

Holger Giese, Andy Schürr, Albert Zündorf (Eds.)

 Days 2004

15th -17th September 2004
TU Darmstadt, Germany

Proceedings

Volume Editors

Jun.-Prof. Dr. Holger Giese

University of Paderborn

Department of Computer Science

Warburger Straße 100, 33098 Paderborn, Germany

hg@uni-paderborn.de

Prof. Dr. Andy Schürr

TU Darmstadt

Department of Electrical Engineering and Information Technology

Merckstr. 25, 64283 Darmstadt, Germany

andy.schuerr@es.tu-darmstadt.de

Prof. Dr. Albert Zündorf

University of Kassel

Department of Computer Science and Electrical Engineering

Wilhelmshöher Allee 73, 34121 Kassel, Germany

Albert.Zuendorf@uni-kassel.de

Program Committee

Program Committee Chairs

Andy Schürr (TU Darmstadt, Germany)

Albert Zündorf (University of Kassel, Germany)

Program Commitee Members

Bernhard Rumpe (TU Braunschweig, Germany)

Holger Giese (University of Paderborn, Germany)

Jürgen Börstler (University of Umea, Sweden)

Jens Jahnke (University of Victoria, Canada)

Luuk Groenewegen (Leiden University, Netherlands)

Manfred Nagl (RWTH Aachen, Germany)

Pieter Van Gorp (University of Antwerp, Belgium)

Tarja Systä (Tampere University of Technology, Finland)

Wilhelm Schäfer (University of Paderborn, Germany)

Editors’ preface

Fujaba is an Open Source model transformation tool which combines features of commercial

“Executable UML” CASE tools with rule-based visual programming concepts adopted from

its ancestor, the graph transformation tool PROGRES. The Fujaba project started at the

software engineering group of Paderborn University in 1997. In 2002 Fujaba has been

redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers

to add functionality easily while retaining full control over their contributions. This new

architecture simplified the cooperation of the research groups at different Universities, which

form nowadays the core of the Fujaba Development Project.

At the early days, Fujaba had a special focus on code generation from UML diagrams

resulting in a visual programming language with a special emphasis on object structure

manipulating rules. Today, at least six rather independent tool versions are under development

in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time

systems, (3) education, (4) specification of distributed control systems, (5) integration with

the ECLIPSE platform, and (6) MOF-based integration of system (re-)engineering tools.

According to our knowledge, quite a number of additional research groups all over the world

have also chosen Fujaba as a platform for UML related research activities. Therefore, the 2nd

International Fujaba Days had the aim to bring together Fujaba developers and Fujaba users

from all over the world to present their ideas and projects and to discuss them with each other

and with the Fujaba core development team.

More specifically, thanks to the EU research project SEGRAVIS we were able to invite Birgit

Demuth from Dresden University and Pierre Alain Muller from the University of Rennes to

present the Dresden OCL Toolkit and the TOPModl initiative for the development of an

European Open Source Model Transformation toolkit. Both talks provided us with the needed

input for the discussion of possibilities of cooperation and combination of Fujaba, the

Dresden OCL Toolkit and the TOPModl toolkit. Beside these two invited talks, 14 groups of

authors attended the workshop and presented their ideas how to use, modify, and extend

Fujaba. In addition, one day of the workshop was reserved for joint programming activities.

The abstracts of the two invited talks plus the extended abstracts of the 14 accepted

submissions to the workshop are compiled in the form of a technical report. The structure of

the report reflects the organization of the related presentations in sessions at the workshop.

There were two sessions related to the topic of improving the FUJABA infrastructure, two

sessions presenting an impressive variety of applications developed with Fujaba as well as

one session dealing with the development of new Fujaba plugins.

We hope that this compilation of the abstracts of the Fujaba workshop presentations gives you

(the reader) an impression about ongoing activities in the Fujaba project and provides you

with the needed background information and motivation for joining the Fujaba development

team.

The Editors (Andy, Albert, and Holger)

Table of Contents

Invited Talk

Structure of the Dresden OCL Toolkit..1
Birgit Demuth et al. (TU Dresden)

Improving the FUJABA Infrastructure I

Towards Incremental Graph Transformation in Fujaba.. 3
Gergely Varró (Budapest University of Technology and Economics)

Selective Tracing of Java Programs ... 7
Lothar Wendehals et al. (University of Paderborn)

Application Development with FUJABA

Fujaba-based Tool Development and Generic Activity Mapping:

Building an eHomeConfigurator.. 11
Ulrich Norbisrath et al. (RWTH Aachen)

Simulating and Testing of Mobile Computing Systems Using Fujaba............................ 15
Ping Guo et al. (University of Paderborn)

Design and Simulation of Self-Optimizing Mechatronic Systems with

Fujaba and CAMeL ... 19
Sven Burmester et al. (University of Paderborn)

New Plugins for the FUJABA Community

Modifications of the FUJABA Statechart Interpreter for Multiagent-based

Discrete Event Simulation .. 23
Nicolas Knaak (University of Hamburg)

Component Templates for Dependable Real-Time Systems.. 27
Matthias Tichy et al. (University of Paderborn)

Visualizing Differences of UML Diagrams with Fujaba .. 31
Jörg Niere (Uni Siegen)

(Meta) Model-Driven Application Development with FUJABA

An Adaptable TGG Interpreter for In-Memory Model Transformations 35
Robert Wagner et al. (University of Paderborn)

Standardizing SDM for Model Transformation.. 39
Pieter Van Gorp et al. (Universiteit Antwerpen)

A MOF 2.0 Editor as Plug-in for FUJABA... 43
Carsten Amelunxen (TU Darmstadt)

Invited Talk

The TOPModl Initiative .. 49
Pierre Alain Muller et al. (Université de Rennes)

Improving the FUJABA Infrastructure II

Adding Pluggable Meta Models to FUJABA ... 57
Tobias Rötschke (TU Darmstadt)

FASEL: scripted Backtracking in FUJABA ... 63
Boris Böhlen et al. (RWTH Aachen)

Yet Another Association Implementation ... 67
Thomas Maier et al. (University of Kassel)

Structure of the Dresden OCL Toolkit

Extended Abstract

Birgit Demuth
Dresden University of

Technology
Department of Computer

Science
Dresden, Germany

Birgit.Demuth@inf.tu-
dresden.de

Sten Loecher
Dresden University of

Technology
Department of Computer

Science
Dresden, Germany

Sten.Loecher@inf.tu-
dresden.de

Steffen Zschaler
Dresden University of

Technology
Department of Computer

Science
Dresden, Germany

Steffen.Zschaler@inf.tu-
dresden.de

The Object Constraint Language (OCL) as a part of the
UML standard [1] is a formal language for defining con-
straints on UML models. We present a software platform
for OCL tool support [2]. The platform is designed for open-
ness and modularity, and is provided as open source. The
goal of this platform is, for one thing, to enable practical
experiments with various variants of OCL tool support, and
then, to allow UML tool builders and users to integrate and
adapt the existing OCL tools into their own environments.
The Dresden OCL Toolkit provides the following tools:

OCLCore: The base tool of the OCL toolkit consists of
four different modules:

• The OCLParser transforms the input OCL ex-
pression into an abstract syntax tree [3]. The ab-
stract syntax tree forms the common data repre-
sentation for all other tools in the toolkit.

• The OCLEditor is a comfortable editor which
includes, besides editing of constraints, features
like a toolbar and adequate error messages. The
user interface is designed to allow the integration
of the OCL editor not into a specific UML tool,
but into various environments. The screenshot in
Figure 1 gives an impression of the OCL editor
integrated into Together. It shows on the right
hand side a UML class diagram for a simple ho-
tel reservation system. On the left hand side, an
OCL constraint has been added asserting that the
region of a hotel must be the same as the region
of the hotel’s destination.

• The OCLTypeChecker checks type correctness
of OCL expressions and offers type information
towards other modules. Necessary UML model
information has to be extracted from the envi-
ronment in which the OCL toolkit is embedded.
For this purpose a small external interface (called
ModelFacade) is provided [3].

• The OCLNormaliser transforms the abstract
syntax tree into a normal form of OCL terms,
such that all terms can be mapped into a subset
of the OCL language more adequate for subse-
quent tasks. That way it can be avoided that

every tool using OCLCore has to implement the
execution of every OCL expression completely.

OCL2Java: This tool transforms a normalised syntax tree
into Java Code. It uses a class library which offers Java
representations for the predefined OCL types.

OCLInjector4Java: The tool takes the generated Java
code and inserts it into an application program. This
code instrumentation is done by the generation of wrap-
per methods for all methods whose compliance to spec-
ified OCL constraints is to be checked during execu-
tion. The used technique including code cleaning is de-
scribed in [6]. OCLInjector4Java has been integrated
into ArgoUML and Together.

OCL2SQL: The SQL code generator [4] generates an SQL
check constraint, assertion or trigger for an OCL in-
variant based on the accordingly normalised abstract
syntax tree. OCL2SQL can be used and adapted for
different relational database systems and different ob-
ject-to-table mappings. Similarly to OCLTypeChe-
cker’s ModelFacade, we provide an interface for the in-
tegration of various strategies of object-to-table map-
ping.

OCLInterpreter: A first tool developed outside of the
Dresden University of Technology is an OCL inter-
preter that allows the dynamic checking of OCL con-
straints against objects. The OCLInterpreter is also
designed based on a normalised abstract syntax tree.

OCL20: All previous tools establish an architecture which
is designed for OCL 1.x support. Currently we are
reengineering the Dresden OCL Toolkit according to
the new requirements of the revised and approved spec-
ification of OCL (“OCL 2.0” [7]). The OCL20 module
is a prototype of a metamodel-based OCL compiler
consisting of a MOF repository implementation and a
code generator [5]. The OCL 2.0 parser is still under
development. The research issue is to which extent a
parser can be automatically generated from the pro-
vided specification.

An important requirement on tools supporting OCL is their
cooperation with UML tools. The specification of OCL con-

1 Fujaba Days 2004

Figure 1: Dresden OCL Toolkit integrated into Together

straints without any model makes no sense. OCLType-
Checker’s ModelFacade provides support for this flexibil-
ity. We have implemented the ModelFacade in the following
ways: An OCL tool can be tightly integrated into a UML
tool as an add-in. Then the model interface must be im-
plemented by an integration component accessing the UML
tool’s repository. Examples for this technique are the in-
tegration of our toolkit into Together (see Figure 1), Ar-
goUML, Poseidon, and Rational Rose. A kind of loose in-
tegration is the use of XMI files for static UML model in-
formation. The Dresden OCL toolkit already provides the
necessary ModelFacade implementation to use this technol-
ogy.

