.

The complexity shown above is a worst case complexity.
To prove the adaptability of our approach we modeled and
verified a system in [2]. The result of this evaluation shows
that it is possible to verify a system consisting of four Story
Patterns and three forbidden patterns in an average time of
19 sec.

5. CONCLUSION AND FUTURE WORK
We have demonstrated that the outlined modeling approach
in combination with the presented Plugin enables the sys-
tematic development of safe infinite state systems. The gen-
eration of a counterexample guides the designer in the step-
wise correction and refinement of the structural and behav-
ioral model. While the employed algorithms show rather
high worst-case complexity, the presented premature eval-
uation results for the Plugin indicate that in practice the
approach is often feasible.

In future work, we want to improve the checking engine
employed in the Plugin and also extend the expressiveness
of our approach also taking attributes, time, and hybrid
behavior into account.

REFERENCES
[1] P. Baldan, A. Corradini, and B. König. Static Analysis

of Distributed Systems with Mobility Specified by
Graph Grammars - A Case Study. In H. Ehrig,
B. Krämer, and A. Ertas, editors, ISPT Conference
Proceedings, 2002.

[2] B. Becker. Automatische Überprüfung induktiver
invarianten für graphtransformationssysteme.
Bachelor’s thesis, University of Paderborn, Paderborn,
Germany, 2005. german.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph rewrite language based
on the unified modeling language. In Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany,
November 1998.

[4] H. Giese and D. Schilling. Towards the Automatic
Verification of Inductive Invariants for Invinite State
UML Models. Technical Report tr-ri-04-252, University
of Paderborn, Paderborn, Germany, December 2004.

[5] R. Heckel and A. Wagner. Ensuring consistency of
conditional graph grammars - a constructive approach.
In Proc. of SEGRA-GRA’95 Graph Rewriting and
Computation”, ENTCS, 1995.

[6] A. Rensink. Towards model checking graph grammars.
In M. Leuschel, S. Gruner, and S. L. Presti, editors,
Workshop on Automated Verification of Critical
Systems (AVoCS), 2003.

[7] D. Varró. Automated formal verification of visual
modeling languages by model checking. Software and
System Modeling, 3(2):85–113, May 2004.

Fujaba Days 2005 48

Formal Verification of Java Code Generation
from UML Models

Jan Olaf Blech Sabine Glesner Johannes Leitner

Institute for Program Structures and Data Organization
University of Karlsruhe, 76128 Karlsruhe, Germany

ABSTRACT
UML specifications offer the advantage to describe software
systems while the actual task of implementing code for them
is passed to code generators that automatically produce
e.g. Java code. For safety reasons, it is necessary that the
generated code is semantically equivalent to the original
UML specification. In this paper, we present our approach
to formally verify within the Isabelle/HOL theorem prover
that a certain algorithm for Java code generation from UML
specifications is semantically correct. This proof is part of
more extensive ongoing work aiming to verify UML transfor-
mations and code generation within the Fujaba tool suite.

Keywords
Statecharts, Fujaba, Isabelle/HOL, verification, semantics,
transformations, code generation.

1. INTRODUCTION
The generation of code from specification languages like
UML is an important aspect of the Model Driven Archi-
tecture (MDA). State-of-the-art Computer Aided Software
Engineering (CASE) tools like the Fujaba tool suite come
with such code generation mechanisms. To ensure correct
software and system behavior, it is a necessary prerequisite
that the semantics of the original UML systems is preserved
during code generation.

To ensure that such transformations are correct, formal ver-
ification is necessary. In this paper, we consider an algo-
rithm that transforms simplified Statecharts into a Java-
like language. We verify that this transformation algorithm
is correct. Therefore we formalize the semantics of State-
charts and the targeted Java subset as well as the trans-
formation algorithm within Isabelle/HOL. Furthermore, we
prove, also within Isabelle/HOL, this code generation algo-
rithm correct by showing that each Statechart specification
and the corresponding program code are bisimilar. The use
of bisimulation as equivalence criterion between Statecharts
and the Java-like programming language ensures an ade-
quate semantics formalism even for non-terminating systems
and programs. In order to obtain machine-checked proofs as
well as reusability of proofs, our proofs and formalizations
are conducted within Isabelle/HOL.

This paper describes ongoing work that is part of a larger
project aiming to verify real life transformations from UML
specifications of CASE tools to Java code. Apart from our
already finished formalization and proof work, we give a de-

tailed plan for our future work concerning verification of
MDA transformations. We believe that verification of Fu-
jaba transformations can be a major and highly interesting
research area in the future.

In Section 2, we discuss various approaches for the formal-
ization of Statecharts. After that, we explain basic founda-
tions for behavioural equivalence proofs in Isabelle/HOL in
Section 3. Our formalization of the Java-like programming
language as well as our Statechart formalization together
with the actual correctness proof is discussed in Section 4.
We discuss related work in Section 5. In Section 6, we con-
clude and present our future workplan.

2. SEMANTICS OF STATECHARTS
Statecharts are an extension of finite state machines which
are implemented in many tools and widely used in practice.
Nevertheless, the definintion of their semantics poses subtle
difficulties due to inherent ambiguities. In this section, we
first introduce Statecharts in Subsection 2.1. Afterwards, in
Subsection 2.2, we summarize how executable code, e.g. Java
code, can be generated from them automatically. In Subsec-
tion 2.3, we explain the difficulties when formally defining
the semantics of Statecharts. Finally, in Subsection 2.4, we
discuss methods to prove equivalence of Statecharts.

2.1 The Statechart Language
Statecharts [12] are a visual language which enhance fi-
nite state machines by hierarchical and parallel composi-
tion of states (and broadcast communication between par-
allel transtitions). They have found wide-spread use in the
modelling of complex dynamic behaviour and are part of the
UML standard [20] with advanced features such as history
mechanisms and extended transition trigger conditions. In
UML Statecharts, transitions as well as states can be deco-
rated with actions, i.e. statements in some imperative lan-
guage, thereby significantly increasing the expressive power
of statecharts.

2.2 Code Generation From Statecharts
There are numerous tools providing code generation from
Statecharts. Most of these employ one of the following three
strategies of code generation which are almost directly de-
rived from code generation strategies for finite automata.

• (Hierarchical) Switch/Case Loop This most simple ap-
proach creates a nested switch/case statement that

49 Fujaba Days 2005

branches according to the current state and the cur-
rent event. Within a branch, transition-specific code,
i.e. the action associated with the transition, is exe-
cuted and the current state is set to the target state of
the transition. Hierarchical and concurrent structures
can be achieved using recursion.

• Table-driven approach The second approach stems from
a well-known method to implement finite state ma-
chines in compiler construction (e.g. scanner genera-
tion by the well-known unix tool “lex”). The actions
caused by an event in a specific state are stored in
a (nested) state/input table. In its most basic form,
entries in this table might only consist of output sym-
bols and successor states. When more complicated ac-
tions are used, more complex structures are necessary
for the representation of state table entries, as demon-
strated in [27]. In principle, a table-based approach is
also suited for hardware implementation in embedded
systems.

• Virtual Methods Deeply nested switch/case blocks may
not be desirable in an object oriented system. This is
especially true when code generated from a Statechart
is subject to manual modification and maintenance
(”round-trip engneering”). An alternative method of
code generation from Statecharts makes use of an ex-
tension of the state pattern [7]. In this method, each
state becomes a class in an inheritance hierarchy cre-
ated in parallel to the substate hierarchy of the state-
chart. The events consumed by these states are re-
alized as virtual method calls to the respective state
classes.

These are the basic strategies for code generation from State-
charts. A more detailed overview can be found in [27]. [26]
shows how hierarchical structuring information can be ex-
ploited to obtain smaller and more efficient code following
the table-based strategy.

In this paper, we present our verification of code generation
that follows the first strategy. In future work, we aim to
extend our correctness proof to also allow for the verification
of other generation algorithms as well.

2.3 Formal Semantics of Statecharts
The behaviour of a Statechart is modeled by a transition
system whose states correspond to the configurations of the
represented Statechart. A configuration itself is a maximum
set of Statechart states that can be active at the same time.
The actual behavior of the Statechart lies in the state transi-
tion function, describing how one configuration leads to the
next, depending on the current input symbol. A formal def-
inition of this step transition function has proven somewhat
challenging. A multitude of approaches has been taken to
define such a semantics. A comparison between 17 of these
approaches can be found in [25].

One reason for the difficulties in defining a state transition
function is the desired property of synchrony. Synchrony
means that the system should react immediately to incom-
ing events. In particular, incoming events and resulting ac-
tions should happen without delay at the same time. Most

State 0

State 1

x[NOT a]/ b

a

State 4

State 5State 3

b/a

 b/z

Figure 1: Event Conflict

of the time, this does not pose a problem physically, since
the sampling rate of the real system is typically limited and
significantly longer than the reaction time of the system.
However, using synchrony, concurrent states and broadcast
communications allow for a single event to trigger a chain
reaction of multiple transitions, called microsteps, in “zero
time”, creating a situation that is inconsistent with the no-
tion of causality (i.e. that original actions and the actions
triggered by them cannot be distinguished).

As an example, consider the event x passed to the Statechart
depicted in Figure 1 in the initial configuration (State 1,
State 4). The system will take the loop at State 1, and
also go from State 4 to State 5, since the first transition
emits the event b and synchrony causes the system to react
immediately. In the next step, if the input symbol is again
x, this leads to a contradiction, since the transition from
State 5 to State 3 causes the event a, in which case the
original transition (the loop at State 1) should not have
been taken.

The conflicts involving synchrony and negated conditions
can be resolved in different ways. One way is to consider only
globally consistent steps, which is intended in [22]. Global
consistency is difficult to achieve, since their might be mul-
tiple sets of transitions for a signal even if the state ma-
chine is deterministic. Another, more direct solution is to
take the causal order of microsteps into account and re-
quire that conditions guarding a transition only apply to
events that occurred before the transition was taken. This
kind of behavior is sometimes called local consistency. Local
consistency leads to the paradox situation that although all
microsteps take place at the same time, the order in which
they occur is not irrelevant.

Since synchrony, although a desirable property for the mod-
eling of real-time systems, causes these problems and often
leads to counter-intuitive behaviour (especially when more
complicated actions are allowed), more “practical” seman-
tics, including the STATEMATE [13] and the UML [3] se-
mantics, disregard this property and realize a step-by-step

Fujaba Days 2005 50

behaviour, in which events and actions generated in one step
do not become visible until the next step. In UML, this is
sometimes called run-to-completion-semantics [3].

Defining a step function becomes even more problematic
when we aim to develop a compositional semantics. In gen-
eral, compositional semantics means that the semantics of
a larger program or system can be derived from the seman-
tics of its parts. Especially in the case of parallel composi-
tion, Statecharts are “noncompositional” in nature – the be-
haviour of the concurrent state can differ significantly from
that of its substates when parallel transitions have overlap-
ping actions and conditions. When being concerned with
the equivalence of Statecharts, it is important to define an
equivalence as a congruence with respect to the Statechart
constructors. This specifically means that states that are re-
garded as equivalent should again yield an equivalent State-
chart when composed with the same state and Statechart
constructor. [24] and [17] demonstrate that such an equiva-
lence relation cannot be defined by regarding only complete
steps. Instead, the causal ordering of microsteps needs to be-
come part of the semantics. [24] achieves this by construct-
ing more complex labels in the resulting transition system,
which then contain information on how the respective step
was constructed out of microsteps. [17] use two different
kinds of transitions, microstep transitions and σ-transitions,
which determine the beginning and completion of a step, to
incorporate information about causal ordering directly into
the transition system.

2.4 Equivalences of Statecharts
The ability to prove the equivalence of Statecharts allows us
to prove the correctness of elementary Statechart-to-State-
chart-transformations. [6] present a collection of 23 such
transformations, e.g. splitting a state or shifting a tran-
sition up and down the substate hierarchy. To prove the
semantical correctness of such a transformation, a suitable
Statechart semantics is needed. Since we are interested in lo-
cal Statechart transformations, compositionality becomes an
even more important issue here. In [18], a number of equiv-
alences (which are originally introduced in [5]) is applied to
the labelled transition systems defined by a slight variation
of the semantics in [24]. Moreover, congruence properties
are studied with respect to Statechart constructor opera-
tions. They show that (of the six investigated relations),
the weakest relation between Statecharts that is still a con-
gruence is bisimilarity between their corresponding labelled
transition systems.

In this paper, we consider a restricted subset of Statecharts
consisting of non-hierarchical automata without concurrency
and show how their equivalence can be defined by bisimula-
tion in Isabelle/HOL. In the following section, we introduce
some basics about the theorem prover Isabelle/ HOL as well
as our formulation of bisimulation. Afterwards, in Section 4,
we use this formalization to prove the equivalence between
the considered restricted set of Statecharts and the Java
code generated from them.

3. PROOF FOUNDATIONS: BISIMULATION
AND ISABELLE/HOL

Java−like source code

Implementation Verification

Statechart

code generation

Semantics of Statechart

Semantics of source code

Bisimulation

Figure 2: Verification of Code Generation

This section describes bisimulation as the method of choice
for transformation verification. Moreover, we desribe some
Isabelle/HOL related aspects.

3.1 Bisimulation
Our principle idea is to regard a Statechart and its trans-
formation –a program in a higher programming language–
as semantically equivalent if they denote the same observ-
able behaviour. For example in a deterministic specification,
they must have the same sequences of observable states.
Figure 2 shows the principle to prove such a transforma-
tion correct. One needs a Statechart semantics and a target
language semantics as well as mappings from concrete State-
charts and programs to their respective semantics. To verify
a transformation, one has to show that the semantics of the
original system is preserved during its transformation. In
our case, this means that the sequences of observable states
are the same for both Statechart and generated program.
On the semantics side, this means that they have to bisimu-
late each other, i.e. that their semantics are in a bisimulation
relation.

As a basic prerequisite, the semantics of Statecharts and
Java-like programs must be comparable. For this purpose,
we express their semantics as a Kripke structure.

Definition 1 (Kripke Structures). A Kripke struc-
ture is a five tuple (AP, S, R, S0, L) where AP is a set of
atomic propositions, S is a set of states, R is a transition
relation, S0 is the initial state, and L is a labeling function
mapping states to sets of atomic propositions. �

Hence, a Kripke structure is equivalent to an annotated state
transition system.

Definition 2 (Bisimulation Relation [4]). Let M =
(AP, S, R, S0, L) and M ′ = (AP, S′, R′, S′

0, L
′) be two Kripke

structures with the same set of atomic propositions AP . A
relation B ⊆ S × S′ is a bisimulation relation between M
and M ′ if and only if for all s and s′, if B(s, s′) then the
following conditions hold:

1. L(s) = L′(s′)

51 Fujaba Days 2005

2. For every state s1 such that R(s, s1) there is s′
1 such

that R′(s′, s′
1) and B(s1, s

′
1)

3. For every state s′
1 such that R(s′, s′

1) there is s1 such
that R′(s, s1) and B(s1, s

′
1) �

We get a Kripke structure representing the semantics of a
Statechart by unrolling its configuration transitions. These
correspond to the transition relation R in the Kripke struc-
ture. The states S of a Kripke structure correspond to con-
figurations in Statecharts with S0 being the initial config-
uration. We encode a stream of upcoming input events as
well as the current execution time in the Kripke structure
states, too. A Kripke structure may have infinitely many
states. This corresponds to a non-terminating Statechart.