1. REFERENCES
[1] OMG UML v. 1.5 specification,

www.omg.org/technology/documents/formal/uml.htm

[2] Dresden OCL Toolkit,
http://dresden-ocl.sourceforge.net/

[3] Hussmann, H., Demuth, B., Finger, F.: Modular
Architecture for a Toolset Supporting OCL. in: Third
Int. Conference on the Unified Modeling Language
(UML’2000), York, UK, October 2000, Springer, 2000

[4] Demuth, B., Hussmann, H., Loecher, St.: OCL as a
Specification Language for Business Rules in Database
Applications. in: Fourth Int. Conference on the Unified
Modeling Language (UML 2001), Toronto, Canada,
October 1-5, 2001

[5] Loecher, St., Ocke, St.: A Metamodel-Based
OCL-Compiler for UML and MOF. in: Workshop
OCL 2.0 - Industry standard or scientific playground?,
Sixth Int. Conference on the Unified Modelling
Language (UML 2003), October 21, 2003, San
Francisco,
i11www.ilkd.uni-karlsruhe.de/˜baar/oclworkshopUml03

[6] Wiebicke, R., Utility Support for Checking OCL
Business Rules in Java Programs. Masters Thesis,
Dresden University of Technology, 2000,
dresden-ocl.sourceforge.net/

[7] OCL 2.0 Submission,
www.klasse.nl/ocl/ocl-subm.html

Fujaba Days 2004 2

Towards Incremental Graph Transformation in Fujaba

[Position paper]

Gergely Varró
Department of Computer Science and Information Theory

Budapest University of Technology and Economics
Magyar tudósok körútja 2.

H-1521 Budapest, Hungary

gervarro@cs.bme.hu

ABSTRACT
I discuss a technique for on-the-fly model transformations based
on incremental updates. The essence of the technique is to keep
track of all possible matchings of graph transformation rules, and
update these matchings incrementally to exploit the fact that rules
typically perform only local modifications to models. The proposal
is planned to be implemented as a plug-in for the Fujaba graph
transformation framework.

Keywords
graph transformation, graph pattern matching, incremental updates,
Fujaba

1. INTRODUCTION
Model Driven Architecture.Recently, the Model Driven Archi-

tecture (MDA) of the Object Management Group (OMG) has be-
come an interesting trend in software engineering. The main idea
of the MDA framework is the use of models during the entire sys-
tem design cycle. A major factor in the success of MDA is the
development of industrial-strength models and various modeling
languages. Several metamodeling approaches [2, 6, 19] have been
developed to provide solid foundations for language engineering
to allow system engineers to design a language for their own do-
main. As being the standard and visual object-oriented modeling
language, UML obviously plays a key role in language design.

Transformation engineering in MDA. [20]However, the role of
model transformations between modeling languages within MDA
is as critical as the role of modeling languages themselves. As
model transformations required by the MDA framework are sup-
posed to be mainly developed by software engineers, precise yet
intuitive notations are required for model transformation languages.
QVT [16], an initiative of the OMG, aims at developing a standard
for capturing Queries, Views and Transformations in MDA.

Incremental model transformations.During the design phase of
the software engineering process, the system model may be mod-
ified several times, e.g., when correcting bugs, performing refine-
ment steps, etc. When only a small portion of the model is mod-
ified, it is enough in general to re-execute a model transformation
only on the part of the model that has actually been changed. This
approach is called anincremental (or on-the-fly) model transforma-
tion.

The most typical example in a UML context is the incremental
update of various views. A UML diagram shows one aspect of the
system under design. If the system engineer modifies only one dia-
gram, then modification may result in an inconsistent model. In or-
der to maintain consistency, the design process should be supported

by incremental model transformation, which updates all UML di-
agrams in a consistent way whenever any diagram changed. A re-
lated topic is discussed in [12], where consistency of logical and
conceptual schemata of databases is maintained incrementally us-
ing traditional graph transformation techniques.

Incremental model transformations would also be advantageous
for visual modeling languages. For instance, in [3], the authors
discuss how the concrete syntax of a language can be generated
from the abstract syntax by batch model transformations. How-
ever, incremental transformations would make this technique el-
igible to visual language editors, which require to automatically
update the concrete syntax of the model according to the model-
view-controller paradigm.

Fujaba as a model transformation tool.Fujaba, which is an
Open Source UML CASE tool provides a rule-based visual pro-
gramming language for manipulating the object structure based on
the paradigm of graph transformation [18].

Traditionally, Fujaba has supported the specification of (and code
generation from) the dynamic behavior of the system in the form
of UML activity diagrams. Activity diagrams define the control
flow of the methods and as such, they consist of activities (nodes)
and transitions (edges). The role of transitions is to define temporal
dependencies (i.e., execution order) between activities.

A graph transformation rule describes the behavior of a specific
activity. A simplified version of UML collaboration diagrams (re-
ferred as story patterns) is used for specifying graph transformation
rules. Activity diagrams that contain story patterns as activities are
calledstory diagrams[8]. However, while Fujaba is considered to
be one of the fastest graph transformation engines, there is still lack
of support for incremental transformations.

Fujaba has been redesigned, and currently, it has a plug-in ar-
chitecture. This new architecture still supports the basic code gen-
eration feature, but it additionally allows developers to easily add
different functionalities while retaining full control over their con-
tributions. As a consequence of this flexibility, several application
areas exist such as re-engineering [14], embedded real-time system
design [1], education [15], etc.

Objectives. In the paper, I discuss the concepts of on-the-fly
model transformation based onincremental updates. The essence
of the technique is to keep track of all possible matchings of graph
transformation rules, and update these matchings incrementally to
exploit the fact that rules typically perform only local modifications
to models. I plan to implement such an incremental graph transfor-
mation engine using Rete-algorithms [9]. The engine is planned to
be integrated into the Fujaba graph transformation framework as a
plug-in.

3 Fujaba Days 2004

2. MODEL TRANSFORMATION
Visual modeling languages are frequently described by a com-

bination of metamodeling and graph transformation techniques [6,
19].

2.1 Metamodeling
Themetamodeldescribes the abstract syntax of a modeling lan-

guage. Formally, it can be represented by a type graph. Nodes of
the type graph are calledclasses. A class may haveattributesthat
define some kind of properties of the specific class.Inheritance
may be defined between classes, which means that the inherited
class has all the properties its parent has, but it may further con-
tain some extra attributes. Finally,associationsdefine connections
between classes.

In the MOF terminology [17], a metamodel is defined visually in
a UML class diagram notation. In practical terms, the class diagram
that has been designed in Fujaba by system engineers will form the
metamodel in this case.

The instance model(or, formally, an instance graph) describes
concrete systems defined in a modeling language and it is a well-
formed instance of the metamodel. Nodes and edges are calledob-
jectsandlinks, respectively. Objects and links are the instances of
metamodel level classes and associations, respectively. Attributes
in the metamodel appear asslotsin the instance model. Inheritance
in the instance model imposes that instances of the subclass can be
used in every situation, where instances of the superclass are re-
quired. In case of Fujaba, the generated concrete system will form
the instance model.

Example. A distributed mutual exclusion algorithm whose full
specification can be found in [11] will serve as a running example
throughout the paper.Processestry to access sharedresourcesin
this domain. One requirement from the algorithm is to allow access
to each resource by at most one process at a time. This is fulfilled
by using a token ring, which consists of processes connected by
edges of typenext. In the consecutive phases of the algorithm, a
process may issue arequeston a resource, the resource may even-
tually beheld bya process and finally a process mayreleasethe
resource. The right to access a resource is modeled by atoken. The
algorithm also contains a deadlock detection procedure, which has
to track the processes that areblocked.

The metamodel (type graph) of the problem domain and a sam-
ple instance model are depicted in the left and right parts of Fig. 1,
respectively. The instance model presents a situation with two pro-
cesses that are linked to each other by edges of typenext.

Metamodel

p1:Process p2:Process

Process

held_by releasetoken

next

blocked request

Model

n1:next

n2:next
Resource

Figure 1: A sample metamodel and instance model

2.2 Graph transformation
Graph transformation [5, 18] provides a pattern and rule based

manipulation of graph-based models. Each rule application trans-
forms a graph by replacing a part of it by another graph.

A graph transformation ruler = (LHS, RHS, NAC) contains a

left–hand side graphLHS, a right–hand side graphRHS, and nega-
tive application condition graphsNAC.

The applicationof r to anhost (instance) modelM replaces a
matching of theLHS in M by an image of theRHS. This is per-
formed by (i) finding a matching ofLHS in M (by graph pattern
matching), (ii) checking the negative application conditionsNAC
(which prohibit the presence of certain objects and links) (iii) re-
moving a part of the modelM that can be mapped toLHS but not to
RHS yielding the context model, and (iv) gluing the context model
with an image of theRHS by adding new objects and links (that can
be mapped to theRHS but not to theLHS) obtaining thederived
modelM′. The latter two steps form the so-called updating phase.
A graph transformationis a sequence of rule applications from an
initial modelMI .

Example. A sample rule of the distributed mutual exclusion al-
gorithm (depicted in Fig. 2) simply inserts a new process between
neighboring processesp1 andp2.

p1:Process

NewR

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

Figure 2: A sample transformation rule (newR)

2.3 Graph pattern matching
Typically, the most critical phase of a graph transformation step

concerning the overall performance is graph pattern matching, i.e.
to find a single (or all) occurrence(s) of a givenLHS graph in a
host model.

Current graph transformation engines use different sophisticated
strategies in the graph pattern matching phase. These strategies can
be grouped into two main categories.

• Algorithms based onconstraint satisfaction(such as [13] in
AGG [7], VIATRA [21]) interpret the graph elements of the
pattern to be found as variables which should be instantiated
by fulfilling the constraints imposed by the elements of the
instance model.

• Algorithms based onlocal searchesstart from matching a
single node and extending the matching to the neighboring
nodes and edges. The graph pattern matching algorithm of
PROGRES (with search plans [23]), Dörr’s approach [4], and
the object-oriented solution in FUJABA [8] fall in this cate-
gory.

However, it is common in all these engines that they can be char-
acterized as having a complex pattern matching phase followed by
a simple modification phase and these phases are executed itera-
tively.

The main problem is that the information on previous match is
lost, when a new rule application is started. As a consequence, the
complex pattern matching phase has to be executed from scratch
again and again. However, because of the local nature of modifi-
cations, it may be expected that the majority of matchings remain
valid in consecutive steps. The same matchings are calculated sev-
eral times, which seems to be a waste of resources in case of e.g.,
long transformation sequences.

Fujaba Days 2004 4

3. INCREMENTAL UPDATES
In order to avoid recalculation of matchings, we proposed a tech-

nique based onincremental updates[22], for implementing effi-
cient graph transformation engines designed especially for incre-
mental (on-the-fly) model transformations. The basic idea in a
graph transformation context is to store information on previous
match and to keep track of modifications.

Several other solutions already exist for reducing the overhead
of finding matches for LHS of rules as implemented in PROGRES
[23]: (i) applying a graph transformation to all matches in the graph
as one graph rewriting step (pseudo-parallel graph transformation),
(ii) using incrementally computed derived attributes and relation-
ships in LHS, and (iii) using rule parameters in graph transfor-
mations to pass computed knowledge about possible LHS matches
from one rule to the next one.

After many years of research, different techniques based on the
incremental updating idea have evolved and by now they are widely
accepted and successfully used in several types of applications (e.g.,
relational databases, expert systems).

• In the area of relational databases, views may be updated in-
crementally. A database view is a query on a database that
computes a relation whose value is not stored explicitly in
the database, but it appears to the users of the database as if
it were. However, in a group of methods, which is called by
view materialization approach, the view is explicitly main-
tained as a stored relation [10]. Every time a base relation
changes, the views that depend on it may need to be re-
computed.