We can describe the semantics of a program in a higher pro-
gramming language as a Kripke structure M : If we specify
its semantics such that the execution of a single instruc-
tion is atomic, the semantics of a program is specified by
a state and a state transition function. Each state may
consist of the current execution state and memory and vari-
able mappings. Kripke structures are used as follows for
the specification of program semantics: The atomic propo-
sitions represent the variable mapping, memory etc. S is the
set of states reachable within the execution of the program
M . R represents possible state transitions and the condi-
tions under which they appear. S0 is the initial state. L is a
labeling function mapping states to their observable parts.
This is appropriate for both Statecharts and programming
language. Two programs, or a Statechart and a Java-like
program, resp., are bisimilar if there exists a bisimulation
relation B such that the initial states of both programs are
within the relation.

If we describe the semantics of a Statechart as a Kripke
structure M and the semantics of a corresponding program
in a higher programming language as a Kripke structure M ′,
then the bisimulation relation B expresses behavioral equiv-
alence, with an equivalence criterion that we can choose
freely: E.g. we can restrict the variables that appear in states
– as well as in the atomic propositions – to input/output
values. Then L(s) = L′(s′) checks state equivalence. With
the notion of bisimulation, we have a formal criterion under
which a program and a Statechart show the same behavior.

In the case of deterministic systems that we examine in this
paper, the requirements for a bisimulation get even simpler:
We regard two programs as semantically equivalent iff:

• They start with equivalent initial states s and s′. This
is denoted s 'O s′ where O is some set of observable
actions. By equivalence we mean that the observable
parts of the states must be the same, corresponding to
the requirement L(s) = L′(s′) in Definition 2.

• For two states s and s′ in the bisimulation relation, we
require that the succeeding states are equivalent again.
This is formalized in Isabelle/HOL as:
∀ s s′ .s 'O s′ −→ next s 'O next s′

where next returns the succeeding state.

This notion of program and Statechart equivalence captures
very elegantly the semantics of both terminating and non-
terminating programs and Statecharts. With its state ab-
straction, it is flexible enough to prove most transformations
and optimizations correct. If we want to prove the correct-
ness of a code generation algorithm from Statecharts, we
have to show that Statechart and generated program(code)
denote the same sequence of observable states which is ex-
actly what a bisimulation proof does.

Bismulation may be defined on Kripke structures. A math-
ematically more elegant approach is to use coalgebraic data
types instead of Kripke structures [14].

3.2 Isabelle/HOL-Specific Aspects
Isabelle/HOL is a generic higher order logic (HOL) theorem
prover ensuring a very high expressivness of specifications.
Theorem provers can be used to create specifications, formu-
late lemmata and theorems on them and prove them correct.
Unlike model checking, working with theorem provers, espe-
cially those using higher order logics, is highly interactive.
Specifications have to be designed very carefully in order to
be able to prove them correct. The process of proving a sys-
tem specification correct takes some effort but often reveals
errors in the specification that would have been overlooked
otherwise.

In Isabelle/HOL, bisimulation can be formulated in multiple
ways. A very elegant way is to use coalgebraic datatypes,
e.g. lazy lists [21], which in most cases of practical relevance
come automatically with a bisimulation principle. In con-
trast to model checking, our Isabelle proofs verify complete
semantical equivalence and not just certain aspects or con-
ditions.

4. VERIFYING THE TRANSFORMATION
FROM UML TO JAVA

In this section, we present our verification of Java code gen-
eration from UML models. Therefore, we consider a simpli-
fied subset of UML Statecharts, namely finite state machines
(FSMs). To verify code generation, i.e. the transformation
from an FSM to a target language program, a semantics for
both FSMs and the target language with the same semantic
domain is required. As already explained in the previous sec-
tion, we concentrate on observational equalivalence by mod-
elling semantics as the state transition sequences that can be
observed during execution. In Subsection 4.1, we show how
we represent FSMs and their semantics in Isabelle/HOL.
Then, in Subsection 4.2, we introduce our target program-
ming language WSC that contains while, switch, and case
statements. The code generation algorithm is given in Sub-
section 4.3. Its correctness proof is presented in Subsec-
tion 4.4.

4.1 Formalization of Finite State Machines
Finite state machines are formalized as tuples (S, E). S is a
list of states having arbitrary type. This allows in particular
for hierarchical FSMs since the type of a state can be again
an FSM. (Note that in the work presented here, we have not
dealt with hierarchical FSMs. But since we want to so soon,
we have already adjusted the specifications for this purpose.)
E is a list of transitions connecting the states in S. A transi-

Fujaba Days 2005 52

tion consists of its source and target (which are represented
by the position of the source and target states in the state
list S), a trigger symbol and an action symbol. We enhance
the set of action symbols by the new symbol silence. With
this extension, we make sure that every transition has an
action associated with it.

Our decision to use a list to store the states of a Statechart
has many benefits. It eliminates the need to find an ordering
of states when generating code. Moreover, it is suitable for
hierarchical automata since lists are inductive types. Active
states can now be referenced by their position in the state
list. We call the pairing of state machine and currently ac-
tive state an FSM configuration. For example, (((State 4,
State 3, State 5), ((1,2), (1,3), (3,2))), 1) is the initial con-
figuration of the lower substate of the statechart in Figure 1.

The semantics of an FSM is the potentially infinite sequence
of output symbols it produces given a sequence of input sym-
bols. If the state machine is deterministic, i.e. there is at
most one transition for each trigger and source state, a par-
tially defined step function exists that selects this transition
(if it exists) for a given state and input symbol. The output
sequence is then calculated by the corecursive application of
this function. (For simplicity, one might think of this core-
cursively defined output sequence as the potentially infinite
list of transitions that are performed during the run of the
FSM.)

4.2 The WSC Language
As target language, we consider a simplified subset of Java
called WSC (while-switch-case) that contains switch and
case statements and a specialized while loop. The language
has only two variables of type integer, without the ability to
define new ones. WSC only incorporates the limited func-
tionality needed for the code generated from state machines,
and can be easily transformed into real Java. Our definition
of its syntax within Isabelle/HOL is given in Figure 3.

datatype WSC_Variable =
CURRENTSYMBOL | STATE
/— This language has only two variables/

datatype WSC_Expression =
CONST nat | VAR WSC_Variable

datatype WSC_Statement =
WHILE_NEXT_SYMBOL WSC_Statement |
SWITCHCASE WSC_Expression
"(WSC_Expression × WSC_Statement) list"
WSC_Statement

("SWITCH _ CASES { _ } DEFAULT _") |
ASSIGN WSC_Variable WSC_Expression |
CONS WSC_Statement WSC_Statement ("_;_") |
OUTPUT ActionType |
SKIP

Figure 3: Syntax definition of the WSC language

The semantics of WSC is defined by specifying for each
program a potentially infinite sequence of ouput symbols.
For each pair consisting of a WSC program and its current
state, we define the observable output, the successor state,
and the continuation, i.e. the remainder of the program to

be executed. Thereby, a state is a function mapping vari-
ables to values. We can then corecursively apply these func-
tions, thus yielding a potentially infinite sequence of succes-
sor states and output symbols. For a more detailed descrip-
ion of this procedure, see [16]. Since we are only interested in
output equivalence, we can disregard the sequence of states.
Obviously most WSC statements do not produce any out-
put, thus the output sequence will contain a lot of empty
events which are not generated by the corresponding stat-
echart semantics. We therefore define a cleaned sequence
which contains only the elements that are not empty.

4.3 The Code Generation Algorithm
From an initial statechart configuration (((s1, . . . , sn), (t1,
. . ., tn)), n) we generate WSC code according to the algo-
rithm depicted in Figure 4.

while next symbol {
switch (STATE) {
... – for j = 1. . .n
case (j) {
switch (CURRENTSSYMBOL) {
... – for all transtions tk with source(tk) = j
case(trigger(tk)){
STATE := target(tk);
output action(tk)
}
}
}
}
}

Figure 4: Overview of Code Generation Algorithm

The default cases of the two switch statements are not shown
– they are both empty: For the inner switch statement, this
means that an input symbol has occurred that is not the
trigger of any transition in the current state. The outer
switch statement is never reached if the original state ma-
chine is reasonably well-formed, since this would require the
STATE variable to point to a non-existing state.

4.4 Correctness Proof
This transformation from FSM to WSC is considered seman-
tically correct iff the semantics of source (i.e. FSM) and tar-
get (i.e. WSC program) are always the same. Thus, we have
to compare the output sequences of a finite state machine
and its generated WSC code. We use outWSC , outFSM resp.
to denote these output sequences. Apart from the FSM or
WSC program they need an input parameter I – a stream
of external events. Using the bisimulation principle from
section 3 to show that two sequences are equal, we have
to find and define a bisimulation relation in which they are
contained. In this case, this means a relation ∼ such that:

(1) outWSC(CodeGen(A), I) ∼ outFSM (A, I)

(2) If X ∼ Y , then either X and Y are both empty, or

(a) the first elements of X and Y are equal, and

(b) for the remaining sequences X ′ and Y ′, X ′ ∼ Y ′

holds.

53 Fujaba Days 2005

lemma c2 :
assumes a1

: "X = WSC_seqOut_clean (FA_CodeGen C) (i ; I)"
shows "X = Leaf (Some (takeStepIO C i))

; WSC_seqOut_clean (FA_CodeGen (nextConfig C i)) I"
proof (cases "i ∈ set (map Trigger (Relevant C))")
assume "i /∈ set (map Trigger (Relevant C))"
hence " WSC_seqOut (FA_CodeGen C) (i ; I) =

Leaf None ; Leaf None ; Leaf None ;

Leaf (Some (takeStepIO C i)) ; FollowCodeGen i C I"
proof ...(29 proof steps omitted) ...done
thus "X = Leaf (Some (takeStepIO C i))

; WSC_seqOut_clean (FA_CodeGen (nextConfig C i)) I" using a1
by (simp) (unfold WSC_seqOut_clean_def FollowCodeGen_def , auto)
next
assume "i ∈ set (map Trigger (Relevant C))"
hence "WSC_seqOut (FA_CodeGen C) (i ; I)

= Leaf None ; Leaf None ; Leaf None ;

Leaf (Some (takeStepIO C i)) ; Leaf None ; FollowCodeGen i C I"
proof ...(38 proof steps omitted) ...done
thus "X = Leaf (Some (takeStepIO C i)) ;

WSC_seqOut_clean (FA_CodeGen (nextConfig C i)) I" using a1
by (simp) (unfold WSC_seqOut_clean_def FollowCodeGen_def , auto)
qed

Figure 5: Some Details of the Correctness Proof in Isabelle/HOL

theorem "state_sequenceIO A I = WSC_seqOut_clean (FA_CodeGen A) I"
proof -
have "bisimulation (

⋃
I A .

{ (state_sequenceIO A I , WSC_seqOut_clean (FA_CodeGen A) I) })"
apply (unfold bisimulation_def , rule ballI , simp , (erule exE)+)

...(17 proof steps omitted) ...
apply (auto , simp add: c1 , simp add: c2)

done
thus ?thesis

Figure 6: Main Correctness Theorem

For this particular case we now define a relation by

X ∼ Y :⇐⇒ ∃A I.
X = outWSC(CodeGen(A), I)
Y = outFSM (A, I)

This definition trivially fullfills requirement (1). Note that
the definition of a bisimulation relation is an artificial con-
struct for conducting proofs. Thus, it remains to be shown
that for any non-empty input sequence:

(a) The first output symbols from a state machine and its
generated WSC code are equal. This can be easily
shown by symbolically executing the first steps of our
semantics definiton for both WSC and FSMs.

(b) For the remaining output sequence pair, we can find
a finite state machine A such that its output is the
left entry of the pair and its generated WSC code out-
puts the right entry. For A, we can choose the follow
configuration Followi(A), which is the same state ma-
chine with a different initial state, namely the state
in which the original machine is in after the symbol
i has occurred. By proving some basic properties of
the semantics of both FSM and WSC, we have been

able to show within Isabelle/HOL that the code gener-
ated from Followi(A) produces as output the original
sequence minus the first symbol.

Some details of our Isabelle/HOL proof are shown in Is-
abelle/HOL syntax in Figures 5 and 6. They are used for the
proof of the final theorem from Figure 6. It proves equality
of FSM A and generated code FA CodeGen A by generating
two state sequences and defining a bisimulation containing
them. Note that Isabelle implicitly quantifies over all au-
tomata A and all kinds of input I. The preceeding lemma
(Figure 5) shows that the cleaned output of the generated
code, i.e. output of the program with all empty actions re-
moved, is the same as the the action emitted by the first
step of the state machine, takeStepIO C i, followed by the
output of the code generated from the follow configuration.
This is the core of the proof as described in Figure 6.

5. RELATED WORK
Apart from the work on semantics of Statecharts discussed
in Section 2, there is more related work on the verification
of code generation techniques. Verified code generation for
Statecharts is closly related to compiler verification since
one can regard such a code generator as a special compiler.

In the area of compiler verification, a two-fold notion of cor-

Fujaba Days 2005 54

rectness has been established: One distinguishes between
the correctness of the translation algorithm itself and the
correctness of its implementation. To ensure the first kind
of correctness, the correctness of the algorithm, one needs to
verify a given translation algorithm as we have verified the
Java code generation algorithm in this paper. For the sec-
ond kind of correctness, a very promising approach is to use
program result checkers [10, 11]. Here one does not verify
the code generator itself but only its result. An independent
checker takes the source and target program, which would be
a Statechart and a Java-like program in the context of this
paper, and checks whether they have the same semantics.
This may ensure correct code generation for each distinct
run of the code generator. This technique has also become
known as translation validation [23].

Recently our own work has concentrated on verifying com-
piler optimizations. In [1], we have verified dead code elimi-
nation which is a popular compiler optimization. This work
also uses bisimulation to define semantical equivalence of
programs. In [2], we introduce a principle to model data de-
pendencies with partial orders in order to ease verification.
We hope to reuse this concept to further improve our se-
mantics formalism adequate for transformation verification
on Statecharts. Summaries can be found in [8, 9].

It should be noted that languages like the Object Constraint
Language (OCL) [19] that are frequently used in the UML
context may only be used to formulate certain properties
such as invariants and pre- and postconditions of UML spec-
ifications. In extension, our approach covers the complete
semantics of a (Statechart) specification. Hence it is possi-
ble to completely verify code generation instead of validating
only certain properties.

6. CONCLUSIONS & FUTURE WORK
In this paper, we have demonstrated that it is feasible to
specify and verify the transformation from restricted State-
charts to executable program code within the Isabelle/HOL
theorem prover. We have specified the semantics of this
restricted set of Statecharts as well as of the target pro-
gramming langugage. Moreover, we have verified a simple
code generation algorithm. For this purpose, we have in-
troduced some basic verification principles like bisimulation
and explained how they can be used to verify code gener-
ation from UML specifications or transformations on UML
specifications themselves.

For our future work, we see a large research potential in
two directions. First we want to complete our Statechart
and Java language specification, thereby in particular verify-
ing more complex code generation techniques. Secondly, we
want to verify transformations on Statecharts themselves.

The completion of the Java semantics should be straight-
forward since formalizations of the semantics of Java in Is-
abelle/HOL have become very mature in recent years, see
e.g. [15]. The authors of this paper regard the establishment
of an adequate Statecharts semantics and its formalization
in Isabelle/HOL as the most challenging task. The specifica-
tion of the code generation technique is also a very complex
task, especially when one regards optimizations and paral-

lelism. Another area of future research is the verification of
transformations on Statecharts themselves. Formal verifi-
cation of flattening Statecharts might be an actual task for
our very near future work.

To achieve verified code generation in practice, it is not suf-
ficient to only verify the code generation algorithm. The
implementation of the algorithm might introduce errors as
well, cf. our discussion on compiler verification and checkers
in Section 5. There are two different principles to guarantee
a correct implementation of the code generation algorithm.
One could verify the implementation itself. This seems like
a rather tedious task which we believe is not yet feasible for
real-life implementations. On the other hand, one can verify
a simple program result checker that checks for each run of
the code generation mechanism that the generated code is a
correct translation of the original Statechart. Such a checker
can be much simpler than the original transformation im-
plementation. Hence it is easier to verify. Alternatively,
one might even generate such a checker from its specifica-
tion automatically, also a branch of our ongoing work. Such
a checker generator could become part of the Fujaba tool
suite. We want to tackle these problems in our future work.

7. REFERENCES
[1] J. O. Blech, L. Gesellensetter, and S. Glesner. Formal

Verification of Dead Code Elimination in
Isabelle/HOL. In Proceedings of the 3rd IEEE
International Conference on Software Engineering and
Formal Methods, Koblenz, Germany, September 2005.
IEEE Computer Society Press.

[2] J. O. Blech, S. Glesner, J. Leitner, and S. Mülling.
Optimizing Code Generation from SSA Form: A
Comparison Between Two Formal Correctness Proofs
in Isabelle/HOL. In Proceedings of the Workshop
Compiler Optimization meets Compiler Verification
(COCV 2005), 8th European Conferences on Theory
and Practice of Software (ETAPS 2005), Edinburgh,
UK, April 2005. Elsevier, Electronic Notes in
Theoretical Computer Science (ENTCS).

[3] M. Born, E. Holz, and O. Kath. Softwareentwicklung
mit UML2 2. Addison-Wesley, 2004.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[5] R. De Nicola. Extensional equivalences for transition
systems. Acta Informatica, 24(2):211–237, 1987.

[6] H. Frank and J. Eder. Equivalence transformation on
statecharts. In Proceedings of the 12th International
Conference on Software Engineering and Knowledge
Engineering, SEKE 2000, pages 150–158, 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[8] S. Glesner. Verification of Optimizing Compilers,
2004. Habilitationsschrift, Universität Karlsruhe.

55 Fujaba Days 2005

[9] S. Glesner and J. O. Blech. Logische und
softwaretechnische Herausforderungen bei der
Verifikation optimierender Compiler. In Proceedings
der Software Engineering 2005 Tagung (SE 2005).
Lecture Notes in Informatics, März 2005.

[10] S. Glesner, G. Goos, and W. Zimmermann. Verifix:
Konstruktion und Architektur verifizierender
Übersetzer (Verifix: Construction and Architecture of
Verifying Compilers). it - Information Technology,
46:265–276, 2004. Print ISSN: 1611-2776.

[11] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle,
F. von Henke, U. Hoffmann, H. Langmaack,
H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler
Correctness and Implementation Verification: The
Verifix Approach. In P. Fritzson, editor, Poster
Session of CC’96. IDA Technical Report
LiTH-IDA-R-96-12, Linkoeping, Sweden, 1996.

[12] D. Harel. On Visual Formalisms. Communications of
the ACM, 31(5):514–530, 1988.

[13] D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Transactions on Software
Engineering Methodology, 5(4):293–333, 1996.

[14] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras
and (Co)Induction. EATCS Bulletin, 67:222–259,
1997.

[15] G. Klein and T. Nipkow. Verified Bytecode Verifiers.
Theoretical Computer Science, 298:583–626, 2003.

[16] J. Leitner. Coalgebraic Methods in the Verification of
Optimizing Program Transformations Using Theorem
Provers. Minor Thesis (Studienarbeit), University of
Karlsruhe, 2005.

[17] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A
compositional approach to statecharts semantics. In
SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 120–129, New York, NY,
USA, 2000. ACM Press.

[18] A. Maggiolo-Schettini, A. Peron, and S. Tini.
Equivalences of statecharts. In International
Conference on Concurrency Theory, pages 687–702,
1996. Springer-Verlag, LNCS.

[19] O. Object Management Group. OMG Unified
Modeling Language Specification, March 2003.
Version 1.5.

[20] O. Object Management Group. UML standard 2.0,
2005. available at http://www.uml.org.

[21] L. C. Paulson. A Fixedpoint Approach to
(Co)Inductive and (Co)Datatype Definitions, 2004.
available at
www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/
Isabelle2004/doc/ind-defs.pdf.

[22] A. Pnueli and M. Shalev. What is in a step: On the
semantics of statecharts. In TACS ’91: Proceedings of
the International Conference on Theoretical Aspects of
Computer Software, pages 244–264, London, UK,
1991. Springer-Verlag.

[23] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In B. Steffen, editor, Proceedings of Tools
and Algorithms for the Construction and Analysis of
Systems, pages 151–166, Lisbon, Portugal, April 1998.
Springer Verlag, Lecture Notes in Computer Science,
Vol. 1384.

[24] A. C. Uselton and S. A. Smolka. A compositional
semantics for statecharts using labeled transition
systems. In CONCUR ’94: Proceedings of the
Concurrency Theory, pages 2–17, London, UK, 1994.
Springer-Verlag, LNCS.

[25] M. von der Beeck. A comparison of statecharts
variants. In Proceedings of the Third International
Symposium Organized Jointly with the Working Group
Provably Correct Systems on Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 128–148,
London, UK, 1994. Springer-Verlag.

[26] A. Wasowski. On efficient program synthesis from
statecharts. In LCTES ’03: Proceedings of the 2003
ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, pages 163–170, New
York, NY, USA, 2003. ACM Press.

[27] A. Zündorf. Rigorous Object Oriented Software
Development with Fujaba. Unpublished draft, 2002.

Fujaba Days 2005 56

Template- and modelbased code generation for MDA-Tools

Leif Geiger
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

leif.geiger@uni-kassel.de

Christian Schneider
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

cschneid@uni-kassel.de

Carsten Reckord
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

creckord@uni-kassel.de

ABSTRACT
The Model Driven Architecture (MDA) proposes model trans-
formations to obtain an executable model from a platform
independent model. Unless one uses an interpreter the com-
mon executable model of an application is specified in some
programming language. To obtain such an implementation
of a model automatically is the task of code generation in
MDA-Tools. In this paper we present a modelbased ap-
proach to this task. It uses explicitly modelled intermediate
data and makes use of code templates for the final transfor-
mation into pieces of text.

1. INTRODUCTION
CASE-Tools which implement operational semantics do com-
monly provide either an interpreter or a code generation
component to make use of this semantics. In this paper
we discuss a concept for such code generation component.
The general task of code generation is to transform an ab-
stract syntax graph (ASG) into one or more programming
language files. These are compiled (if applicable) and exe-
cuted to operationalize the specification in the CASE-Tool
afterwards.

Our approach to code generation in Fujaba [2] uses Velocity
Templates [1] to generate source code in the final step. See
Figure 7 for example template code.

To choose the templates to be applied and to supply the tem-
plate instantiation with parameters an intermediate layer of
tokens was introduced. These tokens are created by analysing
the ASG elements, for which code should be generated. This
enables sorting, optimizations and extensions to work with
explicit object structures without altering the ASG of the
specification.

1.1 Example
As a simple example we want to show a part of the code gen-
eration for a simple graph transformation rule throughout
this paper. Generating code for Fujaba’s graph transfor-
mation rules is one of the core requirements that must be
fulfilled by a code generation for Fujaba. The mapping from
graph transformations to java code in general is described
in [7].

neighbours partner

children parameter B:child

B:partner

A::doIt (parameter: A): Void

Figure 1: Fujaba rule diagram as an example

The example can be described as follows (cf. Figure 1): The
object parameter is passed to the rule as method parameter,
the child object can be found over a link called children.
Additionally an object named partner exists. This can be
found by navigating along the link neighbours from object
child. Alternatively it can be found over the partner link
starting at parameter. In this case the object child can
be found by navigating along the neighbours from object
partner. The rule does not change the object graph (graph-
theoretically spoken: RHS equals LHS).

2. CONCEPT
The code generation was split into several subtasks which
will be described in detail in the following subsections 2.1 to
2.4. A brief overview is given by Figure 2.

Syntax graph Tokens Code

optimization

sorting / structuring

decomposition code writing

Templates

Figure 2: Subtasks of the code generation with ini-
tial and resulting data

57 Fujaba Days 2005

2.1 Creating Tokens (decomposition)
The first task is to create atomic operation tokens for each
syntax-graph element. The same kind of syntax-graph ele-
ments can cause different tokens to be created, because of
their different attribute values or context. Additionally a
single syntax-graph element usually results in multiple to-
kens. Each token represents an code fragment that should
be generated.

The result of the token creation task is a set of tokens which
are usually referring each other in several ways (so forming
a graph of tokens).

Spoken in terms of our example a token of type CheckBound-
Operation is created to check if the object parameter is
bound. For each link a token of type CheckLinkOperation

is created for each direction the link can be traversed. Fig-
ure 3 shows the two resulting CheckLinkOperations for the
child link (the direction is defined by the subject link).
Tokens for the other two links are created accordingly (not
shown). As the bound attribute (not displayed in Figure 3)
of the child object is false, the generated code must search
for the object. Therefore a token of type SearchOperation

is created for each link leading to the object. In addition to
the SearchOperation along the child link shown in Figure
3, another SearchOperation for the child object is created
for the neighbours link and two more for the two links con-
nected to the partner object. There is no SearchOperation

for the parameter object as it is bound.

Most of the operations require one or more of the involved
objects to be matched before they can be performed. These
prerequisite objects are specified with needs links from the
tokens. For example, CheckLinkOperation t3 needs Objects
o1 and o2 to check the link between them.

l2:UMLLink
"partner"

t1:CheckBoundOperation

o3:UMLObject
"partner"

l3:UMLLink
"neighbours"

o1:UMLObject
"parameter"

l1:UMLLink
"children"

o2:UMLObject
"child"

t4:CheckLinkOperation

t3:CheckLinkOperation

t2:SearchOperation

needs

subject link needs

subject

subject

Figure 3: Exemplary tokens (grey) for the transfor-
mation rule seen in Figure 1

2.2 Sorting and Structuring
In most cases translating the generated token graph into
code directly is difficult. It is easier to first sort and structure
the tokens to get a token graph that better reflects possible
operational dependencies among tokens. The transforma-
tions necessary to structure the tokens depend on the kind
of syntax graph the tokens are derived from. Tokens from

class diagrams usually need little to no further structuring.
Behavioral diagrams on the other hand usually require the
token graph to be structured and brought into a hierarchical
form that is later mirrored in the hierarchical block structure
of the generated code.

We will focus on the structuring of Fujaba’s rule diagrams,
but similar transformations can be used to structure the
token graphs of other behavioral diagrams. A detailed ex-
planation of rule diagrams used in Fujaba can be found in
[7]. To generate code for a rule diagram, a search plan -
an operational form of the diagram - has to be found, that
defines how to match the LHS of the rule and how to per-
form the graph transformation. Since in general many valid
search plans exist for a rule diagram, it is also important to
find an efficient one, which will be discussed in section 2.3.

In [7] Zündorf describes a basic method to find a search
plan and create code directly from the rule diagram. We
will now present a method to find a search plan through
transformation of the token graph and will then use the
found search plan for the template based code generation.

One problem in finding a valid search plan is to decide
which tokens are to be used, because usually not all of
the generated tokens are needed in a search plan. For ex-
ample, the objects child and partner in the example of
Figure 1 can both be reached by a SearchOperation di-
rectly from parameter. In that case a SearchOperation

between child and partner is not needed and instead a
CheckLinkOperation can be performed for the neighbours

link.

The other problem is to sort the used tokens correctly such
that all prerequisites of an operation are already matched
when the operation is to be performed. In our example an
alternative search plan could reach the partner object by
first finding the child from parameter and then matching
partner from child over the neighbours edge.

Our search plan is a tree structure with ordered child lists,
which will be interpreted in a depth-first manner in the rest
of the code generation process. Tokens depending on other
tokens due to prerequisite objects are located in the subtree
below the tokens they depend on, ensuring that all prereq-
uisites are matched when using depth-first traversal.

Transforming the token graph into this search tree is fairly
simple:

1. Add a new temporary root node to the LHS graph of
the rule diagram and connect all bound objects of the
LHS to it. Find a spanning tree starting at this node
(using the links as edges).

2. For all edges in the spanning tree the SearchOperation
towards the child is added to the search tree. Its parent
is the SearchOperation that finds its sole prerequisite
object or the root node if the prerequisite object is
bound (cf. Figure 3: t2 finds o2 and has o1 as its
prerequisite).

3. For all links not in the spanning tree a CheckLink-

Operation will be added in the next step. Discard

Fujaba Days 2005 58

s:SearchPlan

children

childrensubject subject

needs needst6:CheckLinkOperation
"partner -> child"

t2:SearchOperation
"parameter -> child"

t5:SearchOperation
"parameter -> partner"

o3:UMLObject
"partner"

o2:UMLObject
"child"

Figure 4: Search plan with partially added Check-
Operation

all other Search- and CheckLinkOperations (cf. Fig-
ure 3: Only one of the three operations t2-t4 for the
children link will be in the final search plan).

4. Successively add all CheckOperations to the search
tree as follows:

(a) Add the CheckOperation as child to a Search-

Operation that matches one of its prerequisites

(b) Find a SearchOperation for another of its prereq-
uisites. Find the first common ancestor of the two
SearchOperations and move the subtree with the
CheckOperation from the common ancestor to
the new SearchOperation. This is possible be-
cause siblings in the tree are independent of each
other.

(c) Repeat for all prerequisites.

5. Add the tokens for the RHS as children of the root
node, adhering to the order of object and link destruc-
tion, creation and collaborations

The search tree to match all unbound objects in our exam-
ple consists of two SearchOperations matching the child

and partner object. Additionally a CheckLinkOperation

for the remaining link not used for the search is required.
Figure 4 shows the search tree with the CheckLinkOperation
for the neighbours link added below the first of the two
SearchOperations for its prerequisites as described in step
4.1.

Now the tree has to be modified to get the CheckLinkOpera-
tion below the other SearchOperation, too, as described in
step 4.2. Therefore the subtree starting at SearchOperation
t5 and containing the CheckLinkOperation is moved below
SearchOperation t5. Since the CheckLinkOperation has no
further prerequisites it is now correctly added to the search
plan. The resulting, final search plan is shown in Figure 5.

To support easy extensibility, the creation of the token tree
is realized with a handler chain similar to the chain of re-
sponsibility pattern. The search plan is successively built by
the handlers in the chain. The first handler receives the set
of available tokens and the empty root node of the tree to be
built. Each following handler receives the remaining unused
tokens and the tree from the previous handler, restructures
or incorporating new tokens into the tree and passes it on.
This way, handling of new tokens can be added fairly easy,
even though in most cases this will not be necessary because

s:SearchPlan

t6:CheckLinkOperation
"partner -> child"

t2:SearchOperation
"parameter -> child"

t5:SearchOperation
"parameter -> partner"

Figure 5: Final Search plan for our example

generic handlers exist that can deal with most tokens based
solely on their prerequisites, which is usually sufficient.