• In the area of rule-based expert systems, the Rete-algorithm
(for more details see [9]) uses the idea of incremental pat-
tern matching for facts. First a data-flow network is con-
structed based on the condition (if) parts of rules, which
is basically a directed acyclic graph of a special structure.
Initially, this network is fed by basic facts through its input
channels. Compound facts are constituted of more elemen-
tary facts, thus they are the inputs of internal nodes in the
network. If a fact reaches a terminal node, then the rule re-
lated to this specific node becomes applicable and assign-
ments modifying the set of basic facts may be executed (ac-
cording to thethenpart). Since every node keeps a record
of its input facts, only modifications of these facts have to be
tracked at each step.

Despite these results, (quite surprisingly) no graph transforma-
tion tools exist that provide support for incremental transforma-
tions. In [22], we carried out some initial experiments, which used
an off-the-shelf relational database to measure the performance of
the incremental updating method compared to the traditional (from
scratch) approach. However, it turned out the most relational data-
bases do not support incremental view updates. Therefore, it seems
to be necessary to develop a new incremental graph transformation
engine from scratch.

In the current paper, I propose to build a graph transformation en-
gine that uses the Rete-algorithm for implementing the incremental
updating technique.

Now I sketch the basic structure of such an engine. A graph
transformation rule can be viewed as a rule that has a condition
(if) and an action (then) part. The condition part corresponds to the
LHS of the graph transformation rule, while the action part consists
of all the actions (delete, update, insert) that have to be executed in
the updating phase. According to this mapping, we can build a
data-flow network for each rule using the LHS. Nodes and edges of

the LHS are mapped to input nodes, while the whole LHS will cor-
respond to a terminal node. The data-flow network may also have
some internal nodes, which are basically subgraphs of the LHS.
After this network building phase we will have as many data-flow
(Rete) networks as many rules we originally have. Then these net-
works are merged by the Rete-algorithm in order to decrease the
number of nodes.

Note that the nodes and edges of the metamodel and the actual
instance model will appear as input nodes and basic facts assigned
to the corresponding input nodes, respectively. Basic facts flow
through the network and constitute more and more compound facts
as they progress. When a compound fact reaches a terminal node,
then the corresponding graph transformation rule becomes applica-
ble, and the updating phase can be executed. This phase actually
modifies the active set of basic facts assigned to input nodes.

In an ideal case, such an incremental graph transformation en-
gine should be available as a plug-in for many graph transformation
tools (thus being independent of them). However, since the inter-
faces of graph transformation tools are not (yet) standardized I plan
to integrate the incremental engine as a transformation plug-in of
Fujaba. This would provide analternate graph transformation en-
ginetailored especially to incremental model transformations (pos-
sibly defined by triple graph grammar rules). However, no modifi-
cations are required to the base system of Fujaba.

Example. In order to sketch the idea of incremental updates, let
us consider that rulenewR (depicted in Fig. 2) is trying to be ap-
plied to the instance model of Fig. 1. The pattern matching phase
selects two valid subgraphs of the instance model, on which the
rule is applicable. The transformation engine then executes the up-
dating phase resulting in a model that contains 3 processes that are
stringed on a chain consisting of 3 edges of typenext.

Up to this point, both traditional and incremental approaches do
the same. But when the pattern matching phase of the following
rule application is executed, the traditional approach recalculates
valid matchings from scratch, while the incremental method only
has to delete invalid matchings and generate new ones. The first
method should examine all thenextedges appearing in the instance
model, which may contain an arbitrary number ofnextedges. How-
ever, in case of the incremental technique, it is enough to examine
only suchnext edges that are actually removed or created in the
previous step. The number of such edges are always three in this
example regardless of the size of the instance model.

Naturally, in case of dozens (hundreds) of transformation rules,
a single application of a rule might need to recalculate the match-
ing of several rules therefore, there is certainly a trade-off between
a cheap pattern matching phase and a more complex update phase.
I also intend to carry out experiments to assess this trade-off be-
tween traditional (batch or programmed) and incremental transfor-
mations.

4. CONCLUSIONS
In this paper, I discussed the necessity of incremental model

transformations in the context of the Model Driven Architecture
(transformation-based derivation of concrete syntax from abstract
syntax in visual modeling languages, consistent and on-the-fly up-
date of UML diagrams, etc.). I discussed the concepts of incremen-
tal model transformations based on the paradigm of graph transfor-
mation. I plan to implement such an engine using Rete-algorithms
and integrate it into Fujaba as a plug-in. Furthermore, I would like
to investigate the applicability of the incremental approach to vari-
ous model transformation techniques (including triple graph gram-
mars).

5 Fujaba Days 2004

5. ACKNOWLEDGMENT
I am very much grateful to D́aniel Varŕo and Andy Scḧurr for

giving valuable comments and hints on incremental updates strate-
gies and/or the paper itself.

6. REFERENCES
[1] S. Burmester and H. Giese. The Fujaba real-time statechart

plugin. InProc. of the Fujaba Days 2003, Kassel, Germany,
October 2003.

[2] T. Clark, A. Evans, and S. Kent. The Metamodelling
Language Calculus: Foundation semantics for UML. In
H. Hussmann, editor,Proc. Fundamental Approaches to
Software Engineering, FASE 2001 Genova, Italy, volume
2029 ofLNCS, pages 17–31. Springer, 2001.

[3] P. Domokos and D. Varró. An open visualization framework
for metamodel-based modeling languages. InProc. GraBaTs
2002, International Workshop on Graph-Based Tools,
volume 72 ofENTCS, pages 78–87, Barcelona, Spain,
October 7–8 2002. Elsevier.

[4] H. Dörr. Efficient Graph Rewriting and Its Implementation,
volume 922 ofLNCS. Springer-Verlag, 1995.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors.Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. 2: Applications, Languages and
Tools. World Scientific, 1999.

[6] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer.
Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent, and B. Selic, editors,UML 2000 - The
Unified Modeling Language. Advancing the Standard,
volume 1939 ofLNCS, pages 323–337. Springer, 2000.

[7] C. Ermel, M. Rudolf, and G. Taentzer.In [5] , chapter The
AGG-Approach: Language and Tool Environment, pages
551–603. World Scientific, 1999.

[8] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
Unified Modeling Language. In G. R. G. Engels, editor,
Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation (TAGT), volume 1764
of LNCS. Springer Verlag, 1998.

[9] C. L. Forgy. RETE: A fast algorithm for the many
pattern/many object match problem.Artificial Intelligence,
1982.

[10] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques and applications.IEEE
Quarterly Bulletin on Data Engineering; Special Issue on
Materialized Views and Data Warehousing, 1995.

[11] R. Heckel. Compositional verification of reactive systems
specified by graph transformation. In E. Astesiano, editor,
Fundamental Approaches to Software Engineering: First
International Conference, FASE’98, volume 1382 ofLNCS,
pages 138–153. Springer-Verlag, 1998.

[12] J. H. Jahnke, W. Schäfer, J. P. Wadsack, and A. Zündorf.
Supporting iterations in exploratory database reengineering
processes.Science of Computer Programming,
45(2-3):99–136, 2002.

[13] J. Larrosa and G. Valiente. Constraint satisfaction algorithms
for graph pattern matching.Mathematical Structures in
Computer Science, 12(4):403–422, 2002.

[14] J. Niere. Using learning toward automatic reengineering. In
Proc. of the 2nd International Workshop on Living with
Inconsistency, 2001.

[15] J. Niere and C. Schulte. Thinking in object structures:
Teaching modelling in secondary schools. InProceedings of
the ECOOP Workshop on Pedagogies and Tools for Learning
Object-Oriented Concepts, 2002.

[16] Object Management Group.QVT: Request for Proposal for
Queries, Views and Transformations.

[17] Object Management Group.Meta Object Facility Version
2.0, April 2003.

[18] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. 1: Foundations.
World Scientific, 1997.

[19] D. Varró and A. Pataricza. VPM: A visual, precise and
multilevel metamodeling framework for describing
mathematical domains and UML.Journal of Software and
Systems Modeling, 2(3):187–210, October 2003.

[20] D. Varró and A. Pataricza. Generic and meta-transformations
for model transformation engineering. InProc. UML 2004:
7th International Conference on the Unified Modeling
Language, 2004. In press.

[21] D. Varró, G. Varŕo, and A. Pataricza. Designing the
automatic transformation of visual languages.Science of
Computer Programming, 44(2):205–227, August 2002.

[22] G. Varŕo and D. Varŕo. Graph transformation with
incremental updates. InProc. 4th Int. Workshop on Graph
Transformation and Visual Modeling Techniques, 2004.

[23] A. Zündorf. Graph pattern-matching in PROGRES. InProc.
5th Int. Workshop on Graph Grammars and their Application
to Computer Science, volume 1073 ofLNCS, pages 454–468.
Springer-Verlag, 1996.

Fujaba Days 2004 6

Selective Tracing of Java Programs
∗

Lothar Wendehals, Matthias Meyer, Andreas Elsner
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[lowende|mm|trinet]@upb.de

Abstract
Design recovery, which means extracting design documents
from source code, is usually done by static analysis techni-
ques. Analysing behaviour by static analysis is very impre-
cise. Therefore, we combine static and dynamic analysis to
increase the preciseness of our design recovery process.

In this paper we present an approach to collect data for
the dynamic analysis by recording method calls during a pro-
gram’s execution. To reduce the amount of information we
monitor only relevant classes and methods identified by sta-
tic analysis. We developed a new plug-in for the Fujaba

Tool Suite called JavaTracer which we use for the re-
cording of method calls in Java programs.

1. Motivation
Today software engineers spend most of their time main-

taining software systems. The documentation of such sy-
stems is often not available or has become obsolete. Before
a system can be changed to meet new requirements it has
to be reverse engineered and its design has to be recovered
which is a time consuming and expensive task.

We developed a tool-supported semiautomatic approach
to design recovery [4] within the Fujaba Tool Suite [6].
The approach facilitates the recognition of patterns such as
design patterns [1] in the source code of a system. It is a
highly scaleable process which can be applied to large real
world applications.

Context

request()

State

handle()

ConcreteStateA

handle()

ConcreteStateB

handle()

state

1

state.handle()

Figure 1: The State design pattern

So far we only perform a static analysis based on source
code that focuses mainly on the structural aspects of a pat-
tern. However, many patterns are structurally very similar
and differ only in their behaviour, e.g. the design patterns
State (cf. Figure 1) and Strategy [8, 1]. Those behavioural
differences can only be recognized during a dynamic analysis

∗This work is part of the Finite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

of the system. Therefore, we will combine our static analysis
with a subsequent dynamic analysis [7, 8].

As the basis for dynamic analysis a program trace will be
recorded during the execution of the program to be analysed.
Since the amount of information for a complete program
trace is too high, we record only relevant method traces. The
relevant classes and methods to be monitored are identified
by the static analysis.

In the next section we present an overview of our design
recovery process. The selective recording of program traces is
described in Section 3. Related work follows in Section 4. In
Section 5 we report about the performance of our approach.
A short summary of future work follows in Section 6.