2.3 Optimization
An important quality feature of the generated code is its
runtime efficiency. Therefore we want to find, among the
valid search plans, the one that results in the best runtime
cost.

The most optimization potential can be leveraged from the
selection of the SearchOperations used in the initial search
tree. Obviously following a to-one link is cheaper than
checking multiple objects via a to-many link. Given a cost
model for the tokens, a good solution can therefore be found
easily by finding a minimal spanning tree to build the initial
search tree.

Additionally, fast operations (like link checks) should be per-
formed as early as their prerequisites allow to find invalid
matches early and thus avoid further expensive searches.
Therefore, when moving a subtree as described in the tree
generation process above, its tokens should afterwards be
propagated towards the common ancestor as far as their
prerequisites allow or until only cheaper tokens are on their
path to the common ancestor.

Finally, with the exception of tokens from the RHS of the
graph, siblings in the tree are independent from each other.
Therefore, subtrees with a low runtime cost relative to the
number of tokens in the subtree can be moved to the front
of the ordered child lists, again allowing for earlier detection
of invalid matches at a lower total cost.

All optimization steps can be easily realized as handlers in
the handler chain. The cost model for the tokens is realized
as a separate chain of responsibility that can be accessed by
all the handlers. For link operations an additional model
for the average payload of the referenced link is maintained,
separating access costs for the different link types (sorted,
ordered, hashed etc.) from the typical number of objects
reachable by the link.

In the current implementation the cost and payload models
give a static cost estimation, only. They can however be
easily extended to e.g. take statistical information gathered
from execution on typical data into account.

2.4 Code writing
After having optimized the set of tokens, we are finally able
to generate code for them The class responsible for this is

59 Fujaba Days 2005

0..n

0..1

 {ordered}generators

String :)Token:operation (generateCodeForChildren
String :)Token:operation (generateCode

String : targetName

CodeWritingEngine

String :)Token:operation (generateCode

CodeWriter

String :)Token:operation (generateCode
Boolean :)VelocityContext:context, Token:operation (fillContext

String : templateName

TemplateCodeWriter

Figure 6: Class diagram for code writing

called CodeWritingEngine. It has a list of CodeWriters
which implements the chain of responsibility design pattern
to allow extension, cf. figure 6.

The token tree is visited inorder. Every visited token for
which we want to generate code is then passed to the chain,
so that the code writer responsible can generate code for
the token. This is usually done by an instance of class
TemplateCodeWriter. This code writer opens the velocity
template with the name specified by its templateName at-
tribute and passes the token and additionally needed infor-
mation as context to the velocity template engine. This
additional information also includes the code generated for
all the children of the token in the tokens hierarchy. Then
the velocity engine is used to generate the code.

If e.g. a token of type ObjectAssignmentOperation is vis-
ited, it is passed to the chain. The object of type Object-

LifecycleCodeWriter is responsible for such tokens, so it
will initialize the template which is shown in Figure 7. The
ObjectLifecycleCodeWriter will look up the UMLObject

which is refered by the token and pass it as object param-
eter when executing the template. In the template in lines
1 to 3 some local variables are set (the name and type of
the object and whether or not it is optional. In lines 4-6 the
$tmpName variable is set depending on whether a type cast
is needed or not. In line 9 the object is finally bound. The
following lines preform a type check if a type cast is needed.

3. MODELBASED TESTING
Testing the correctness of generated code is generally a hard
task. To test code generation, one would start with an arbi-
trary syntax element in some context and generate code for
it. Just comparing the generated code with the expected one
would not give a good test criteria: if the code is indented a
different way or somehow refactored (different code but same
semantics), a test failure would nonetheless be reported. We
made the experience that in this case the developer tends to
believe that the new code is correct and just overwrites the
expected code with the code generated by his new code gen-
eration. This way the test would of course execute successful
again but possible bugs would have been ignored.

It would be more useful if one could test whether or not
the generated code has the expected behaviour. For code

Figure 7: Example template that generates Java
code for binding an object

which is compiled afterwards, like e.g. our java code, a first
hint whether or not the code may be correct is given by the
compiler. If the compiler quits with errors, the code is not
correct. But obviously this is not a sufficent test criteria.

Our idea is then to run the generated code and test the
results. We do this at model level using bootstrapping. To
test our java code generation, we use the following approach:

• Structural code, like class definitions, method and at-
tribute declaration, is tested by hand written JUnit
tests. Code generation for class definitions for instance
is tested using the java compiler, for the most part,
which is invoked by a unit test.

• Code generation for method calls within activities is
tested by hand written tests as well. In this simple case
this is done by comparing the code with the expected
one.

• Additional syntax elements of Fujaba’s rule diagrams
are tested using the modelbased testing approach de-
scribed in the following paragraph.

The idea of the modelbased testing approach is to model
JUnit tests in Fujaba. For these tests code is generated
using the code generation to be tested. The tests are then
executed using the JUnit framework. The tests should check
the behaviour of the generated code by using just the axioms
already tested by the hand written tests described above. In
more detail, this is done the following way:

• A test class extending the TestCase class, provided by
the JUnit framework, is modeled in Fujaba.

• Within this class, a unit test, which checks whether or
not constraints are interpreted the correct way, can be
modeled. This test makes use of method calls, only,
which are already tested.

Fujaba Days 2005 60

• Assuming that the code generation for constraints does
work, what means that the previous test executes suc-
cessfully, new tests can be modeled which make use of
constraints. Such test are tests for the activity dia-
gram parts (sequences, loops, branches).

• On top of this, tests can be modeled, which check addi-
tional constructs (creation of objects and links, check-
ing of links, destruction of objects and links...).

• Code for the test modeled in Fujaba is generated us-
ing the new code generation and the JUnit tests are
executed.

Figure 8 shows the method body for the test method which
checks the code generation for to-one link checks. In the first
activity two objects are created. The next activity should
(if code generation works) check that there is a link between
these two objects. If a link is found by the generated code,
this is obviously not the desired behaviour (as there is no
link between these objects) and a JUnit failure is reported.
Otherwise such a link is created and checked for again. If
this executes successfully, the generated code has the de-
sired behaviour. The test finishes successfully. That means,
if certain parts of the code generation (creation of objects
and links as well as sequences of activities and branching)
do work, the test in figure 8 checks whether or not code
generation for to-one link checking works.

]success[

]failure[

]failure[

]success[

CodeGenTest::test5CheckLinkToOne (): Void

«create»
Item:i1

«create»
Neighbor:n1

neighbor
n1i1 1: fail("Link should exist")this

1: fail("Link should not exist")this
neighbor

i1 n1

«create»
neighbor i1 n1

Figure 8: Test method for to-one link checks

4. BOOTSTRAPPING
As Fujaba offers a full-featuered model transforamtion lan-
guage, it would be a good proove of concept if we model
Fujaba with Fujaba itself. Such process is called bootstrap-
ping.

As all parts described above are modeled in Fujaba, boot-
strapping Fujaba is finally possible at least for Fujaba’s code
generation. Till now, not all features of Fujaba are imple-
mented within the new code generation (e.g. support for

multi links is still missing). So the bootstrapping process
is not yet complete. As soon as we have added these miss-
ing features, it would be possible to generate code for the
specification in Fujaba using a code generation which was
generated by Fujaba itself. This way, it should be possi-
ble for a code generation to generate its own code. This
bootstrapping is planed for near future using the following
process:

If a complete version of the code generation is available:

• Generate code for the new version using the previous
code generation.

• Execute the JUnit tests as described in chapter 3.

• Generate code for the new version using itself.

• Execute the JUnit tests against this code generation.

• Generate code from the specification again to ensure,
that the generated code equals the one generated be-
fore.

5. RELATED WORK
Zündorf describes in [6] how the graph transformations of
PROGRES [3] can be split into operations in an operation
graph. Then he discusses how to find a search plan (a se-
quence of search operations) in the operation graph. The
search plan is optimized using a given cost model. The
decomposition described in chapter 2.1 as well as the op-
timization in chapter 2.3 uses similar techniques.

In [5] Varró et al. describe a method to find cost efficient
search plans from statistical data gathered on typical in-
stance models at design time. Then they propose an adap-
tive approach that generates multiple search plans and se-
lects the best one at runtime based on statistical evaluation
of the current instance model. This approach could be easily
incorporated into our current approach since the cost model
is well-prepared for more elaborate analysis and the statis-
tical data could easily be gathered by preparing the velocity
templates accordingly.

In [7] the transformation from Fujaba’s rule diagrams to java
code is described. The proposed java code is the basis for
our templates discussed in chapter 2.4. A short algorithm
for code generation is also stated. Our approach uses a more
elaborated algorithm since the algorithm in [7] does not cre-
ate an intermediate model and only applies few optimization
strategies.

The MoTMoT approach [4] also uses a template-based ap-
proach to generate code from transformations specified in
Fujaba’s model transformation language. But unlike Fu-
jaba, MoTMoT does not offer an editor to create story dia-
grams, but provides a UML 1.4 profile which uses annotated
UML class diagrams and annotated UML activity diagrams
to model rule diagrams. This way, story diagrams can be
drawn with every UML 1.4 compliant editor, like Together,
MagicDraw or Poseidon. However, the MoTMoT approach
also lacks an intermediate model and elaborated optimiza-
tion techniques.

61 Fujaba Days 2005

6. CONCLUSIONS AND FUTURE WORK
The model-based approach to code generation described in
this paper has shown to be very flexible, easy to implement
and simple to use. We managed to avoid dependencies to
the target textual language in the generator model. All tar-
get language elements are expressed in the templates. Only
the basic language paradigm (imperative) and some struc-
tural information (class, method, declaration hierarchy) is
implicitly contained in the implementation.

We expect, introducing new imperative output languages
will be possible very quickly. However, this causes creation
of multiple similar template files. This tends to increase
maintenance cost as behavioral changes in a template must
be reflected for all generated langauges. In opposition to
that the amount of template code is very low for a single
language, compared to the code that was neccessary in the
previous Fujaba code generation (more than factor 3).

As the complete code generation model (without templates)
is modelled with Fujaba itself this approach paves the way
to bootstrapping Fujaba - generating Fujaba with Fujaba.
But as well as completing the code generation to support
all syntax elements of Fujaba, bootstrapping is still future
work.

From the optimizations described in section 2.3, only the
minimal spanning tree approach is currently in use. The
other methods remain to be implemented. Another area of
future work is the optimization based on statistical execu-
tion data.

We expect, that the currently implemented transformations,
that are used to generate and alter the intermediate data,
can be inverted quite easily (except for omitted tokens).
This makes us confident that reverse engineering of the gen-
erated code to obtain the original model again should be
achieved with low cost. Singly the inversion of templates
still requires some research work.

7. REFERENCES
[1] Velocity Homepage.

http://jakarta.apache.org/velocity/, 1999.

[2] Fujaba Group. The Fujaba Toolsuite.
http://www.fujaba.de/, 1999.

[3] Progres Group. PROGRES: Programmed Graph
Rewriting System. http://www-i3.informatik.rwth-
aachen.de/research/projects/progres/,
2004.

[4] H. Schippers, P. V. Gorp, and D. Janssens. Leveraging
UML Profiles to generate Plugins from Visual Model
Transformations. In Software Evolution through
Transformations 2003 (SETra03). ICGT, Rome (Italy),
October 2004.

[5] G. Varró, K. Friedl, and D. Varró. Adaptive graph
pattern matching for model transformations using
model-sensitive search plans. In International Workshop
on Graph and Model Transformation (GraMoT).
GPCE 2005, Tallin (Estonia), September 2005.

[6] A. Zündorf. Eine Entwicklungsumgebung für
PROgrammierte GRaphErsetzungsSysteme -
Spezifikation, Implementierung und Verwendung, PhD
Thesis (in German), 1995.

[7] A. Zündorf. Rigorous Object Oriented Software
Development, Habilitation Thesis, 2001.

Fujaba Days 2005 62

Generation of Type Safe Association Implementations

Dietrich Travkin, Matthias Meyer
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[travkin|mm]@uni-paderborn.de

ABSTRACT
Model driven development facilitates the specification of
software models from which code can be generated auto-
matically. In practice, a software system can often not be
modelled completely. Developers still have to implement
parts of it manually and thus have to work with the gener-
ated code. Therefore, the usability of the code is important.

The Fujaba Tool Suite is a UML case tool which allows to
model the structure and behaviour of a system with UML
diagrams and to generate Java code for the specifications.
However, the code currently generated for associations is
not type safe. Furthermore, a lot of code is added to the
implementation of the model classes which decreases their
usability. In this paper, we present an approach to gen-
erate type safe association implementations in Java which
also improves the readability and usability of the generated
code.

1. INTRODUCTION
Model driven development helps to cope with the contin-

uously increasing complexity of the software systems being
developed today. Instead of implementing a whole system by
hand in some programming language, models are designed
in modelling languages, e.g. UML. Then, code can be gen-
erated automatically from these models. Today, typically
not the whole system can be modelled and generated, so
that developers still have to work with the generated code
manually.

When modelling a system with UML, its structure is de-
fined with class diagrams. Class diagrams allow specifying
various kinds of associations between classes. However, to-
day’s programming languages have no support for associa-
tions. Thus, when generating code for class diagrams, asso-
ciations have to be expressed using the language constructs
available in the particular programming language.

The Fujaba Tool Suite [3] is a UML case tool that offers
UML class diagrams to model the structure and extended
UML activity diagrams, called story diagrams, to model the
behaviour of a software system. Fujaba’s class diagrams
support most binary association types defined by the UML
(qualified, sorted or ordered, 1-to-1, 1-to-n, n-to-m, bi- and
unidirectional).

Furthermore, Fujaba is able to generate Java code for its
models. Classes modelled in class diagrams are translated to
Java classes. To implement the associations, the classes par-
ticipating in an association get additional private attributes
to store associated objects and public access methods to

link, unlink, or iterate through associated objects. The ac-
cess methods also ensure consistency for bidirectional asso-
ciations by mutually calling each other.

Depending on the type of association, up to 18 access
methods per association are generated into a model class.
Thus, a class participating in several associations becomes
badly readable. Furthermore, the generated code is not
type safe. Thomas Maier and Albert Zündorf [5, 4] recog-
nised these problems and propose a different solution. They
greatly improve the readability and usability of the gener-
ated code by extracting the association methods into sep-
arate classes representing association ends, so called role
classes. However, their approach can not guarantee type
safety as well and the support for associations which are
qualified on both sides remains unclear.

In this paper, we present an approach that adopts the idea
presented in [5]. We also implement associations using gen-
eral role classes which contain all necessary access methods.
However, our hierarchy of role classes is organised differ-
ently to explicitly support associations which are qualified
on both sides. Furthermore, by generating specialisations of
role classes for each concrete association end, we are able to
offer a type safe implementation. The role class hierarchy
is available as a separate class library which can be used
independently of Fujaba. In addition, a Fujaba plug-in has
been developed which adapts the code generation of Fujaba
for non-qualified associations to use the new approach.