2. The Design Recovery Process
Our design recovery process is based on an extended Ab-

stract Syntax Graph (ASG) representation of the source co-
de. The ASG includes method bodies for a rudimentary sta-
tic analysis of behaviour. During design recovery the ASG
will be annotated by nodes which are linked to an arbitrary
number of ASG nodes to mark recognized pattern instances.

A tool-based pattern recovery requires a formal definition
of patterns. Thus, for each pattern to be recognized within
the source code a structural and a behavioural pattern is
given. The process starts with the static analysis using the
structural patterns. During this phase pattern instance can-
didates are recognized. These candidates will be verified by
the subsequent dynamic analysis using the behavioural pat-
terns.

2.1 Static Analysis
The structural patterns are specified as graph grammar

rules with respect to the ASG [4]. Graph grammar rules con-
sist of a left-hand side (LHS) and a right-hand side (RHS).
The LHS describes a sub graph to be found within the host
graph. The RHS describes the modifications of the sub graph
when the rule is applied.

Figure 2 depicts a structural pattern for the State design
pattern. The LHS and RHS of the graph grammar rule are
defined by one graph. The LHS is defined by all black nodes
and edges and describes the sub graph to be found within
the ASG. The RHS consists of the LHS and additional nodes
and edges marked with the stereotype �create�. It describes
how to mark the found sub graph by creating an annotation
node and links to ASG nodes.

The State pattern (cf. Figure 1) enables an object to
change its behaviour at runtime by changing its internal

1

7 Fujaba Days 2004

mtt
Rectangle

Figure 2: Structural pattern for State

state [1]. Each state is represented by a separate class which
encapsulates the state-specific behaviour. The state classes
adhere to a common interface defined by an abstract su-
per class. The object references exactly one state object and
delegates requests to this state object.

This structure is described by the LHS in Figure 2. It
specifies that the ASG must contain a class context:Class

which references an abstract class abstractState:Class. This
is expressed by the oval annotation node of type ToOne-

Reference. Note, that the LHS may also contain annotation
nodes created by the application of other rules. This enables
the composition of structural patterns.

In addition, the class context is required to have a method
setState:Method which has a parameter of type abstract-

State:Class and another method request:Method which calls
(MethodCall 1) an abstract method abstractHandle:Method of
class abstractState:Class. Furthermore, the abstract method
abstractHandle:Method has to be overridden by at least two
concrete methods (handleA:Method and handleB:Method) in
two subclasses of class abstractState:Class, namely concrete-

StateA:Class and concreteStateB:Class.
If the rule can be applied, i.e. the sub graph can be found,

it creates a State annotation node and links it to the con-

text:Class and abstractState:Class classes. The mapping bet-
ween nodes of the LHS and the found sub graph nodes is
stored for dynamic analysis.

The application of the graph grammar rules for the struc-
tural patterns recovers pattern instance candidates. For de-
tails on the rule application cf. [4]. The specification of the
structural patterns and their recognition are implemented
by the Fujaba plug-ins PatternSpecification and In-

ferenceEngine, respectively. The JavaParser plug-in is
used to generate an ASG representation of Java source co-
de thereby allowing the analysis of Java programs. Note,
however, that the approach is not limited to Java.

1Polymorphism and dynamic method binding prevent a pre-
cise static analysis of method calls.

2.2 Dynamic Analysis
The purpose of the dynamic analysis is to verify the pat-

tern instance candidates recognized by the preceding static
analysis. It has to be checked if the collaboration of the can-
didate’s classes during runtime matches the pattern’s beha-
vioural description.

request()
handleA()

loop (1,n)

setState(concreteStateB)

setState(concreteStateB)

alt

request()
handleB()

loop (1,m)

request()
handleA()

loop (1,m)

setState(concreteStateA)

setState(concreteStateA)

alt

request()
handleB()

loop (1,n)

concreteStateBconcreteStateAcontextclient

alt

sd State

Figure 3: Behavioural pattern for State

For the specification of behavioural patterns we use a no-
tation based on UML 2.0 sequence diagrams [8]. As an ex-
ample, Figure 3 shows the behavioural pattern for the State
design pattern. The pattern requires the existence of four
objects, namely client, context, concreteStateA, and concre-

teStateB. The pattern describes two alternative sequences.
In the first sequence the client object calls the method re-

quest on the context object which in turn calls handleA on
object concreteStateA. This interaction fragment must occur
at least once but may occur an arbitrary number of times
which is specified by loop(1,n). Then either the concrete-

StateA or the context itself has to change the state by calling
the setState method with concreteStateB as argument. After
the state change the client has to call request on context at
least once again. This time the behaviour of context must be
handled by the state concreteStateB. This specification con-
forms to the behavioural description of the State pattern
[1]. In principle the second alternative specifies the same be-
haviour as the first one except that the context is in state
concreteStateB first and then changes to concreteStateA.

Note that between and within the specified method calls
an arbitrary number of other methods which are not men-
tioned in the pattern may be called. However, the calls spe-
cified by the pattern have to occur in exactly the specified
sequence. This conforms to the semantics of the UML 2.0
consider interaction operator which implicitly holds for all
behavioural patterns. To facilitate a more restrictive speci-
fication we also support the critical operator which may be
assigned to interaction fragments to prohibit method calls
which are not specified explicitly.

To verify the conformance of a pattern candidate to its
corresponding behavioural pattern we record method traces
during the execution of the program in which the interaction
specified by the behavioural pattern has to be recognized.

2

Fujaba Days 2004 8

mtt
Rectangle

A Fujaba plug-in for the specification of the behavioural
patterns is currently being developed and a plug-in perfor-
ming the actual dynamic analysis will follow. A new plug-in
for the recording of method traces in Java programs and its
integration into the approach is presented in the following
section. This plug-in will be used by the dynamic analysis
to record the traces.

3. Selective Tracing
Recording all method traces during a program’s execution

produces too much information. Furthermore, the monito-
ring of a complete program extremely reduces the runtime
performance. For most analyses a “slice” of all method tra-
ces is sufficient. In this approach the static analysis provides
a set of pattern instance candidates that has to be further
analysed by dynamic analysis. All other classes of the pro-
gram can be ignored.

TCPState

open()

TCPEstablished

open()

TCPListen

open()

state

1

state.open()

State

context state

TCPConnection

changeState(TCPState s)

open()

Figure 4: Example of a State instance

Figure 4 shows an example for a State candidate. It has
been recovered and annotated by the static analysis. For the
dynamic analysis the method traces for the candidate have
to be recorded. This is done by the new Fujaba plug-in
JavaTracer.

Input for JavaTracer
The input for the JavaTracer is given as an XML docu-
ment in which the candidate’s classes and some of their me-
thods are listed that have to be monitored during program
execution. This information is retrieved from the candidate
and the structural and behavioural patterns.

The classes to be monitored can be gathered from the be-
havioural pattern in Figure 3. There are three objects within
the sequence diagram on which methods are called, name-
ly context, concreteStateA and concreteStateB. The names of
these three objects refer to the nodes context:Class, concrete-

StateA:Class and concreteStateB:Class within the structural
pattern in Figure 2. During static analysis the nodes from
the structural pattern have been mapped to the nodes of the
candidate in Figure 4. By using this mapping we can extract
the classes from the candidate that have to be monitored,
namely TCPConnection, TCPEstablished and TCPListen.

The methods can be extracted in the same way. In Fi-
gure 3 the four different methods request, setState, handleA

and handleB are called. They refer to request:Method, set-

State:Method, handleA:Method and handleB:Method from the
structural pattern. They have been mapped to the methods
TCPConnection.open(), TCPConnection.changeState(TCPSt-

ate s), TCPEstablished.open() and TCPListen.open().
The JavaTracer can also restrict the recording of me-

thod calls to a given caller. The handleA and handleB me-

thods in Figure 3 are called by the context object. So the
caller for the TCPEstablished.open() and TCPListen.open()

methods is the TCPConnection class. The method setState in
the behavioural pattern is called by three different objects.
So for the method TCPConnection.changeState() the three
caller classes TCPConnection, TCPEstablished and TCPListen

have to be monitored.

<Trace>
...
<ConsiderTrace>

<Class name="TCPConnection">
<Method name="open"/>
<Method name="changeState">

<Parameter type="TCPState"/>
<Caller name="TCPConnection"/>
<Caller name="TCPEstablished"/>
<Caller name="TCPListen"/>

</Method>
</Class>
<Class name="TCPEstablished">

<Method name="open">
<Caller name="TCPConnection"/>

</Method>
</Class>
<Class name="TCPListen">

<Method name="open">
<Caller name="TCPConnection"/>

</Method>
</Class>

</ConsiderTrace>
...

</Trace>

Figure 5: Example of JavaTracer input

Figure 5 shows an excerpt of the input for the Java-

Tracer. The candidate’s classes given in the input will be
monitored using the consider semantics, i.e. only the given
methods will be monitored, method calls of other methods
will be ignored. These classes are listed within the Consider-

Trace section of the input.
The JavaTracer also provides critical monitoring of classes

where all methods of a class are monitored. This facilitates
the checking of critical method call sequences. The classes
are specified within a CriticalTrace section of the input.

Tracing
The JavaTracer acts as a debugger and executes the pro-
gram to be analysed, called the debuggee. It uses the Java
Debugging Interface (JDI) [5] for connecting to the debug-
gee’s virtual machine. For each method given in the input
two breakpoints are set at the beginning and the end of the
method body. The JavaTracer is informed, when a break-
point is reached during program execution.

This approach is not bound to Java even though the Ja-

vaTracer is implemented for Java programs only. Break-
points are a common feature of debuggers for nearly all lan-
guages. So in principle a selective tracer for different langua-
ges can be implemented in the same way.

When the debuggee reaches a breakpoint the JavaTra-

cer will be informed. The JavaTracer halts the debuggee
and asks the debuggee’s virtual machine for additional in-
formation about the method call. This includes information
about the method name, the time stamp for the method
call, the names and unique identifiers of the caller and cal-
lee objects, the identifiers of objects passed as arguments as
well as the current thread. Then the debuggee’s execution

3

9 Fujaba Days 2004

mtt
Rectangle

is continued.
The execution of the program is controlled either manual-

ly by the reengineer or by automated tests. The JavaTra-

cer informs the reengineer which classes have been loaded
and which methods have been executed.

Output of JavaTracer
Figure 6 shows an excerpt from the JavaTracer’s output.
The output consists of a list of method entry and exit events
in the order of their occurrence.

<TraceResult>
...
<TraceEvent time="1089792972829">

<Callee id="3">
<Object objectName="TCPConnection" uniqueID="42"/>
<Method methodName="open"/>

</Callee>
</TraceEvent>
<TraceEvent time="1089792972830">

<Callee id="15">
<Object objectName="TCPEstablished" uniqueID="48"/>
<Method methodName="open"/>

</Callee>
<Caller>

<Object objectName="TCPConnection" uniqueID="42"/>
<Method methodName="open"/>

</Caller>
</TraceEvent>
<TraceEvent time="1089792972845">

<MethodExit id="15">
<Method methodName="open"/>

</MethodExit>
</TraceEvent>
...

</TraceResult>

Figure 6: Example of JavaTracer output

The three trace events describe a call of method open on
an object of class TCPConnection. This method calls another
method open on an object of class TCPEstablished. The last
method call immediately returns. These three events cover
the first loop within the behavioural pattern of Figure 3.