In the following section we present requirements for an
association implementation and point out the limitations of
the existing approaches in more detail. Section 3 describes
our approach for implementing associations and Section 4
describes a Fujaba plug-in which generates code according
to it. Section 5 concludes the paper and indicates future
work.

2. REQUIREMENTS
There are many ways to implement associations. In all

cases the implementations have to manage the references
between the objects connected by an association depending
on its kind (e.g. qualified 1-to-n) and its constraints (e.g.
ordered). In [6] we identified several requirements which
should be fulfilled by an association implementation. The
four most important of them which we address in this paper
are:

1. Association types
Associations may be uni- or bidirectional with multi-
plicities 1-to-1, 1-to-n or n-to-m. In case of to-n as-

63 Fujaba Days 2005

sociations, the associated objects may be ordered or
sorted. Furthermore, associations may be qualified on
one or both sides. All combinations have to be sup-
ported.

2. Consistency
In case of bidirectional associations, consistency has to
be ensured: if there is a reference from object a to ob-
ject b then there also has to be a reference from object
b to object a. Thus, when object a is linked/unlinked
to b, the reverse link from b to a has to be estab-
lished/removed automatically.

3. Type safety
The generated code has to be type safe, i.e. all type
errors have to be detected at compile time.

4. Readability
The generated code has to be human readable and
should add as little code as possible to model classes.

The current Fujaba version fulfills the first two require-
ments. For each association, private attributes with several
public access methods are generated into the code for the
model classes. The access methods allow to link or unlink
instances of model classes according to the association. In
case of bidirectional associations, these access methods au-
tomatically ensure consistency by calling each other. When
an access method is called on object a to connect it to object
b, the method calls the corresponding access method on b
to link it to a. The same holds for the access methods to
unlink objects. Thus, to establish or remove a link, a call
of the appropriate access method on one of the objects is
sufficient.

For the implementation of to-n associations, special con-
tainer classes are used to store an arbitrary amount of as-
sociated objects. These containers allow storing objects of
the most general type (Object in Java) and the generated
code contains type casts. Thus, the code is not type safe
and requirement 3 is not fulfilled. A developer is able to
(accidently) insert code into a model class that adds objects
of the wrong type to a container managing the connected
objects of an association. Since this can not be checked by
the compiler, type errors occur at runtime.

Depending on the type of association, up to 18 public
access methods per association are generated into the im-
plementation of a model class. This heavily decreases the
readability and usability of the generated code and the pub-
lic interface of the model classes becomes very bloated. Re-
quirement 4 is not fulfilled.

The approach presented in [5] greatly improves the read-
ability of the generated code by providing the functionality
to manage the associated model elements in separate role
classes and thus keeping the code added to the model classes
at a minimum. The role classes are implemented using Java
Generics. Generics [1, 2] are new with Java 1.5 and enable
generic type definitions in Java. However, in spite of using
Generics, the resulting association implementations are not
type safe. In order to ensure consistency for bidirectional
associations, inside the role classes Java’s reflection mech-
anism is used to call methods on the opposite end of the
association. The reflection mechanism requires type casts
and thus type safety is lost (cf. [6] for details). In addition,
it is unclear how associations which are qualified on both

sides are supported. Thus, requirement 4 is additionally
fulfilled but requirement 3 is not.

3. TYPE SAFE ASSOCIATIONS
In the following, we present an approach which fulfills all

the requirements stated above.

3.1 Implementations based on Role Classes
We adopt the idea proposed in [5] to separate the associ-

ation implementation and the model implementation from
each other. Instead of generating all the code to manage
references of associated objects into the model classes, the
functionality is provided by separate role classes. The role
classes contain all the functionality to link or unlink two
model elements and to iterate through the connected ele-
ments.

For each kind of association end, a special role class ex-
ists implementing the required association methods. In case
of a 1-to-1 association, each model class must be able to
reference one instance of the other model class at runtime.
Thus, a to-1 role class is required which is able to manage
one reference. In case of a 1-to-n association, one class must
be able to manage an arbitrary number of references to in-
stances of the other class, requiring a to-n role class. N -to-m
associations can be realised with the help of two instances
of a to-n role class. Association constraints and qualified
associations require additional role classes.

Figure 1: A qualified bidirectional 1-to-n association

class Person
{

private Tenant_Home_Role home = null;
public final Tenant_Home_Role home()
{

if (this.home == null)
{

this.home = new Tenant_Home_Role (this);
}
return this.home;

}
}

Figure 2: An implementation of a model class

Figure 3: Realisation of the association in Figure 1

An association is realised by two instances of role classes,
one for each association end. Instead of the association

Fujaba Days 2005 64

Figure 4: A decision tree describing the role class hierarchy

methods the model classes only get one attribute and one
method for each association they are involved in. The at-
tribute saves the role object and the method creates and
returns it. Thus, the association methods are implemented
only once in a role class and do not have to be generated for
each association anymore, which avoids code redundancy.
As an example, Figure 2 illustrates the implementation of
a model class involved in the association shown in figure 1.
Figure 3 shows an object structure in which a House object
is connected with two Person objects via the same associ-
ation using role objects. Note that the figures already use
specialised role classes which will be explained in Section
3.3.

3.2 Role Class Hierarchy
Each of the role classes implements a link and an unlink

method. In bidirectional associations, these methods have
to call each other on either side of an association to main-
tain consistency. Qualified associations require a key to link
two model elements. Since the methods call each other on
both sides of an association, they require this key, regard-
less whether they are called on an object representing a role
that is qualified or not (cf. Figure 5). If both sides are
qualified even two keys are needed. Therefore the number
of parameters in the link and unlink methods are different
depending on whether the role is used in an association that
is not qualified, qualified on one side or qualified on both
sides. Thus, a common abstraction for all role classes would
only be possible, if all link and unlink methods had three
parameters (one for the object to be linked or unlinked and
two for possible keys). In many cases, however, the addi-
tional parameters would be useless. Therefore, we propose
a hierarchy of role classes which is divided into three rather
independent sub hierarchies for associations which are not
qualified, qualified on one side, or qualified on both sides, re-
spectively. Inside these hierarchies, the number of required
parameters is equal and a common abstraction exists.

Figure 5: A call of the link method in the qualified
association shown in Figure 1

Figure 4 shows a decision tree which describes the whole
role class hierarchy and helps to determine the role classes
needed to realise a particular association. Each node in the
tree corresponds to a role class. An edge is labelled accord-
ing to the purpose of the child role class and indicates that
the child role class refines its parent. At the first level, the
tree is divided into the three sub hierarchies. The left hi-
erarchy shows the role classes for non-qualified associations.
It is subdivided into a class for the to-1 side and one for
the to-n side which again has two children, one for an or-
dered and one for a sorted to-n side. The hierarchy in the
middle contains the role classes for associations qualified on
one side. It is subdivided in roles for the non-qualified side
and those for the qualified side which in turn are organised
according to the type (to-1 or to-n side) as well as to possi-
ble constraints (ordered and sorted). The hierarchy on the
right shows the roles for associations qualified on both sides
and is organised according to the same criteria as the other
hierarchies.

Although the number of different role classes is rather
high, it is easy to choose the right role classes for a par-
ticular association. The decision tree in Figure 4 describes
how to do that (dark nodes indicate possible decisions). The
association between House and Person (cf. Figure 1), for ex-
ample, is qualified on one side. Thus, role classes from the
hierarchy in the middle have to be used. A House object
must be able to manage an arbitrary number of Person ob-
jects for each key. Therefore it requires a qualified to-n role.
A Person object must be able to store one House object.
Since the opposite side is qualified and this side does not
use a key, a non-qualified to-1 role class from the hierarchy
in the middle has to be chosen.

The role classes are generic. They use type parameters
for the type of the elements to be referenced by the roles,
the type of the role owner and – in qualified associations –
the key types. The generic type definitions are necessary
for a type safe implementation but not sufficient. This is
described more precisely in the following section.

3.3 Type Safety
To keep bidirectional associations consistent, methods for

linking and unlinking two objects are called on both sides
of an association (link on one side of an association calls link
on the other side of the association, cf. Figure 5). The link
and unlink methods are implemented within the general role
classes, where the types of the elements referenced by the
role classes are only represented by type parameters. The
concrete types used in a concrete association are not known

65 Fujaba Days 2005

and thus the access method for the role object of a model
element (e.g. method home in Figure 2) is not known. This
makes a call of the link or unlink method on the other side
of an association impossible.

However, the access methods in the model classes can be
revealed by subtyping the generic role classes and binding
its type parameters to the concrete types of the model el-
ements involved in a concrete association. In each general
role class in the hierarchy, an abstract method getOpposite-
Role is declared which takes a model element to be linked or
unlinked as argument. The method is meant to return the
role object from the given model element which represents
the opposite end of the same association. It is used inside
the general role class implementations to get the (opposite)
role object from a model element to be linked or unlinked.
Thus, all role classes in the hierarchy are abstract. They
contain the complete implementation except of the getOp-
positeRole method.

Figure 6: A specialisation of an abstract role class

public class Home_Tenant_Role
extends SingleQualifiedOwnKeyToManyRole<Person,House,Integer>

{
public Home_Tenant_Role(House owner)
{

super("home", owner);
}
protected SingleQualifiedOppositeKeyRole<House,Person,Integer>

getOppositeRole(Person oppositeElement)
{

return oppositeElement.home();
}

}

Figure 7: A specialisation of an abstract role class

For each association end, a concrete subclass of a generic
role class has to be implemented in which the type parame-
ters are bound to the concrete types of the model elements.
Inside these classes, the getOppositeRole method has to be
implemented (cf. Figures 6, 7). The concrete subclasses
only contain a constructor as well as the getOppositeRole
method and thus are very small. Without them, however, a
type safe access to the role representing the opposite end of
an association would not be possible.

4. CODE GENERATION
The role class hierarchy described in Section 3.2 has been

implemented in a class library which can be used to imple-
ment associations independently of Fujaba.

In addition, a Fujaba plug-in has been implemented which
uses the role class library to generate code for non-qualified

associations according to the approach presented in this pa-
per. The plug-in generates the specialised role classes re-
quired for each association. To further increase the usabil-
ity, each concrete role class is placed in a subpackage of the
corresponding model class’ package named roles. The code
generated for model classes uses the specialised role classes
to realise the associations. Furthermore, the code generation
for story diagrams has been adapted. The code generated
for story diagrams calls access methods of associations to
create or destroy links between objects.

5. CONCLUSIONS AND FUTURE WORK
This paper describes an adaption and extension of the

ideas presented in [5] leading to type safe association im-
plementations with improved readability and usability. The
functionality for managing associations is provided by sep-
arate role classes and no longer generated into the model
classes. By specialising the role classes for each concrete
association end the code is made type safe. A class library
with all necessary role implementations is available and can
be used to implement associations independently of Fujaba.
A Fujaba plug-in adapting the code generation of Fujaba for
non-qualified associations is available as well.

Fujaba itself is partially implemented using its own code
generation mechanism. Re-generating the Fujaba code us-
ing the new association implementations would increase its
usability. Furthermore, type errors in association implemen-
tations would be revealed already at compile time.

The next step could be to support the modelling of generic
types with UML templates in Fujaba. This would enable the
generation of completely1 type safe code.

6. REFERENCES
[1] G. Bracha. Generics in the Java Programming

Language. Online at:
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf,
July 2004, Tutorial.

[2] G. Bracha, N. Cohen, C. Kemper, S. Marx, M. Odersky,
S.-E. Panitz, D. Stoutamire, K. Thorup, and
P. Wadler. Adding Generics to the Java Programming
Language: Participant Draft Specification. Online at:
http://www.jcp.org/aboutJava/communityprocess/
review/jsr014/, April 2001.

[3] Fujaba Development Group. Fujaba ToolSuite. Online
at: http://www.fujaba.de, 2004.

[4] T. Maier. Associations. Online at:
http://sourceforge.net/projects/associations/,
November 2004. Version 0.4.

[5] T. Maier and A. Zündorf. Yet Another Association
Implementation. In Proceedings of the 2nd International
Fujaba Days, Darmstadt, Germany, pages 67–72,
Septemeber 2004.

[6] D. Travkin. Generierung typsicherer
Implementierungen für Assoziationen in
UML-Modellen (in german). Bachelor’s thesis,
University of Paderborn, Department of Computer
Science, Paderborn, Germany, February 2005.

1This paper only focuses on the code generated for associa-
tions. The code generated by the described Fujaba plug-in
is type safe for associations only.

Fujaba Days 2005 66

The SceBaSy PlugIn for the Scenario-Based Synthesis
of Real-Time Coordination Patterns for Mechatronic UML∗

Holger Giese and Sergej Tissen
Software Engineering Group, University of Paderborn,

Warburger Str. 100, Paderborn, Germany

[hg|serti]@uni-paderborn.de

ABSTRACT
The future generation of networked, technical applications
demands support for the development of high quality soft-
ware for the proper real-time coordination of safety-critical
systems. In this paper, we present the SceBaSy plugin
for the Fujaba Real-Time Tool Suite which supports the
scenario-based synthesis of the real-time coordination pat-
terns. Extending our approach for the compositional for-
mal verification of Mechatronic UML models described
by components and patterns [5], the plugin enables the de-
signer to specify the required real-time coordination using
multiple parameterized scenarios described by a subset of
the UML 2.0 sequence diagram notation. In addition to
the synthesis, comfortable analysis capabilities have been
realized to guide the designer when conflicts between the
different scenarios exist.

1. INTRODUCTION
In the development of safety-critical systems, the design and
verification of the real-time coordination of the system is of
crucial importance. The increasing complexity of these sys-
tems and their interconnection by networks which can be of-
ten observed today, makes their production an even greater
challenge. Therefore, the current practice could benefit from
more automated support for the design of correct and safe
real-time coordination.

Today, a number of scenarios are usually developed in
the earlier phases to outline and specify possible or required
interaction behavior. Later, an operational model of this
interaction is then derived manually. The underlying idea
of scenario-based synthesis is simply to automate this step
(cf. [7, 8, 12, 13]).

However, in our specific case of real-time systems, besides
the causal relation between the different events also the tim-
ing constraints are essential. Available approaches cf. [10, 9,
6] only provide a global behavior for fixed timing constraints.
We employ here our approach [4] for the synthesis of distrib-
uted operational behavior from parameterized scenarios, as
it is in practice often difficult to specify all timing informa-
tion such as worst-case execution times (wcet), deadlines, or
timeouts in advance.

In this paper, the support for the scenario-based synthesis
of real-time coordination pattern provided by the SceBaSy

∗This work was developed in the course of the Special Re-
search Initiative 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

plugin is presented. It complements our Mechatronic UML
approach for the compositional formal verification [5] which
supports to build a correct and safe real-time coordination
of a whole system composed of components and patterns.

The plugin supports the automatic derivation of the pa-
rameterized role behavior in form of Real-Time Statecharts
(RTSC) [2] for patterns from a given set of parameterized
scenarios. Therefore, it enables the designer to automate
this otherwise costly development step and guarantees cor-
rectness by construction. In addition to the synthesis, com-
fortable analysis capabilities have been realized to guide the
designer when conflicts between the different scenarios exist.