4. Related Work
The JaVis environment [3] visualizes and debugs concur-

rent Java programs to detect deadlocks. The information
about a running program is collected by tracing, which is
implemented using the JDI [5]. However, this approach uses
another technique of the JDI. The debugger has to provi-
de a filter, which specifies the classes and methods to be
monitored. During the debuggee’s execution all classes and
all methods are monitored. For methods passing the filter
MethodEntry- and MethodExitEvents are sent to the debug-
ger. Since all methods are monitored this technique can slow
down the debuggee up to 10.000 times.

The Omniscient Debugger [2] records method calls and
variable state changes of Java programs. It instruments the
source code on the byte code level, i.e. additional code is
inserted into the original source code of the debuggee. The
code is used to inform the debugger about method calls.
The instrumentation is also done in a non-selective way. The
author reports about 100MB/sec of information produced
during the execution as the main problem of this approach.

5. Performance
Table 1 shows the performance of different executions of

the Fujaba Tool Suite. In the first case the duration of

starting Fujaba was measured2. In the second and the third
case a project was opened in Fujaba. The first project con-
sists of one class diagram with 12 classes, the second one of
one class diagram with 27 classes and 178 activity diagrams.
Four major classes were monitored.

Action tw/o tbreak tevents

Starting Fujaba 5,39 sec. 8,4 sec. 103,37 sec.
Open Project I 2,85 sec. 20,65 sec. 241,78 sec.
Open Project II 6,28 sec. 49,58 sec. 923,03 sec.

Table 1: Duration of program tracings

First, the program was executed without any tracing (tw/o).
Then, the program was monitored using the breakpoint ap-
proach (tbreak) and at last by filtering the MethodEntry- and
MethodExitEvents (tevents). The table shows that selective
tracing with breakpoints improves the performance signifi-
cantly compared to the event based approach.

6. Future Work
We are currently implementing a Fujaba plug-in for the

specification of behavioural patterns. Next, the recognition
of the behavioural patterns in the method traces will be im-
plemented using basically the same techniques as in static
analysis. The behavioural patterns will be translated into
graph grammar rules. The output from the JavaTracer

will be transformed into a method call graph for each candi-
date. If the graph grammar rule for the behavioural pattern
can be applied to the call graph, the candidate can be veri-
fied as a correct design pattern instance.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, 1995.

[2] B. Lewis. Recording events to analyze programs. In
Object-Oriented Technology. ECOOP 2003 Workshop
Reader. Lecture notes on computer science (LNCS
3013), Springer, July 2003.

[3] K. Mehner. JaVis: A UML-Based Visualization and
Debugging Environment for Concurrent Java Programs,
pages 163–175. LNCS 2269. Springer Verlag, May 2001.

[4] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348. ACM Press, May 2002.

[5] Sun Microsystems. Java Platform Debugger
Architecture (JPDA). Online at
http://java.sun.com/products/jpda/index.jsp.

[6] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

[7] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, May 2003.

[8] L. Wendehals. Specifying patterns for dynamic pattern
instance recognition with UML 2.0 sequence diagrams.
In Proc. of the 6th Workshop Software Reengineering
(WSR), Bad Honnef, Germany, May 2004. to appear.

2The analysis was done on 1GHz Athlon, 640MB RAM,
Windows 98 2nd edition, JDK 1.4.2

4

Fujaba Days 2004 10

mtt
Rectangle

Fujaba based tool development and generic activity
mapping: building an eHomeSpecificator

Ulrich Norbisrath, Priit Salumaa, Erhard Schultchen
Department of Computer Science III, RWTH Aachen University,

Ahornstr. 55, 52074 Aachen, Germany

{uno|priit|erhard}@i3.informatik.rwth-aachen.de

ABSTRACT
To achieve a wide application and acceptance of eHome technol-
ogy, it must be easy to install value-added services to all different
kind of households. On the one hand, the development process
to adapt different services to a particular household must be min-
imized and on the other hand the configuration and deployment
process for eHome systems must be automated. To achieve such an
automation, the differences between various eHomes and desired
value-added services have to be specified in a machine-readable
form. With the aid of Fujaba, we created an eHome model capable
of specifying functions, devices, environments, and value-added
services. The static and dynamic aspects of the model are com-
pletely defined in Fujaba. To use the model and to do the actual
specification for a particular eHome and particular appliances we
generated the eHomeSpecificator tool from the model. The dynam-
ics of the model in the form of activities is integrated in the devel-
oped tool with the help of a generic mechanism, which will be pre-
sented here. To help integrating the eHomeSpecificator in the con-
figuration and deployment chain for assembling eHome systems we
developed OWL translators to support our knowledge base.

1. INTRODUCTION
The term eHome denotes a home which offers through the combi-
nation of its electronic equipment advanced benefits as value-added
services for its inhabitants. Systems implementing the value-added
services are called eHome systems. To achieve a wide application
and acceptance of eHome technology, it must be easy to install
value-added services to all different kind of households. Current
approaches to equip eHomes with value-added services require a
new development step for adapting services to meet the constraints
of the particular eHome. To automate configuration and deploy-
ment of value-added services, we consider the following tool chain:
An eHomeSpecificator is used to specify functions, devices, envi-
ronments, and value-added services. This information is used as
input for a Deployment Producer [4], which supports the generation
of a description from this particular specification and information
from a knowledge base. usable for the deployment of the desired
value-added services. The deployment is carried out by the Runtime
Instancer, which uses the particular specification generated by the

Deployment Producer. The eHomeSpecificator is realized with the
help of Fujaba [5] and will be presented here. We choosed Fujaba
to address frequent changes in our model to speed-up the devel-
opment process. According to that the focus is to show that graph
rewriting language based software development is a successful way
to develop necessary tools to support eHome systems.

As a concrete example, we consider a customer living in a partly
equipped eHome-apartment (see figure 1). In the apartment, there
are six rooms: corridor, office, living room, bathroom (including
toilet), kitchen, and bedroom. Each of these rooms has at least one
controllable light source and is connected via one door to the corri-
dor. The corridor itself has an entrance door. One door leads from
the kitchen to the living room. Every room except the corridor has
a window. The windows in the bedroom and the living room are
equipped with window breakage sensors. At the entrance and in the
corridor, open/ close-sensors are installed, and there is one camera
in the corridor. The kitchen is equipped with a fire sensor. The cus-
tomer living in this apartment desires an automated lighting system
and surveillance of his/ her property for added security. These re-
quests may be fulfilled with the help of two value-added services:
light movement and security. The eHomeSpecificator helps to spec-
ify, how the location structure of an eHome environment looks like,
which devices are already installed, and what the requirements of a
particular value-added service are. It also helps to add new devices
necessary for fullfilment of desired value-added services.

This work summarizes various aspects from [8] but outlines the
technical work related to Fujaba and UPGRADE more thoroughly.

2. FROM FUJABA TO EHOMESPECIFICA-
TOR

In our project, we use Fujaba to specify the data-model in terms
of UML class-diagrams. Activities are added to implement logical
components of the model. We choose not to integrate our project
into the Fujaba framework itself, but to create a stand-alone appli-
cation that is based only upon the Java code generated by Fujaba.
We will refer to this application containing the Fujaba data-model
code as the eHomeSpecificator.

This means some repetitive effort regarding basic user interaction
compared to a plug-in development project. However, this stand-
alone approach allows greater flexibility as it does not pose any re-
strictions regarding user-interaction. Also, developers creating the
data-model and system logic are strictly separated from the tool’s
users: Developers use Fujaba to maintain the specification and gen-
erate Java code that is easily integrated into the tool.

11 Fujaba Days 2004

Figure 1: Example for applying the security scenario.

We are concentrating on easing up the code transition from Fujaba
to the eHomeSpecificator. In particular, we focus on making activ-
ities defined in the UML model available in the eHomeSpecificator
user-interface in a generic yet helpful way. For example, the ge-
nerated and compiled Java code created from an activity diagram
does not contain useful names for its parameters or for the activ-
ity itself. We add an XML description file that defines additional
properties for each activity, such as labels and tooltips (for example
see listing 1).

<ACTIVITY name="createDeviceFunction"
l a b e l ="New DevFunc">

<TOOLTIP>Adds a device function to the
selected device definition .< / TOOLTIP>
<CONTEXTS><DEVICEDEFINITION />< /CONTEXTS>
<PARAM l a b e l ="Function Class">

<TOOLTIP>The function class of the new
device function .< / TOOLTIP>

< /PARAM>

<PARAM l a b e l ="Input">< /PARAM>

<PARAM l a b e l ="Output">< /PARAM>

< / ACTIVITY>

Listing 1: Example of an XML Activity Specification for
Generic Representation Mechanism

Here, we present only a fractional part of the model for eHomes. It
covers the specification of device definitions, which are used later
in the specification of the given eHome. On this restricted example
we illustrate how the model relates to Fujaba and the eHomeSpeci-
ficator. The development of the eHomeSpecificator begins with the
design of the eHome model in Fujaba. The static structure of the
model is specified in the UML class diagram (see figure 2) and its
dynamic aspect is captured by activities specified with Fujaba ac-
tivity diagrams (see figure 3).

As mentioned, figure 2 presents only necessary information for
defining devices. A device could be any kind of appliance like a
fire detector, a lamp, or a software component in the form of a con-
troller. The device definitions combine functions like heat or smoke
detection, which are defined by function classes and are available

over the device interfaces. According to the interfaces the devices
can later be connected in the eHome specification or eHome sys-
tem deployment. The graphical representation of the definition of
the fire detector device in the eHomeSpecificator tool is presented
in figure 4.

Figure 2: Portion of eHome Model

Designed activities of the eHome model are the only means how to
modify the model and to get information about it. In figure 3 the
activity for adding a function to a device definition is presented.
The activity creates a new DeviceFunction for the given de-
vice definition referred to as the this object on the diagram. The
created DeviceFunction is from the given FunctionClass.
The activity is integrated into the tool using the generic activity
invocation mechanism mentioned earlier. As a result of the in-
tegration the activity appears as a button on the left side of the
editor window. This particular activity appears as a button New
DevFunc in the eHomeSpecificator (see figure 4).

After designing the eHome model in Fujaba, the model is material-
ized in Java code using Fujaba’s code generator. As the next devel-
opment stage the eHomeSpecificator tool is developed. The tool can
be considered as a container and runtime environment for the de-
scribed eHome model. The activities on the model are bound with
the graphical user interface of the tool using the generic mechanism
mentioned previously. Different logical parts of the model structure

Fujaba Days 2004 12

Figure 4: The fire detector in the DeviceDefinition editor.

Figure 3: An activity for adding a functionality to the De-
viceDefinition.

are visualized in the corresponding editors (see figure 4). The log-
ical parts are presented in the user interface using the JGraph [2]
technology. There is a translator implemented for each editor view.
The task of a translator is to traverse the eHome models’ runtime
subgraph, relevant to the specific editor and generate the corre-
sponding JGraph to display. An end-user of the tool can derive
the specific model for his/ her eHome using different editors and
activities presented in editors. In figure 5 we illustrate the relation
between the eHome model, the Fujaba specification tool, and the
eHomeSpecificator previously presented in this section.