The paper is organized as follows: In Section 2, the real-
time modeling with scenarios as supported by the SceBaSy
plugin is sketched introducing a simple example pattern.
Then, the support of the plugin for the analysis of a set of
scenarios in case of conflicts is outlined in Section 3. For a
conflict free set of scenarios, the handling and output of the
synthesis step are then described in Section 4. Finally, we
sketch the architecture of the plugin and its dependencies
w.r.t. other Mechatronic UML plugins in Section 5 and
sum up the paper with a short conclusion.

2. REAL-TIME MODELING
As a running example, we consider the Monitor-Actuator
Pattern [3]. This pattern specifies a controller which moni-
tors and controls another system. Therefore, the controller
sends advices to the system via an actuator and monitors
their realization. The actuator calculates the actions which
have to be done to realize the system-state and sends them
to the system. The monitor waits for the system status and
decides then whether the advice is fulfilled or not. Further-
more the monitor and actuator check their presence by send-
ing periodically a life tick message to each other (cf. heart
beat).

To describe the variable behaviors of the roles within the
pattern, we model the different scenarios by UML sequence
diagrams where besides constant timing constraints also pa-
rameterized timing constraints for upper bounds are sup-
ported. The sequence diagrams are modeled with the Fujaba
plugin UMLSequenceDiagrams. Additionally, our plugin ex-
tends the sequence diagram plugin by time observations and
time restrictions to be able to specify real-time behavior
within sequence diagrams. Time observations assign the ac-
tual time to a clock and time constraints can refer to these
clocks and make restrictions. Two sequence diagrams which
describe two scenarios of the Monitor-Actuator Pattern are
shown in Figure 1 and 2

67 Fujaba Days 2005

sd Change Environment priority: 2

:Controller :Monitor

Change
Environment

assert

:Actuator

Desired Result

Desired Result

WaitFor
Result

Actuation

EnvironmentalCondtiion

Compare
DesireResult

IsOK

Process
Actuation

Calculate
Actuation

Wait

Change
Environment

WaitWait
Wait

Wait Wait Wait Wait

CE=now

{10..TOut2}

{CE..CE+8}

{CE..CE+TOut3}

WaitFor
Confirmation

:System
Actor

Check
Environment

Wait

Wait

:System
Sensor

Figure 1: Change Environment

Figure 1 shows the scenario which models the standard
system flow. The controller initiates a state change and
awaits the result. The controller sends a message to the ac-
tuator who then calculates the necessary actions and sends
them to the system. Also the monitor receives the same mes-
sage from the controller to observe the achievement. After
receiving the system-state, the monitor compares it with the
desired state and sends an okay message to the controller.
After at most TOut3 milliseconds (ms), the actuator has to
complete his calculations and send his advices to the system.
The maximal available ms for the monitor are TOut2. The
whole activity must not exceed 8 ms.

sd LifeTick priority: 2

:Monitor

assert

:Actuator

Wait

Wait

DoLifeTick

Life Tick

Wait

Life Tick

Wait

LT1 = now

{LT1..LT1+TOut4}

LT2 = now

{LT2..LT2+TOut5}

LifeTick
Processed

WaitFor
LifeTick

Figure 2: Life Tick

Figure 2 specifies a scenario where the monitor sends a life
tick message to the actuator and the actuator responds on
his part with a life tick. The monitor has to send a life tick
every TOut4 ms and after receiving the life tick the actuator
has maximal TOut5 ms to answer.

After we have modeled the scenarios by sequence dia-
grams, we must create a new synthesis task. When we have
entered a name for the task, a new tab named Synthesis is
generated in the project tree. This panel manages all cre-
ated scenario-based synthesis-tasks. Figure 3 displays the
user interface for synthesis tasks. The root node is the name
of the synthesis. The subnode Sequence Diagrams holds and
manages all sequence diagrams which were imported into the

task. The Settings node allows setting, removing or mod-
ifying additional inequalities which restrict the parameters
employed in the sequence diagrams. In addition, we can set
weight for all parameters to define which ones should be pre-
ferred in contrast to others. The subnode Pattern displays
the synthesized real-time statecharts and their properties.

Figure 3: SceBaSy User Interface

3. ANALYSIS
To analyze the sequence diagrams and their timing con-
straints, our plugin first maps the sequence diagrams to time
constraint graphs (TCGs). A TCG represents all possible
paths within a sequence diagram and formalizes time obser-
vations and constraints. TCG nodes depict possible states
of the roles within a sequence diagram, and edges are used
to describe how time passes on the lifeline.

In sequence diagrams, activities are used to describe the
execution of a side-effect. We assume that the specific exe-
cution time of an activity is usually unpredictable. However,
we can assume lower and upper bounds (cf. worst-case ex-
ecution times (wcet)) for the activity. The communication
in sequence diagrams can be asynchronous or synchronous.
Unlike the asynchronous communication in sequence dia-
grams, TCGs only provide synchronous communication. To
address this problem, our plugin generates additional chan-
nels which simulate asynchronous communication via buffer-
ing.

The plugin maps the timing constraints used in sequence
diagrams to constraint edges with a uniquely determined
starting point, when the time observation is set, and an
end point denoted by the time constraint itself. To reflect
the assert blocks within the sequence diagrams, the plugin
represents nodes which relate to a state within an assert
block in the sequence diagram by assert nodes, all other
nodes become possible nodes.

To verify the correct timing behavior of the TCGs, we
have to take consistency into account which requires that
always the same time will elapse on two alternative paths
between two nodes. In addition, we demand locality [4],
which requires that the timing of local tasks only depends
on the current state.

To address the problem of consistency and locality, our
plugin derives a set of inequalities which describe the execu-

Fujaba Days 2005 68

tion time dependencies [4] and checks their feasibility. This
includes all subgraphs of the TCGs which result from time
observations and time constraints. Please Refer to [4] for a
more precise description. A set of linear inequalities is only
feasible iff an assignment for all variables exists which fulfills
all inequalities.

If the linear inequality system is not feasible, the inte-
grated conflict handler has to find out which inequalities
exclude each other [11]. The conflict handler traces back
the inequalities to the affected time constraints or manually
set restrictions, and shows an error message to the user. In
addition, the constraints in conflict are highlighted by the
plugin in the related diagrams.

sd Regular priority: 2

:Controller :Monitor

Change
Environment

assert

:Actuator

Desired Result

Desired Result

WaitFor
Result

Actuation

EnvironmentalCondtiion

Compare
DesireResult

IsOK

Process
Actuation

Calculate
Actuation

Wait

Change
Environment

WaitWait
Wait

Wait Wait Wait Wait

CE=now

{0..TOut2}

{CE..CE+TOut1}

{CE..CE+TOut3}

WaitFor
Confirmation

:System
Actor

Check
Environment

Wait

Wait

:System
Sensor

Figure 4: Time Constraint conflict resolved

Figure 4 shows the corrected Change Environment sce-
nario where two constraints have been in conflict. The Mon-
itor required min. 10 ms to compare the desired result with
the actual environment, in contrast the Controller awaited
the result of the calculation within 8 ms (cf. {10 ..TOut2}
and {CE ..CE+8} in Figure 1).

In addition to the outlined analysis, asserted blocks have
to be taken into account by the inequality system, and we
have to check for contradictory state changes in a single
state. Please refer to [11] for more details about these and
other analysis steps.

4. SYNTHESIS
The previous chapter suggested how sequence diagrams can
be analyzed and verified. Now we want to synthesize the be-
havior for the involved roles. The synthesis-algorithm han-
dles every sequence diagram consecutively. Thus, existent
real-time statecharts are extended to the content of a se-
quence diagram iteratively. One iteration step is as follows:
The mapping to states is simply derived for each node us-
ing the state labeling of the sequence diagram. Local state
changes in sequence diagrams are mapped to transitions be-
tween states in a real-time statechart. The communication
expressed by a message in a sequence diagram becomes a
communication transition in both related statecharts. For
the generated transitions, the time conditions simply result
in a time guard and deadline such that the specified timing
constraints are satisfiable. For more details about mapping
sequence diagrams to real-time statecharts refer to [4].

After generating operational behavior for each role, the
SceBaSy plugin is able to optimize the real-time statecharts

[4]. The optimization algorithm is able to collapse redun-
dant states and their transitions which result from the syn-
thesis into a single state as well as hierarchical states. This
optimization can be turned on or off for every pattern role in-
dividually. The application of these syntactical rules erases
9 states from the monitor’s real-time statechart and results
in the model depicted in Figure 5.

Figure 5: Optimized behavior for the Monitor

Once valid parameters are calculated and real-time stat-
echarts are derived, the plugin uses the model checking ca-
pability of the real-time version of Fujaba to ensure that
the synthesis result for the given parameter values is free
from deadlocks or time stopping deadlocks.1 After the pat-
tern is successfully model checked, the entire Real-Time
Coordination-Pattern is generated as shown in Figure 6.
Then each Role gets its own behavior assigned in the form
of a real-time statechart.

Figure 6: Monitor-Actuator Pattern Structure

1It is to be noted, that problems due to time stopping dead-
locks and thus reachability can only be proven using a real-
time model checker after all parameters have been set, as
the emptiness problem for parameterized timed automata
with more than 2 parameters is undecidable [1].

69 Fujaba Days 2005

The user has now the ability to evaluate the real-time stat-
echarts, to modify the parameter weights, to add or remove
inequalities and adapt the sequence diagrams. Now he can
initiate the synthesis again to get the readjusted results.

5. PLUGIN
Sequence diagrams used for modeling the scenarios are im-
plemented in a Fujaba Plugin named UMLSequenceDiagrams
and the synthesized real-time Statecharts are realized in the
plugin RealtimeStatechart. Our plugin extends the UMLSe-
quenceDiagram plugin by the ability of adding timing con-
straints to sequence diagrams. The plugin UMLRT2 pro-
vides the ability to save and restore our generated coordi-
nation pattern in a repository.

The SceBaSy plugin provides a standardized interface to
solve the linear inequalities. Thus, different inequality solver
can be used by the plugin. So far we have made use of two
solvers: A java implementation of the simplex algorithm and
a commercial package named CPLEX2.

To evaluate our plugin, we use an extended version of our
running example, where the additional sequence diagrams
use partially the same parameters in their constraints like
the ones presented. We simply add a sequence diagram to
the synthesis in every new experiment and record the times
and characteristics. Table 1 depicts the results of these ex-
periments. While the simplex package shows a moderate
increase in computation time, the commercial CPLEX pack-
age does not show an increase in computation time at all.
Even though much more experience with the plugin is re-
quire to really judge the scalability problem, the experiments
are promising.

Number of
sequence diagrams 1 2 3 4 5

Numb. of inequalities 54 168 194 220 237
Time in ms to solve
the ineq. system
(CPLEX) 7 18 21 10 10
Time in ms to solve
the ineq. system
(Simplex) 19 31 61 69 96
Total runtime [ms] 1170 1930 2056 2671 3102
Numb. of states 13 43 49 55 60
Numb. of transitions 12 44 61 86 95

Table 1: Evaluation data for the SceBaSy plugin

6. CONCLUSIONS
We describe in this paper the SceBaSy plugin for the au-
tomatic synthesis of correct real-time coordination patterns
from parameterized scenarios. We outlined how the static
analysis capabilities of the plugin can be used to analyze
problems within a given set of parameterized scenarios. In
a next step, the plugin permits to synthesize the real-time
behavior for each role of a parameterized real-time pattern
in form of parameterized RTSC. In addition, the plugin per-
mits to derive appropriate parameter setting and thus the
developer can systematically study the trade-offs between
them. When valid parameters for the real-time statecharts
have been set, the model checking feature of Fujaba could

2http://www.ilog.com/products/cplex/

be used to ensure that the synthesis result is free from dead-
locks or time stopping deadlocks.

REFERENCES
[1] R. Alur, T. A. Henzinger, and M. Y. Vardi.

Parametric real-time reasoning. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of
computing, pages 592–601. ACM Press, 1993.

[2] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[3] B. Douglas. Doing Hard Time. Addison-Wesley, 1999.

[4] H. Giese, F. Klein, and S. Burmester. Pattern
synthesis from Multiple Scenarios for Parameterized
Real-Timed UML models. In S. Leue and T. Systä,
editors, Scenarios: Models, Algorithms and Tools,
volume 3466 of Lecture Notes in Computer Science
(LNCS), pages 193–211. Springer Verlag, April 2005.

[5] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the Compositional Verification of
Real-Time UML Designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM Press, September 2003.

[6] D. Harel and R. Marelly. Playing with Time: On the
Specification and Execution of Time-Enriched LSCs.
In Proc. 10th IEEE/ACM Int. Symp. on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2002), Fort
Worth, Texas, USA, 2002. (invited paper).

[7] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to Statecharts. In F. J. Rammig, editor,
Distributed and Parallel Embedded Systems, pages
61–71. Kluwer Academic Publishers, 1999.

[8] E. Mäkinen and T. Systä. MAS - an interactive
synthesizer to support behavioral modeling in UML.
In Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), Toronto, Canada,
pages 15–24, May 2001.

[9] A. Salah, R. Dssouli, and G. Lapalme. Implicit
integration of scenarios into a reduced timed
automaton. Information and Software Technology,
45:715–725, August 2003.

[10] S. Somé, R. Dssouli, and J. Vaucher. From Scenarios
to Timed Automata: Building Specifications from
Users Requirements. In Proceedings of the 1995 Asia
Pacific Software Engineering Conference (APSEC
’95), 1995.

[11] S. Tissen. Szenario-basierte Synthese für
parametrisierte, zeitbehaftete UML
Sequenzdiagramme. Bachelor’s thesis, University of
Paderborn, Software Engineering Group, Paderborn,
Germany, April 2005.

[12] S. Uchitel and J. Kramer. A Workbench for
Synthesising Behviour models from Scenarios. In
Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), Toronto, Canada,
pages 188–197, May 2001.

[13] J. Whittle and J. Schumann. Generating statechart
designs from scenarios. In Proceedings of the 22nd
international conference on on Software engineering
June 4 - 11, 2000, Limerick Ireland, 2000.

Fujaba Days 2005 70

Worst-Case Execution Time Optimization of Story Patterns
for Hard Real-Time Systems ∗

Sven Burmester†, Holger Giese, Andreas Seibel, and Matthias Tichy
Software Engineering Group, University of Paderborn, Warburger Str. 100, Paderborn, Germany

[burmi|hg|aseibel|mtt]@uni-paderborn.de

ABSTRACT
In the future, technical systems are expected to operate
more intelligent than today by taking their local context
explored by means of sensors and network communication
into account. To realize this vision, the systems must be
able to represent and query as well as interact with a large
number of possible situations not known a priori. There-
fore, flexible means to store, query, and manipulate such
context information are required. Known flexible and pow-
erful representations are class diagrams or other graph-like
notations. However, such dynamic data structures which
are sources for unpredictable run-time timing behavior are
traditionally not recommended for the development of hard
real-time systems. In this paper, we describe our efforts to
employ story patterns, which are used for the specification
of query and update operations on dynamic data structures,
in hard real-time systems.

Keywords
Real-Time, Story-Pattern, Worst-Case Execution Time Op-
timization

1. INTRODUCTION
Advanced technical systems of the future such as self-adap-
tive [18, 13, 14] or self-optimizing [3] technical systems will
operate smarter than today’s systems by adjusting their op-
eration to the experienced context. Besides the information
provided by sensors, the communication with other entities
near by via wireless networks will increase the available in-
formation and its complexity.