The use of Fujaba gives us several advantages. We can model the

Figure 5: eHomeSpecificator Architecture.

inner data structure of the tool, the static structure of the eHome
model in the standardized visual specification language UML. Al-
though the acquired class diagram represents a static aspect of the
eHome model, we can also visually specify the dynamic side of
the model with Fujaba activity diagrams. The generated code from
the model is executable and can be easily integrated into the tool
using the generic activity invocation mechanism. In the case of a
new activity in the model the resulting integration effort consists
of code generation, editing the XML file, and compilation of the
generated code. In this case, integration is a matter of five minutes.
In the case of structural changes, we still have to program by hand
the changes for the translators. This overhead will be tackled in the
future work.

Since the eHomeSpecificator covers the specification and only to
some degree the configuration part of the eHome configuration and

13 Fujaba Days 2004

deployment process, it needs to be integrated with the Deployment
Producer, which creates with the help of the knowledge base the
complete configuration to be deployed into the eHome. For inte-
gration with the Deployment Producer, the eHomeSpecificator has
to be able to output an OWL eHome ontlogy, which corresponds to
the current runtime version of the eHome model. For these means,
like also for visualisation of the model, a set of translators is built.
These translators traverse the eHome model and generate OWL
structures with the help of the Jena Semantic Web Framework[6].

3. RELATED WORK
There are many different tools for visual modeling and code gener-
ation. Fujaba is one of them. Another system we could have used is
the PROGRES (PROgrammed Graph REwriting) language [9] that
was developed at our department. The PROGRES system is not
necessarily restricted to UML models, although UML modeling is
possible. PROGRES is used to specify and test graph models and
rewriting rules, and finally to generate source code that can be exe-
cuted in an efficient way. It is supported by the UPGRADE frame-
work (Universal Platform for GRAph-based DEvelopment) [1] that
can be used to rapidly develop prototypes which operate on the ge-
nerated code. UPGRADE provides a user-interface that may be
adapted to the application’s needs. Also, UPGRADE manages a
persistent graph storage without the need for any support by the de-
veloper. Various projects at our department profited by the combi-
nation of PROGRES and UPGRADE to implement a specification-
based prototype, for example AHEAD [3]. Fujaba lacks this kind of
rapid-prototyping and therefore we had to implement the eHome-
Configurator for this purpose. However, Fujaba is widely accepted
among developers and in education. It is supported by an active
community and can be used free of charge.

4. FUTURE WORK
The eHomeConfigurator was built for the designated purpose of
modeling in the eHome context. However, its flexibility allows the
eHomeConfigurator do be adapted to other fields of work.

Beside exchanging the data-model created by Fujaba, the developer
has to write a new XML description file for the model’s activity di-
agrams. Also, it is required to implement a so-called “Translator”
class in Java that aids in displaying the model graph. Currently,
displaying the graph including node- and edge-labeling is not and
cannot be done automatically, due to lack of information. For ex-
ample, a node cannot be assigned a suitable label without further
information. One could assign the class name of the graph object
itself which would be not very helpful to the user. Alternatively,
one could enforce the developer to provide a getLabel method
that delivers an appropriate label text. However, this would require
to implement code into the data model that is strictly used to dis-
play informations to the user which is not what logical parts of the
model are meant for. Also, labels would not be customizable by the
user.

With the help of some additional informations that are, as the ac-
tivity description already is, placed in an XML description file, la-
beling the graph can be automated. For example, this description
could enumerate possible fields of an object that should be used
to construct a label. Hence, we could achieve an UPGRADE-like
attitude.

For more information on the the eHomeSpecificator and its integra-
tion in the configuration and deployment chain see [7].

5. SUMMARY
We apply the graph rewriting language based software development
practices on developing a supporting tool for eHome systems. We
consider this approach a more productive one as traditional devel-
opment methods. The developed eHomeSpecificator tool is used to
view and edit eHome specifications. It can be embedded with its
OWL translators in our configuration and deploament chain. The
inner data model and activities of the model were designed and ge-
nerated with the help of Fujaba. The model was integrated into
the tool mostly with the focus on generic mechanisms. The conse-
quence of this is that changes to the model will only require small
changes to the tool.

6. REFERENCES
[1] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel.

UPGRADE: Building Interactive Tools for Visual Languages.
In N. Callaos, L. Hernandez-Encinas, and F. Yetim, editors,
Proceedings of the 6

th World Multiconference on Systemics,
Cybernetics, and Informatics (SCI02), volume I (Information
Systems Development I), pages 17–22, Orlando, Florida,
USA, July 2002. IIIS.

[2] J. Community. Jgraph swing component.
http://jgraph.com/jgraph.html (01.06.2004).

[3] D. Jäger, A. Schleicher, and B. Westfechtel. AHEAD: A
graph-based system for modeling and managing development
processes. In M. Nagl, A. Schürr, and M. Münch, editors,
Proceedings Workshop on Applications of Graph
Transformation with Industrial Relevance (AGTIVE’99),
volume 1779 of LNCS, pages 325–339, Kerkrade, The
Netherlands, Sept. 2000. Springer.

[4] M. Kirchhof, U. Norbisrath, and C. Skrzypczyk. Towards
Automatic Deployment in eHome Systems: Description
Language and Tool Support. In Proceedings of 12th
International Conference on Cooperative Information Systems
(CoopIS 2004), Lecture Notes in Computer Science. Springer,
2004. to appear.

[5] T. Klein, U. Nickel, J. Niere, and A. Zündorf. From uml to
java and back again. Technical Report tr-ri-00-216, University
of Paderborn, Paderborn, Germany, September 1999.

[6] H. P. Labs. Jena Download. http:
//jena.sourceforge.net/downloads.html
(20.05.2004), 2004.

[7] U. Norbisrath and P. Salumaa. eHomeConfigurator. http:
//sourceforge.net/projects/ehomeconfig,
2004.

[8] U. Norbisrath, P. Salumaa, E. Schultchen, and B. Kraft.
Fujaba based tool development for eHome systems. In
Proceedings of the International Workshop on Graph-Based
Tools (GraBaTs 2004), Electronic Notes in Theoretical
Computer Science. Elsevier, 2004. to appear.

[9] A. Schürr. Operationales Spezifizieren mit programmierten
Graphersetzungssystemen. PhD thesis, RWTH Aachen, 1991.

Fujaba Days 2004 14

Simulation and Testing of Mobile Computing Systems
using Fujaba

Ping Guo
International Graduate School of Dynamic

Intelligent Systems
University of Paderborn, Germany

ping@upb.de

Reiko Heckel
∗

Department of Computer Science
University of Dortmund, Germany

(on leave from University of Paderborn)

reiko@upb.de

ABSTRACT
The paper presents an approach for analysis, modeling and
validation of mobile information systems with the tool sup-
port of Fujaba. The approach is developed based on UML-
like meta models and graph transformation techniques to
support sound methodological principals, formal analysis
and refinement. With conceptual and concrete level of mod-
eling and simulation, the approach could support applica-
tion development and the development of new mobile plat-
forms. The approach also provides automatic analysis, val-
idation and behavior consistency check with the support of
Fujaba.

1. INTRODUCTION
Mobility is a ”total meltdown” of the stability assumed by
distributed systems as stated in [7]. The main difference
is caused by the possibility of roaming and wireless con-
nection. Roaming implies that, since devices can move to
different locations, their computational context (network ac-
cess, services, permissions, etc.) may change, and the mobile
hosts are resource limited. Wireless connections are gener-
ally less reliable, more expensive, and provide smaller band-
width, and they come in a variety of different technologies
and protocols. All these result in a very dynamic software
architecture, where configurations and interactions have to
be adapted to the changing context and relative location of
applications.

Mobility has created additional complexity for computa-
tion and coordination, which makes the current architec-
tural concepts and techniques hard to use [2]. The current
architectural approach offers only a logical view of change;
it does not take the properties of the ”physical” distribution

∗Research partially supported by the European Research
Training Network SegraVis (on Syntactic and Semantic In-
tegration of Visual Modeling Techniques)

topology of locations and communications into account . It
relies on the assumption that the computation performed by
individual components is irrelative to location of the compo-
nent, and the coordination mechanisms through connectors
can be always transmitted successfully by the underlying
communication network. In order to support mobility, the
architectural approach needs to be adjusted in different ab-
stract layers of modeling and specification languages.

As shown in [5], there are a lot of platforms and middleware
have been developed for mobile computing. These differ-
ent platforms and middleware provide different transparency
levels of context awareness to the application, where the ap-
plication has to be aware of, and be able to react to, changes
in its context given by its current location, quality, cost and
types of available connections, etc. The amount of context
information required and available to the application greatly
varies, depending on the employed infrastructure so that, in
the end, not every intended application scenario may have a
meaningful realization on any given platform. That means,
developers have to take into account the properties of the
infrastructure they are using, not only for the final imple-
mentation, but also already at a conceptual level during re-
quirement analysis.

A conceptual model capturing the properties of a certain
class of mobile computing platforms would be very help-
ful to the application development and the development of
new mobile platforms. It would allow an understanding of
the basic mechanisms and their suitability for a certain task.
With suitable refinement and evolution support, the concep-
tual model can be mapped into a concrete platform specific
model.

In reality, it is difficult and expensive to test the mobility
support of a certain platform, which requires devices sup-
porting wireless communication and specific tools to check
the coordination logic of involved hardware and software
components. Simulating the mobile platform can provide
a simple and cheaper way to test the mobility aspects of
the platform. Through this means, the context aspects of
the platform like locations, network connections can be sim-
ulated directly, thus a dynamic execution environment can
be provided for the context-aware applications, which is also
difficult to test in reality.

15 Fujaba Days 2004

Conceptual
Model of
Style

Concrete Model
of Style
(WirelessCorba)

Reference
Application

Concrete
Simulation

Conceptual
Simulation

Tool(Fujaba)

Tool(Fujaba)

<<uses>>
ConceptualAPI

ConcreteAPI

Wrapper

Implementation

<<uses>>

<<refines>>

Application Programming Interface

<<uses>>

Platform
Independent
Level

Platform
Specific
Level

Figure 1: Modeling and simulation framework

In this paper, we introduce our approach for analysis, de-
sign and simulation of mobile systems with the tool support
of Fujaba. The approach is developed based on UML-like
meta models and graph transformation techniques to sup-
port sound methodological principals, formal analysis and
refinement. The approach includes two main parts: model-
ing and simulation. The modeling part is introduced in Sect.
2. Simulation is introduced in Sect. 3. Sect. 4. give the
related work and Sect. 5 concludes the paper with finished
work and future work.

2. MODELING OF THE MOBILE SYSTEM
Conceptual and concrete level modeling (as shown in Fig.
1) are the key parts of our approach [4]. The conceptual
modeling of styles of mobile systems [5] is proposed as a
way of capturing the properties of a certain class of mo-
bile computing platforms. The conceptual model consists
of two parts: a static structural model given by UML class
diagrams whose instances represent the valid system config-
urations, and a dynamic behavioral model given by trans-
formation rules over these instances, specifying the opera-
tions of the style. Typed graph transformation systems [8]
will provide the underlying formal model and operational se-
mantics. Informally, a typed graph transformation system
G = 〈TG, C, R〉, where TG is a type graph (visualized by
the class diagram) defining the architectural elements, C is
a set of constraints restricting their possible compositions,
and R is a set of graph transformation rules (given by pairs
of object diagrams).

Our structural model consists of meta models at different
levels contained in different packages. This allows us to
separate different concerns, like software architecture, dis-
tribution and roaming, while at the same time retaining an
integrated representation where all elements of a concrete
model are presented as vertices of the same graph, i.e., an
instance of the overall meta model. Based on this uniform
representation, the different sub-models can be related by
associations between elements belonging to different sub-
models.

Based on the integrated representation of the different views
in a single meta model, we can define the rules governing
movement and connectivity as graph transformation rules
typed over the corresponding package(s). A graph trans-
formation rule r : L ⇒ R consists of a pair of TG-typed
instance graphs L, R such that the intersection L∩R is well-

moveIn
n:Node

a:Area

NT :NodeType

instanceOf

AT:AreaType

instanceOf
locatedAt

n:Node

a:Area

NT:NodeType

instanceOf

AT:AreaType

instanceOf
locatedAt locatedAt

Figure 2: Transformation rule moveIn

defined. The left-hand side L represents the pre-conditions
of the rule while the right-hand side R describes the post-
conditions. In Fig. 2, the moveIn rule is shown as an exam-
ple: according to its precondition, expressed by the pattern
on the left-hand side, there should be a Node n and an Area
a whose types NT and AT should be connected by a locate-
dAt link. That means the node is of a type that is supported
by the area, like a cell phone in a GSM cell. In this case,
the rule can be applied with the result of creating a new
locatedAt link between the two instances. This is expressed
in the post-condition of the rule shown on the right-hand
side.

In [5], we have presented a basic style of mobile informa-
tion system for nomadic network, which is focussed on the
roaming and connectivity of mobile hosts, i.e., hosts can
change location and possible connections may vary accord-
ing to this location change. Naturally, architecture and be-
havior of applications depend on the connectivity and loca-
tion of their host computers. Our three-layered meta model
captures these relations in the three packages Architecture,
Connectivity and Roaming to present different viewpoints
of the systems. The basic operations of the style include
moveIn, moveOut, register, deRegister, connect, disconnect
and handOver.

The concrete model is based on a specific platform, e.g.
Wireless CORBA. Concrete modeling of mobile system uses
the same modeling technologies as conceptual modeling of
styles. Given specified models of the platform, a prototype
can be generated directly for the reference of implementa-
tion using code generation functionality provided by graph
transformation tools like Fujaba [1].

The relationship between these two different layer models
is refinement, e.g., the mobility and other aspects modeled
in the conceptual model need to be mapped into a concrete
design. Besides this, we focus on the behavior consistency
check of the two levels (will be discussed in Sect 3.3.), i.e.
the consistency check of the rules applied to the models, but
not of the structural elements. This is because the construc-
tion elements inside the conceptual model do not need to be
present in the concrete model, that makes the consistency
check of the construction element not much meaningful in
our approach.

3. SIMULATION
The operational semantics of the typed graph transforma-
tion system allows us to execute the models thus analyzing
the system through simulation. In this section, we will in-
troduce two ways to use the simulation through Fujaba: for
validating the model and as an oracle for test the actual
implementation.

3.1 Simulation for Validation

Fujaba Days 2004 16

Java Virtual Machine

Reflection API

Reflection Library

WCORBA software

Simulation Kernel
Dobs

4.Exeuction

Initial Cnfiguration

1.Static Structural Specification

2.Dynamic Behavioral Specification

3.Code Generation

visualization

Figure 3: Fujaba Simulation

In graph transformation systems, many verification prob-
lems can be formulated as reachability (or non-reachability)
properties of a given configuration in the system. A reach-
ability property holds for a given graph transformation sys-
tem G = 〈TG, C, R〉 and a start graph G0 if an instance
graph that contains a certain target pattern is reachable by
applying available transformation rules. This means that a
system can evolve from the start configuration to the de-
sired target configuration by performing given operations.
In this way we can check, for example, if a required refer-
ence application scenario is realizable on the middleware,
thus validating functional completeness of the model.

The object-oriented CASE tool Fujaba [1] supports the spec-
ification of a system using UML class diagrams and story
diagrams, a combination of activity diagrams and collabo-
ration activity diagrams(as a notation for graph rewriting
rules). Executable Java source code can be generated auto-
matically. To observe the running system, a Dynamic Ob-
ject Browsing system (Dobs) supports the execution of rules,
visualizing the effect of the application on an object graph
representing the state of the Java heap.

We introduce how to use Fujaba to validate our defined
specification. As shown in Fig. 3, we use the Fujaba class
diagram editor to specify our meta model at first. Graph
transformation rules (or operations) are defined in the Fu-
jaba story diagram editor then. After generating and com-
piling Java code for the complete specification, we can start
Dobs to execute the models. We can create an initial object
configuration typed over the defined class diagrams. The
initial object configuration represents a possible configura-
tion of the system, which is also a start graph G0 as defined
before. Following the defined sequence of operations that
describe the application scenario, we can then execute the
sequence of operations starting from G0. For example, we
can test if the terminal-initiated handoff scenario [3](defined
by a sequence of operations)is reachable by starting from the
initial configuration. Through this way, we can test if the
pre-defined scenario is supported by our specification, thus
validate the functionality completeness of our model.

3.2 Simulation for Testing
All software testing methods depend on the availability of
an oracle, that is, some methods for checking whether the

system under test has behaved correctly on a particular exe-
cution. Executable formal specifications can be used as test
oracles to produce the results expected for a test case. By
comparing the result of a call to the actual implementation
with the result of a call to the simulation, the test oracle
can be used to check the correct execution of an operation.

We can extend the specified concrete model to a test ora-
cle [3]. Since the concrete model is platform independent
concerning the independency of specific programming lan-
guages, hardware platforms and concrete implementation
methods, it can be reused as a reference to test the cor-
rectness of implementations on different platforms. As a test
driver, a standard reference application shall be required. To
facilitate the interaction between the reference application
with our model (resp., the code generated from it), we need
to provide an Application Programming Interface(API) that
is consistent to the API provided by a middleware implemen-
tation. Using the same test application as a test driver for
the implementation and for the defined model, the develop-
ers can trace errors in the execution and check the pre- and
post-conditions of operations.

3.3 Wrapper for API–Behavior Consistency
The correct refinement of abstract conceptual styles into a
concrete style is important, and the verification process is
usually complicated. In order to automatize the consistency
check between the conceptual and concrete models, we de-
velop a Wrapper (in Fig. 1) to define the refinement re-
lationship between these two models. Both the conceptual
and the concrete model provide application programming in-
terfaces through the operations defined via the rules, which
are named Concrete API and Conceptual API as shown in
Figure 1. As an adapter between Concrete API and Con-
ceptual API, the wrapper encapsulates and maps the oper-
ations implemented in Concrete API to the operations de-
fined in Conceptual API. Providing type transformation and
semantic match, the Wrapper forwards operation calls to
Conceptual API to the operation calls to Concrete API. In
this way, the application can use the more abstract interface
while the concrete operations offered by the platform remain
hidden. This abstraction allows us to port the application
to a new concrete platform API by means of a new wrap-
per, without changing the application itself. The wrapper
can be also used to test, e.g., by means of a reference ap-
plication, if the operations provided by Concrete API and
Conceptual API are semantically compatible, therefore ver-
ifying the concrete style or the actual platform against the
requirements expressed in the conceptual style.

4. RELATED WORK
Several proposals have influenced our approach. The general
idea of modeling classes of systems with common structural
and behavioral characteristics by a combination of meta-
modeling and graph transformation is due to [6], where it
has been applied to software architecture styles. As men-
tioned before, the architectural style offers only a ”logical”
view of change; it does not take into account the properties
of the ”physical” distribution topology of locations and com-
munication links. In our model, we extend the architecture
style by adding mobility aspects, with the focus on roaming
and connectivity issues.

17 Fujaba Days 2004

Some of the techniques proposed by the AGILE project pre-
sented in [2] are close to our approach of modeling. AGILE
develops an architectural approach by extending existing
specification languages and methods to support mobility:
UML stereotypes are used to extend UML class, sequence
and activity diagrams in order to describe how mobile ob-
jects can migrate from one host to another, and how they
can be hosts to other mobile objects. Graph transforma-
tion systems are proposed as a means to give an operational
semantics to these extensions.

Other extensions are based on architectural description lan-
guages, like the parallel program design language CommU-
nity using graph transformation to describe the dynamic
reconfiguration; Klaim as a programming language with co-
ordination mechanisms for mobile components, services and
resources; The specification language CASL as a means for
providing architectural specification and verification mech-
anisms.

While Klaim and CASL are more programming and verifi-
cation oriented, the approaches based on UML and Com-
mUnity are at a level of abstraction similar to ours, but the
goals are different: Our focus is to model a style of mobile
applications, e.g., corresponding to a certain mobility plat-
form, while the focus in the cited approaches is on the mod-
eling of applications within a style more or less determined
by the formalisms. Indeed, being based on a meta-model,
our approach can easily specify styles exhibiting all kinds of
features like QoS (as demonstrated in [5]) or more sophis-
ticated aspects of context awareness, handOver operations
within one or between different networks, etc.

Finally, our three-layered modeling approach provides a clear
separation of the different views of software architecture,
connectivity, and mobility, which is required in order to
specify a physical phenomenon, like the loss of a signal, in
relation with the intended reaction of an application or mid-
dleware platform, like the transfer of ongoing sessions to a
new connection.

The idea of analysis and design of a system using a refine-
ment approach is not new. Generally, the people focus on
architecture refinement based on component and connec-
tors where the construction elements in different abstract
layers have direct corresponding relationship. In our frame-
work, the construction elements inside the conceptual level
do not need to appear in concrete level. We focus on the be-
havioral consistency check between conceptual and concrete
level; this makes it easier to implement automatic consis-
tency checks via testing.

5. CONCLUSION AND FUTURE WORK
The paper presents an approach for analysis, modeling and
validation of mobile information systems with the tool sup-
port of Fujaba. Presenting the basic structures and opera-
tions common to a certain class of mobile computing plat-
forms, with the refinement between conceptual and concrete
models, the approach could support application develop-
ment and the development of new mobile platforms. The
approach also provides automatic analyze, validation and
behavior consistency check with the support of Fujaba.

We have finished a conceptual model of a style for mobile
system, which is a very important part of our approach.
Not tailored towards a particular platform, the model re-
flects the properties of nomadic network, where mobile de-
vices are supported by a fixed infrastructure. The validity
of the model has been checked through the Fujaba simula-
tion environment using an application scenario, where the
explicitly modeled mobility and context aspects like loca-
tions, network connections can be simulated. Some parts of
this work are presented in [5]. A concrete model of a specific
platform (Wireless CORBA) has been also developed; the
models are validated using Fujaba too [3].

A major issue of our future work is the improvement of the
simulation to provide a more automated environment for
the activation of methods. For example, it would be helpful
to derive a sequence of operations from a sequence diagram
execute it automatically based on a given the initial config-
uration. An improved, domain-specific visualization of ob-
ject configurations is another aim, since the generic object-
oriented representation is not concise enough for larger ex-
amples. The Wrapper for refinement behavioral consistency
check between the conceptual and concrete layers need to
be developed, which can be made as Fujaba plugin [1].