The software of these systems must thus be able to repre-
sent and query a large number of possible not a priori known
context situations. The means to store, query and manipu-
late such context situations must support model-based de-
velopment and should not be restricted to fixed-sized arrays.
UML and in particular class diagrams became the standard
to describe the structure of the complex information. Story
diagrams [19, 12] are an advanced technique to manipulate
this information. However, class diagrams describe proper-
ties of dynamic data structures which result in unpredictable

†Supported by the International Graduate School of Dy-
namic Intelligent Systems. University of Paderborn.
∗This work was developed in the course of the Special Re-
search Initiative 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

run-time timing behavior and are thus traditionally not con-
sidered as an option for the development of hard real-time
systems.

In real-time systems, the provision of a service (e.g. reac-
tion to an incoming message, a computation, . . .) is associ-
ated with a certain deadline. If the deadline expires before
the service is provided, the results in embedded systems are
typically catastrophic due to damages to humans in case of
automotive or railway systems. Those systems are named
hard real-time systems.

In order to guarantee to meet the required deadlines, the
worst-case execution times (WCETs) of methods or other im-
plementation artifacts must be known. In addition, worst-
case execution times are required for a schedulability anal-
ysis [5] which is used to check whether concurrent processes
are executable on a given processor meeting the required
deadlines.

Standard dynamic data structures are unbounded, i.e. they
have no predetermined maximal amount of stored elements.
Thus, no worst-case execution time can be given for oper-
ations on these data structures, since the execution time
typically is dependant on the contained number of stored
elements. Therefore, in order to determine a worst-case ex-
ecution time, the maximal number of elements in those data
structures must be fixed beforehand. Then, the worst-case
execution time can be determined.

Additionally, algorithms in standard applications are op-
timized for the average case (e.g. the quicksort algorithm).
Since the average case is only of low relevance in hard real-
time systems, algorithms on those dynamic data structures
should have an optimal (read: minimal) worst-case execu-
tion time. Therefore, we require (1) a model that allows the
determination of WCETs of the generated code and (2) we
should generate code so that the WCETs are optimized.

Current WCET analysis techniques are restricted to im-
perative programming languages. Dynamic, object-oriented
programming languages are not addressed at all. Buttazzo
even demands to avoid dynamic data structures in real-time
systems [5].

The standard approach in WCET analysis is to analyze
the longest executable path, to map each instruction of this
path to elementary operations, and to determine the WCETs
of these elementary operations. The elementary operations
can be for example assembler instructions as in the [6] or
Java Byte Code instructions as in [1].

In [6], the WCET of a fragment of generated C code is
determined by summing up the number of processor cy-
cles each C instruction’s corresponding assembler instruc-

71 Fujaba Days 2005

tions require. For loops, the worst-case number of iterations
(WCNIs) is derived from a statechart model to obtain the
maximum number of executions of the loop-bodies.

[15] describes multiple existing approaches that use differ-
ent annotations to specify the WCNIs and thus the longest
executable path. All described approaches are restricted to
imperative programming languages, that do not provide or
use dynamic data structures. Further, the authors explain
that an execution time analysis on the hardware level, which
considers techniques like caching or pipelining, is required to
avoid a too pessimistic estimation.

We present in this paper how code generation from UML
class diagrams can be improved such that the resulting source
code can be employed in hard real-time systems as represen-
tation for complex content. We propose to specify query and
update tasks on this content as story patterns [7, 19]. There-
fore, we present how source code with a minimal worst-case
execution time can be synthesized from story patterns. We
generate code for C++. We assume that worst-case execu-
tion times are known for all calls to external functions. In
conformance to standard approaches for real-time systems,
we assume that all memory is allocated at the start of exe-
cution.

In the next section, we present the example which is used
in the remainder of the paper. Section 3 contains foun-
dations which are required for predictable real-time behav-
ior. Based on this foundations, we present in Section 4 how
worst-case execution times are determined. In Section 5, the
approach for computation of optimal worst-case execution
times is presented. We conclude in Section 6 and present
possible future work.

2. EXAMPLE
In the new transport system developed in Paderborn1 au-
tonomous vehicles drive on a railway system. Communica-
tion is required between the shuttles for coordination pur-
poses, for example for building convoys to reduce the air
resistance and thus the general power consumption.

The railway system is divided into multiple sections, each
coordinated by a so-called Registry. Before entering a track
section, a shuttle has to register at the corresponding reg-
istry. The registry collects information about the shuttle’s
current position and velocity and broadcasts this informa-
tion to the other shuttles via wireless communication.

In this paper, we regard a situation as shown in Figure
1 when two shuttles move towards the same joining switch.
The shuttles need to coordinate how to pass the switch in
order to avoid a possible collision. Obviously, this has to be
finished before they reach the switch. Thus, this coordina-
tion problem is subject to hard real-time requirements.

In order to recognize and to handle such situations, we use
an ontology based topology for every shuttle to store envi-
ronmental information in a discretized manner. On the one
hand, each shuttle recognizes changes in its environment by
sensors, on the other hand, it periodically receives updates
of this environmental information from the registry as de-
scribed in [10]. Figure 2 shows the UML class diagram of a
shuttle’s topology.

Every shuttle knows a registry that is liable for the set of
tracks on which the shuttle is located. A CommunicationRule
is like an instruction to handle a certain problem. Therefore,

1http://www-nbp.upb.de/en

Figure 1: A possible collision of two shuttles at a
switch

0..n

0..1

0..n0..n

knows

0..1 0..1

is on
0..n 0..1

knows

0..1

0..1
0..1

prev1

Switch

0..n

0..1

Track

prev

NormalTrack

Boolean :) (cDetection

Shuttle

partner

has

next

Integer : communicationType

CommunicatonRule

Registry

Figure 2: UML class diagram for the shuttle ontol-
ogy

it has a partner association that describes which shuttles are
involved in the respective problem. It also provides a type
to classify the required coordination and thus the problem.
Every shuttle provides a cDetection method that must be ini-
tiated if a shuttle is heading towards a switch. This method
checks whether a situation might occur that causes a col-
lision as illustrated in Figure 1. If a possible collision is
detected, a CommunicationRule for avoiding the collision is
created. This rule describes which shuttle has to slow down
to avoid the collision. Of course, the shuttles may initiate
a coordination, e.g. to buy or sell respectively the right of
way. Figure 3 shows a story diagram that consists of one
story pattern and specifies the method cDetection.

The behavior, specified by the story pattern of the story
diagram, consists of two parts: First, an object matching
searches for the situation that might cause a collision. This
situation occurs when two shuttles are located on the tracks,
that lead to a joining switch. If such an instance situation
is matched, the second part of the behavior creates a Com-
municationRule object with type = RIGHT OF WAY where
RIGHT OF WAY is a constant for right of way. It also creates
two links between the involved shuttles. When a matching
is found and the CommunicationRule is created, the story

Fujaba Days 2005 72

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2

knows
Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

Figure 3: Story Diagram for collision recognition

diagram returns a true value, false otherwise. Both shuttles
execute complementing story pattern which guarantee that
one shuttle has right of way and the other one has to wait.

The mentioned coordination can be specified by another
story diagram or by a Real-Time Statechart [4, 9, 2] that
uses the return value of the cDetection method as transition
trigger. Further aspects of real-time systems, like for exam-
ple the communication, is out of the scope of story patterns
and is handled for example in [11].

3. PREDICTABLE REAL-TIME BEHAVIOR
As indicated in the introduction, unbounded data structures
lead to unpredictable real-time behavior. As class diagrams
describe unbounded data structures and thus unbounded
data structures are used to implement class diagrams, like
the one from Figure 2, story patterns that operate on these
data structures do not show predictable real-time behavior.
Therefore, a WCET of a story pattern cannot be derived
automatically from the model.

0..20

0..1

0..600..2

knows

0..1 0..1

is on
0..100 0..1

knows

0..1

0..1
0..1

prev1

Switch

0..50

0..1

Track

prev

NormalTrack

Boolean :) (cDetection

Shuttle

partner

has

next

Integer : communicationType

CommunicatonRule

Registry

Figure 4: Class diagram with fixed maximum mul-
tiplicities

To overcome this limitation, we define so-called fixed max-
imum multiplicities in a class diagram, as shown in Figure
4. Note that the multiplicities, labeled with n in Figure
2, are replaced by concrete values in Figure 4. This en-
ables an implementation using data structures with upper
bounds. These upper bounds determine a worst-case num-
ber of iterations (WCNIs) when searching in these data struc-
tures which leads to predictable real-time behavior. This
model-based development approach, combined with auto-
matic code-generation leads to a well-structured implemen-
tation with analyzable nested loops and loops with fixed
termination conditions.

Further, we make use of the factory pattern [8] to avoid
dynamic resource allocation and deallocation after initial-
ization time. As we know the implementation scheme of the
access methods of the factory pattern and the implementa-
tion scheme of the code fragments that realize the story pat-
tern, we derive their WCETs simply by adding the WCETs
of the corresponding elementary operations.

There are several elementary operations on dynamic data
structures in order to execute a story pattern. Elemen-
tary operations are creation and deletion of objects, adding
and removing objects from different data structures, writing
and reading attributes, and comparing objects. For each of
these elementary operations, we use a runtime measurement
tool executing a worst-case scenario running on the selected
hardware platform. From this runtime measurement tool,
we get the required WCETs. As different types of data struc-
tures are used (e.g. TreeSet, HashSet, LinkedList, . . .), we
compute the WCETs for the different data structures using
different worst-case scenarios. The data structures used in
the worst-case scenario have the maximum size as specified
by the maximum multiplicities in the class diagram. As
we know the code of the data structures, we also know the
worst-case path when operating on them. In the future, the
worst-case scenarios will be extended to capture degenerated
data structures for a more precise WCET estimation.

The WCET of a story pattern does not only depend on
the WCETs of its single code fragments and on the WCNIs
when searching in data structures. The problem of WCET
determination for story patterns is more complicated, be-
cause the order in which the elements of a story pattern are
matched has significant impact on the resulting WCET as
(partly) nested iterations can occur:

Multiple different matching sequences that lead to differ-
ent WCETs exist because story patterns can contain bidi-
rectional cycles. In the example story pattern of Figure 3,
there exist several uni- and bidirectional cycles. For exam-
ple, if the only bound object is this, this → t1 → reg → this
is a bidirectional cycle because we also have the possibility
to choose this → reg → t1 → this to match this part of the
story pattern. For example, a unidirectional cycle is reg →
sw → t1 → reg because the association between Switch and
NormalTrack (which is a Track) is unidirectional.

The reason why different matching sequences usually lead
to different WCETs is because different matching sequences
can have different WCNIs. When, for example, a link be-
tween a Registry and a Shuttle instance is specified, starting
at the Registry object and binding the Shuttle object requires
a search in a data structure with 60 as upper bound. Bind-
ing the Registry object from the Shuttle object requires just a
search in a data structure consisting maximal of 2 instances.
In this case the algorithm, which determines the matching

73 Fujaba Days 2005

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2
knows

Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

1
3

2 4

567

8

9

Figure 5: Story diagram and any matching sequence

sequence, has two possibilities that lead to the same instance
matching but use different sequences.

Another reason why different matching sequences usually
lead to different WCETs is that the matching process ex-
plores in the worst-case a path for each existing instance
when binding an instance that is connected to a bound in-
stance via a to-many association. To obtain an optimal
WCET, the number of such paths has to be minimized. This
is achieved by first respecting the path via associations with
low multiplicities.

In Figures 5 and 6, the arrows with associated numbers
represent different matching sequences for the shown story
pattern. The two different strategies to perform the match-
ing lead to different WCETs due to the different maximal
sizes of the data structures as described two paragraphs be-
fore. As there exist multiple possible strategies to perform
the matching, we should choose a strategy, that leads to an
optimal WCET, i.e. a WCET that is as small as possible.

As we specified fixed maximum multiplicities and thus
know the upper bounds of the corresponding data struc-
tures, we can determine a matching sequence so that the
matching will use a minimum of comparisons when search-
ing data structures and thus leads to the optimal WCET. In
the next section is described how to determine the WCET
for a matching sequence of a story diagram. Section 5 de-
scribes how to find the optimal matching sequence.

4. WCET DETERMINATION
In order to calculate and optimize the WCET of a story
pattern, we introduce the so-called story graph [17]. This
graph consists of different types of edges respecting that
there are different kinds of checks to be performed during
matching: For example, starting at the this object binding
object t1 (step 1 in Figure 6) and then binding binding reg
(step 2) is simple as the corresponding associations are to-

]failure[]success[

falsetrue

knows

knows

prev1

prev is on

«create»
partner

is on

knows NormalTrack:t1 Registry:reg

NormalTrack:t2
knows

Switch:sw

Shuttle:s2

knows

«create»

RIGHT_OF_WAY:=communicationType

CommunicatonRule:rule

this

«create» has

Shuttle::cDetection (): Boolean

1
3

2 8

794

6

5

Figure 6: Story diagram with a better matching se-
quence (optimal)

one associations. For step 3, it is just a simple check for
existence of a link is required, as the source and the target
objects are already bound. Binding sw from reg in step 4
requires the search in a data structure, as it is not a to-one
but a to-many association.

Before explaining further details like story graph creation,
edge selection mechanism, timing constraints and WCET
calculation with a story graph, a formal definition of the
story graph is given in Definition 1.

Definition 1 Let G = (V, E) be a story graph with V the
nodes, E ⊆ (V × V × IN3 × IN × Es × T) the edges and let
Gs = (Vs, Es) be a story pattern. Each node vs ∈ Vs is
mapped to a node v ∈ V and each edge es ∈ Es is mapped
to one or multiple edges e ∈ E (see below). Thus, it holds
|V | = |Vs| and |E| ≥ |Es|. An edge e = (s, t, w, c, Le, te) ∈ E
consists of the following elements: s ∈ V is the source
node of the edge e. t ∈ V is the target node of the edge
e. w = Att = (wf , wd, ca) is defined as AnalysedTypeTime
which includes all timing information required to compute
the WCET when choosing the edge e. c ∈ IN is the maximum
number of iterations that is required for binding the edge e.
Le = {es1, ..., esn} ⊆ Es is a set of Link/MultiLink-references
of the story pattern Gs associated with the story graph edge
e. te ∈ T = { BindNormal, BindOptional, CheckIsomor-
phism, CheckLink, CheckAttribute, CheckConstraint, Check-
NegativeLink, CheckNegativeNode } is the type of the edge
e ∈ E.

Vs and Es define the nodes and edges of a story pattern.
See [19] for a detailed formalization of story patterns. An
AnalysedTypeTime w = Att = (wf , wd, ca) contains runtime
information. wf is a fixed execution time that occurs due
to a code fragment before starting a possible loop. wd is
the execution time for a single loop iteration. The number

Fujaba Days 2005 74

of iterations is stored in ca that results from the defined
multiplicity of the related association in the related class di-
agram introduced in section 3. ca should not be confound
with c. In most cases they are equal, but there is an ex-
ception when these values differ. If there is an edge ei ∈ E
with ti = {CheckNegativeNode} and the AnalysedTypeTime
wi then ci = 1, but cai is the number of iterations that is
derived from the defined exact multiplicity of the related as-
sociation. The generated code that is necessary for checking
negative nodes never starts a further nested loop, but for
WCET computation of the code fragment for the negative
node check, the fixed multiplicity is necessary and stored in
cai. c is only used when calculating the WCET K(L) of a
matching sequence L (cf. Definition 2).

Every story graph edge e ∈ E can optionally have one or
more associated Link/MultiLink-references Le ⊆ Es. Le does
not influence WCET computation, but provides information
required for implementation issues.

te ∈ T describes the classification of a story graph edge e ∈
E. As defined in Definition 1 the set T includes eight clas-
sification types. These classification types describe groups of
link types of a story pattern. For example, te = {BindNormal}
defines a link which describes a normal matching of an in-
stance (except the links with optional condition). Every
classification type describes indirectly a pre selection crite-
rion and a post selection effect used while finding an optimal
matching sequences described in the next section. The pre
selection criterion describes which story graph edge e ∈ E is
available for selection. In every computation step, the al-
gorithm for optimization has to choose a story graph edge
e ∈ E which was not considered before. The selection of a
story graph edge e ∈ E affects the story graph in a way that
is implicitly encoded in the classification type te ∈ T of the
selected edge e ∈ E (e.g. after binding a node via a link, this
link does not need to be checked any more) what is called
the post selection effect.

this:Shuttle rule:Communication
Rule

t1:Normal
Track reg:Registry

t2:Normal
Track

Legend:

CheckIsomorphism
CheckLink
BindNormal

CreateLink
CheckAttribute

Figure 7: Cut-out of the resulting story graph from
the story pattern example

The story graph, resulting from our example story pattern
inside the story diagram introduced in Figure 3, consists of
7 nodes and 39 edges. Due to lack of space, we present just
a cut-out of the story graph consisting of 5 nodes and 20
edges illustrated in Figure 7. This is adequate to explain
the importance of the story graph.

Note that the story graph edges e ∈ E are not inevitably
related to story pattern edges es ∈ Es. For example, there is
no Link/MultiLink-reference es ∈ Es for attribute checks and
assignments, but the story graph contains an edge ei ∈ E
with ti = { CheckAttribute } with the rule node as source and
as target. For every story pattern Link/MultiLink-reference
es ∈ Es, several story graph edges e ∈ E are created. For
example, for every ei ∈ E and ti = { BindNormal } a corre-
sponding story graph edge ej ∈ E with tj = { CheckLink }
exists also. As mentionend above, either the BindNormal or
the CheckLink link is taken for the matching sequence. The
story graph edges ei ∈ E and ti = { CheckIsomorphism } ex-
ists between all objects which have the same class diagram
type.

The WCET for a story pattern and a specific matching
sequence is determined as described in Definition 2.

Definition 2 Let K(L) be the WCET for a solution L of a
story graph G = (V, E) with L = (e1, ..., en), ei = (si, ti,
wi, ci, Lei, tei) ∈ E, wi = (wfi, wdi, cai) and c0 = 1. Then

K(L) =
∑n

i=1

[
(wfi + wdi · cai) ·

(∏i−1
j=0 cj

)]
+ pC(G, L).

A solution L is an n-tuple of story graph edges e ∈ E. This
n-tuple defines the matching sequence described in Section
3. As this matching sequence should be used for code gen-
eration of a story pattern, it can be translated into a regu-
lar matching sequence for the story pattern (the translation
needs the Link/MultiLink-references stored in Lei of every
story graph edge ei ∈ E). The function pC(G, L) returns a
runtime that is caused by code fragments that do not affect
the runtime of the related matching sequence related to L.
These code fragments are executed before or after a story
pattern is matched successfully. For example, object and
Link/MultiLink-reference deletion take place after successful
matching. For i = 1..n the execution time of the story graph
edge ei is multiplied with the number of how many times it
will be checked in worst-case (WCNI).2 This is described by
the product inside K(L) which is the number of iterations
of the considered story graph edge ei. By building the sum
of these execution times and adding pC(G, L), we get the
WCET of the considered matching sequence L.

5. WCET OPTIMIZATION
At the end of Section 3, we stated that story patterns could
have many valid matching sequences. This means that there
exists at least one matching sequence in the set of all possible
matching sequences that will take a minimum of runtime
during its execution in the worst-case. So, for an optimal
WCET, the determination of a solution L is required that
minimizes K(L).

In order to determine min(K(L)), we use a brute force
back tracking search method, as listed in Figure 8. This al-
gorithm determining the optimum requires exponential run-
time in relation to the number of Link/MultiLink-references
of a story pattern and the existing bidirectional cycles. It
uses recursion to compute valid solutions L. A solution L is
only valid when its WCET is less than the WCET of the best
solution the algorithm found up to this point. Further, the
solution has to contain all necessary story graph edges e ∈ E

2Due to a technical issue in the product function, we initially
start with c0 = 1.

75 Fujaba Days 2005

1: s← Defined WCET of the engineer
2: AL← ApproximatedSolution(G)
3: k ← K(AL) ∨ defined upper bound of the engineer
4: minimum← Ø
5: L← Ø ∧ L.valid = true
6: function OptimalSolution(G, L)
7: Sort all edges from i = 1...n ascending by wfi +(wdi ·

cai)
8: if (Not all edges ei ∈ E in G marked) ∧ (Edges still

reachable) ∧ (L.valid = true) then
9: for All reachable edges ei ∈ E in G do

10: G′ = (V ′, E′)← G = (V, E)
11: L′ ← L ◦ ei

12: Process all necessary markings e′i ∈ E′ of G′

13: if K(L′) < k then
14: OptimalSolution(G′, L′)
15: else
16: L′.valid← false
17: end if
18: end for
19: if still edges ei available then
20: L.valid← false
21: end if
22: end if
23: if L.valid = true then
24: minimum← L
25: k ← K(minimum)
26: end if
27: if k ≤ s then
28: Terminate
29: end if
30: end function

Figure 8: Algorithm for min(K(L)) determination

to become valid. Thus, after termination of the algorithm,
the invariant minimum = min(K(L)) is true.

As a method with exponential time might lead to prob-
lems in practice, we improved the algorithm as shown in
Figure 8: We use a heuristics (line 2), we ensure a mono-
tonic decreasing of the upper WCET bound (line 3, 13, 25),
and we introduce a lower WCET bound (line 1, 27).

First of all, a heuristics [17] is applied that leads to ac-
ceptable values for the WCET in the average case shown in
Figure 9. The function OptimalSolution uses this function
ApproximatedSolution to determine a solution L so that its
WCET = K(L) can be used as first upper bound. This cuts
down the search space of possible solutions L at the begin-
ning of OptimalSolution. OptimalSolution will recognize so-
lutions as infeasible as soon as the execution time is greater
or equal the heuristics WCET. This way of using a first up-
per bound and then decreasing the upper bound monotonic
reduces the computation time significantly.

Usually, it is just required to obtain an implementation
with a WCET that fits in a specific timing interval or just
a given WCET from a requirement specification needs to be
fulfilled. Thus, the engineer may define a target value for
the WCET (s in Figure 8). The algorithm terminates when
it determined a matching sequence that leads to a WCET
that is below this target value. Obviously, this WCET can
be larger than the optimal WCET.

1: function ApproximatedSolution(G)
2: L← Ø
3: Sort all edges from i = 1...n ascending by wfi +(wdi ·

cai)
4: for Not all edges ei in G are marked do
5: for Unmarked edges reachable do
6: Choose possible edge ei from S(G) with small-

est wfi + (wdi · cai)
7: L← L ◦ ei

8: end for
9: end for

10: return(L)
11: end function

Figure 9: Algorithm to determine a first matching
sequence

Tests showed that due to the improvements, a solution for
a common story pattern can be found in acceptable time.
Figure 10 illustrates the distribution of the different WCETs
of the example shown in Figure 3. The figure shows the
WCET values and the number of matching sequences with
the respective WCET. The WCETs unit is milliseconds and
is listed logarithmic.

0

100

200

300

400

500

600

700

800

900

1000

0,001 0,01 0,1 1 10 100 1000

wcet (ms)

#
 m

a
tc

h
in

g
 s

e
q

u
e
n

c
e
s

Figure 10: Frequency distribution chart of matching
sequences and their WCETs

We see that most solutions have a WCET in the mid-
dle of minimum and maximum. Without the described im-
provements of the algorithm, the computation of the optimal
matching sequence took about eight minutes on a 900 MHz
PowerPC 750fx processor. Using the heuristics and mono-
tonic decreasing of the upper bound it took about three
seconds and only three possible matching sequences were
found till optimum. Figure 11 shows the improvement of
the example’s WCET in relation to the time needed for op-
timization. Note that the x-axis is increasing exponentially.

The black line shows the temporal development of the
best solution during the computation process. The grey
line shows the optimal WCET that could be possible. This
points out that using monotonic decrease of the upper bound
is heavily decreasing the number of possible matching se-
quences.

For the evaluation shown in Figure 12, an abstract story
pattern with twelve Link/MultiLink-references is used. The
figure shows the improvement of the WCET in relation to

Fujaba Days 2005 76

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,168 0,734 0,736 2,265

computation time (s)

w
c
e
t

(
m

s
)

Figure 11: Improving the WCETs with the restricted
algorithm

0

1

2

3

4

5

6

7

8

0,341 0,438 0,524 0,632 0,643 3,677 8,663 79,866 117,816 126,63

computation time (s)

w
c
e
t

(
m

s
)

Figure 12: Improving the WCETs with the restricted
OptimalSolution but with an abstract story pattern

the runtime of the optimization algorithm. Figure 13 shows
a chart that results from computation time measurements
of story diagrams with one abstract story pattern with a
high number of bidirectional cycles. The x-axis describes
the number of Link/MultiLink-references of the story pattern
and the y-axis the OptimalSolution computation time in sec-
onds. The diagrams show that story patterns with more
then twelve Link/MultiLink-references require long computa-
tion times. Note that the computation time does not only
depend on the number of Link/Multilink-references, but also
on the number of bidirectional cycles which also increase the
number of possible matching sequences.

6. CONCLUSIONS & FUTURE WORK
Graph like structures are required for storing context and
local knowledge in future complex intelligent and adaptive
technical systems. Story patterns are an appropriate mod-
eling language for modifying graph like structures. In order
to satisfy safety and hard real-time requirements, worst-case
execution times for the execution of story patterns are re-
quired. We presented in this paper an approach which (1)
determines these worst-case execution times on a given hard-
ware and (2) computes an optimal worst-case execution time
based on an optimal search order of the story pattern ele-

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

link/multilink-references in story pattern

c
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Figure 13: Computation times in relation to the
number of Link/MultiLink-references of a abstract
story pattern

ments. The computation of the optimal order consists of
two steps. In the first step, a heuristics is used in order to
find an optimal search order for the average case. There-
after, in step two, a brute force algorithm is employed to
find a better solution than provided by the heuristics.

To improve our WCET optimization algorithm, we plan
to respect knowledge about the minimal remaining costs in
the algorithm in a branch-and-bound manner. Further, we
plan to support the WCET determination of story diagrams,
consisting of multiple story patterns as well. Therefore, we
plan to integrate our approach with the MAXT approach
[16] that requires the specification of the WCNIs for every
activity in the story diagram and their WCETs. We will use
our algorithm for single story patterns to determine the sin-
gle activities’ WCETs. In [16], the WCET for the cyclic flow
graph is then computed with integer linear programming
(ILP).

Story charts [12] are an extension of standard UML state
machines by story pattern. The states are enriched by story
patterns as do methods. Story charts lack appropriate no-
tions for time. Real-Time Statecharts [4, 9, 2] are an appro-
priate state based modeling notation for the specification
of real-time behavior. The presented WCET determination
and optimization approach will be used in order to integrate
story patterns into Real-Time Statecharts. In addition to
the usage of story patterns in story charts, we will not only
support story patterns as behavior specification for do meth-
ods, but for all kind of actions (entry and exit methods as
well as transition actions).

REFERENCES
[1] G. Bernat, A. Burns, and A. Wellings. Portable

Worst-Case Execution Time Analysis Using Java Byte
Code. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems (Euromicro-RTS
2000), 2000.

[2] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In H. Giese and A. Zündorf,
editors, Proc. of the first International Fujaba Days
2003, Kassel, Germany, volume tr-ri-04-247 of
Technical Report, pages 1–8. University of Paderborn,
2003.

77 Fujaba Days 2005

[3] S. Burmester, H. Giese, and O. Oberschelp. Hybrid
UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Informatics
in Control, Automation and Robotics. Kluwer
Academic Publishers, 2005. to appear.

[4] S. Burmester, H. Giese, and W. Schäfer. Model-driven
architecture for hard real-time systems: From
platform independent models to code. In Proc. of the
European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’05),
Nürnberg, Germany, pages 1–15, November 2005.

[5] G. C. Buttazzo. Hard Real Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Kluwer international series in engineering and
computer science : Real-time systems. 1997.

[6] E. Erpenbach. Compilation, Worst-Case Execution
Times and Scheduability Analysis of Statechart
Models. Ph.D.-thesis, University of Paderborn,
Department of Mathematics and Computer Science,
2000.

[7] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. LNCS 1764,
pages 296–309, November 1998.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Reading, MA, 1995.

[9] H. Giese and S. Burmester. Real-Time Statechart
Semantics. Technical report, 2003.

[10] H. Giese, S. Burmester, F. Klein, D. Schilling, and
M. Tichy. Multi-Agent System Design for
Safety-Critical Self-Optimizing Mechatronic Systems
with UML. In B. Henderson-Sellers and J. Debenham,
editors, OOPSLA 2003 - Second International
Workshop on Agent-Oriented Methodologies, pages
21–32, Anaheim, CA, USA, Center for Object
Technology Applications and Research (COTAR),
University of Technology, Sydney, Australia, Oct.
2003.

[11] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the compositional verification of
real-time uml designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM Press, September 2003.

[12] H. J. Köhler, U. A. Nickel, J. Niere, and A. Zündorf.
Integrating UML Diagrams for Production Control
Systems. pages 241–251. ACM Press, 2000.

[13] D. J. Musliner, R. P. Goldman, M. J. Pelican, and
K. D. Krebsbach. Self-Adaptive Software for Hard
Real-Time Environments. IEEE Inteligent Systems,
14(4), July/Aug. 1999.

[14] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent
Systems, 14(3):54–62, May/June 1999.

[15] P. P. Puschner and A. Burns. Guest Editorial: A
Review of Worst-Case Execution-Time Analysis.
Real-Time Systems, 18(2/3):115–128, May 2000.

[16] P. P. Puschner and A. V. Schedl. Computing
Maximum Task Execution Times - A Graph-Based
Approach. In Real Time Systems, 13, Technical
Report, pages 67–91. Springer Link, Kluwer Academic
Publishers, July 1997.

[17] A. Seibel. Story Diagramme für Eingebettete
Echtzeitsysteme. Bachelor Thesis at University of
Paderborn, Department of Computer Science,
Paderborn, Germany, February 2005.

[18] J. Sztipanovits, G. Karsai, and T. Bapty. Self-adaptive
software for signal processing. Commun. ACM,
41(5):66–73, 1998.

[19] A. Zündorf. Rigorous Object Oriented Software
Development. Habilitation Thesis at University of
Paderborn, Department of Computer Science,
Paderborn, Germany, 2001.

Fujaba Days 2005 78

	Contents.pdf
	Table of Contents
	Keynote Talk
	Model-Driven Development
	Reverse Engineering
	Formal Methods
	Code Generation
	Real-Time Systems