6. REFERENCES
[1] From UML to Java and Back Again: The Fujaba

homepage. www.upb.de/cs/isileit.

[2] L. Andrade, P. Baldan, and H. Baumeister. AGILE:
Software architecture for mobility. In Recent Trends in
Algebraic Develeopment, 16th Intl. Workshop (WADT
2002), volume 2755 of LNCS, Frauenchiemsee, 2003.
Springer-Verlag.

[3] P. Guo and R. Heckel. Model-based simulation and
testing of mobile middleware: A case study based on
wireless corba. submitted.

[4] P. Guo and R. Heckel. Modeling and simulation of
context-aware mobile systems. In Doctoral Symposium
of 19th IEEE International Conference on Automated
Software Engineering (ASE), 2004. Linz, Austria, to
appear.

[5] R. Heckel and P. Guo. Conceptual modeling of styles
for mobile systems: A layered approach based on graph
transformation. In Working IFIP Conference on Mobile
Information Systems(MOBIS), 2004. Oslo, Norway, to
appear.

[6] Le Métayer, D. Software architecture styles as graph
grammars. In Proceedings of the Fourth ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, volume 216 of ACM Software Engineering
Notes, pages 15–23, New York, Oct. 16–18 1996. ACM
Press.

[7] G.-C. Roman, G. P. Picco, and A. L. Murphy. Software
engineering for mobility: A roadmap. In A. Finkelstein,
editor, Proc. ICSE 2000: The Future of Software
Engineering, pages 241– 258. ACM Press, 2000.

[8] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 1:
Foundations. World Scientific, 1997.

Fujaba Days 2004 18

Design and Simulation of Self-Optimizing
Mechatronic Systems with Fujaba and CAMeL∗

Sven Burmester†, Holger Giese, and Florian Klein†

Software Engineering Group, Warburger Str. 100, D-33098 Paderborn, Germany

[burmi|hg|fklein] @upb.de

ABSTRACT
Self-Optimizing mechatronic systems which are able to re-
act autonomously and flexibly to changing environments are
one promising approach for the next generation of mechan-
ical engineering systems. To render designing such systems
possible, an approach is required which goes far beyond
what is offered by today’s standard tools for mechatronic
systems. In this paper, we outline how a smooth integra-
tion between mechanical and software engineering methods
and tools supports the design of verifiable, complex, recon-
figurable mechatronic systems. The focus of the paper is
on enabling the design and simulation of safe reconfigurable
mechatronic systems, as reconfiguration is a critical prereq-
uisite for self-optimization.

1. INTRODUCTION
Mechatronic systems combine technologies from mechanical
and electrical engineering as well as from computer science.
In the future they will rather be composed of interacting
systems than isolated solutions for individual devices. Net-
working and ever increasing local computational power en-
able sophisticated mechatronic systems, which, besides more
advanced digital control, will include rather complex soft-
ware coordination and information management capabili-
ties. To handle the resulting complexity, each single unit of
such composite systems must be able to react autonomously
and flexibly to changing environmental settings.

To achieve the required flexibility, we propose to build
self-optimizing technical systems which modify their goals
endogenously based on changing environmental settings.1 A
critical prerequisite to realize a goal-compliant autonomous
adaptation of the system behavior is the ability of the system
to reconfigure its structure or parameters accordingly. This
requires coordination between the mechanical engineering
and software engineering elements of the system. Therefore
a smooth integration between methods and tools from both
domains is inevitable. The presented solution integrates the
CASE tool Fujaba Real-Time Tool Suite2 and the CAE tool

†Supported by the International Graduate School of Dy-
namic Intelligent Systems. University of Paderborn
∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.
1www.sfb614.de/eng/
2www.fujaba.de

CAMeL3 to support the design of verifiable, complex, re-
configurable mechatronic systems.

The paper is organized as follows: In Section 2, the se-
mantic integration between block diagrams for mechatronic
control systems and UML component models is summarized.
Section 3 presents the necessary extensions to CAMeL (3.1)
and Fujaba (3.2) and the binding tool and runtime environ-
ment required for ultimately integrating and executing the
model (3.3).We then review relevant related work in Section
4 and present our final conclusions and give a short outlook
on planed future work.

2. SEMANTIC INTEGRATION
As a running example, we will use the active vehicle sus-
pension system for the shuttles from the RailCab4 research
project. In this project, a modular rail system will be de-
veloped; it is to combine modern chassis technology with
the advantages of the linear drive technology (as applied in
the Transrapid5) and the use of existing rail tracks. In our
example, shuttle software is developed that realizes the safe
switching between three different feedback controller struc-
tures, which control the body of the shuttle.

2.1 Control Engineering
Feedback controllers are usually specified through block dia-
grams or differential equations [11] and describe the relation
between continuous in- and output signals. In our example,
three different feedback controllers are applied, providing
different levels of comfort to the passengers:

The controller reference uses the absolute acceleration of
the coach body z̈abs and a reference trajectory that describes
the motion of the coach body zref as input signals. In case
the trajectory is not available, the absolute controller, requir-
ing only z̈abs, has to be used. If neither the trajectory nor
the measurement of z̈abs are available, the robust controller
is applied, requiring just common inputs (see Figure 1).

For switching between two controllers, one must distin-
guish two cases: When switching between the normal and
the failure block in Figure 1, the change can take place be-
tween two computation steps (atomic switching). Switching
between reference and absolute requires cross-fading in order
to guarantee stability. The cross fading itself is specified
by a fading function fswitch(t) and an additional parameter
which determines the duration of the cross fading.

3www.ixtronics.de
4http://www-nbp.upb.de/en
5http://www.transrapid.de/en

19 Fujaba Days 2004

z
..
z

Zref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

t0 tend

1

0

f (t)Switch

1-f (t)Switch

blending curves

Figure 1: Different control modes and fading

2.2 Software Engineering
Inspired by ROOM [13], UML 2.0 supports the specifica-

tion of the structure of complex systems using components
with ports and deployment diagrams. The only support for
real-time behavior is provided by the Profile for Schedu-
lability, Performance, and Time [12]. In order to specify
real-time behavior, we apply the real-time extension, the
so called Real-Time Statecharts in Fujaba [2] as well as a
restricted notion for Real-Time Patterns [5].

2.3 Integration
As proposed by the UML 2.0 approach, we use compo-

nent diagrams to specify the overall structure of the system.
We introduce hybrid components [4, 3], which integrate dis-
crete and continuous behavior. To model communication of
sporadic events and communication of continuously chang-
ing signals, we distinguish between discrete and continuous
ports. The latter are visualized by a triangle inside the port-
square, indicating the direction of the data flow.

:Registry

:Monitor

storage : Storage

:BC

:Sensor Registration
Shuttle−

Pattern

Figure 2: Monitor and its environment

In Figure 2, the structure of the shuttle’s Monitor compo-
nent is shown. It consists of the Sensor, delivering z̈abs, the
Body Control (BC) component, switching between the feed-
back controllers, and the Storage component used for storing
the reference trajectory the Monitor obtains from a track sec-
tion’s Registry. A more detailed description can be found in
[4, 3].

The Shuttle-Registration communication pattern in Figure
2 specifies the communication protocol between two compo-
nents. Real-time model checking is used to verify the proto-
col. Compositional model checking and refinement relations
enable even the verification of large, complex systems [5].

The behavior of hybrid components is specified using our
notion of Hybrid Statecharts [4, 3], which extend the Real-
Time Statecharts. In Hybrid Statecharts, each discrete state

zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zAbsOK

zRefFailure

<Abs>

<Ref>

<Rob>

d4

d2

ffade2

ffade1

z̈abs

z̈abs

zref
d1

d3

ffade3

ffade4

Figure 3: Behavior of the body control component

is associated with a configuration of embedded components.
Figure 3 shows the behavior of the BC component as a sim-
ple example where each configuration consists of just one
continuous feedback controller from Section 2.1.

State changes in Hybrid Statecharts are either modeled
through atomic or fading transitions. The latter (visual-
ized by thick arrows) can be associated with a fading func-
tion (ffade) and the required fading duration interval d =
[dlow, dup] specifying the minimum and maximum duration
of the fading.

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 4: Interface Statechart of the BC component

As reconfiguration leads to changing interfaces (e.g. BC’s
continuous input signals are state-dependent), we provide
the notion of hybrid Interface Statecharts (see Figure 4).
They only consist of the externally relevant real-time infor-
mation (discrete states, their continuous in- and outputs,
possible state changes, their durations, signals to initiate
transitions, and signal flow information [9]). They abstract
from the embedded components and from the fading func-
tions. Ports that are required in each of the three interfaces
are filled in black.

Well-known approaches like hybrid automata [1] or Hy-
Charts [6] embed only one continuous component, just as
the Hybrid Statechart from Figure 3. This is insufficient,
however, if reconfiguration is supposed to be possible at mul-
tiple levels, which requires hybrid components and their re-

Fujaba Days 2004 20

configuration rather than merely the reconfiguration of the
controllers.

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)

data(Vector zRef)?

when(nextSegment)

data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)

data(Vector zRef)? /

db

dd da

dc

Figure 5: Monitor behavior with modular reconfig-

uration of the subcomponent BC

In our example, the Hybrid Statechart from Figure 5 spec-
ifies the behavior and the reconfiguration of the monitor com-
ponent. It consists of four discrete states indicating which
of the two signals z̈abs and zref are available. Every dis-
crete state has been associated with a configuration of the
subcomponents BC, Sensor, and Storage.6

In the design of these configurations, only the interface
description of the embedded components (e.g. Figure 4) is
relevant as the inner structure can be neglected. Therefore,
we specify the required structure and communication links
for each discrete state and assign the BC component in the
appropriate state to it. E.g., the BC component instance
in state Reference has been assigned to the state AllAvailable

where all signals are available. Therefore, a state switch in
the Monitor statechart implies a state change in the BC stat-
echart. Simple consistency checks ensure that the verified
real-time behavior still holds in spite of embedding hybrid
components [4].

3. TOOL INTEGRATION
Figure 6 illustrates the way these semantic concepts are used
to achieve the desired tool integration between CAMeL and
Fujaba: Both tools export hybrid components, which are
then integrated into a common hierarchical model.

The tools’ output is stored using an exchange format for
the description of hybrid components. It contains a high-
level interface description, consisting of the hybrid interface
statechart (incl. signal flow information), a behavioral de-
scription at the source code level and a tool-specific section
that allows subsequent modifications using the respective
originating tool. As it is the de facto standard for mecha-
tronic systems, C/C++ is used for the low level descriptions.
The integration itself is carried out using only the interface
descriptions, considering the individual components as black
boxes.

3.1 CAMeL
The CAE Tool CAMeL is used for modeling the dynamics

of physical systems and for specifying feedback controllers.

6Note that the interaction with the Registry is not shown.

Fujaba

:Clock

:Flywheel

:Pendulum

Hybrid Components

:Clock[Flywheel]

:Clock[Pendulum]

[unwound]

[woundUp]

Hybrid Statecharts�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Hybrid Components

:Clock

�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Integrated Hybrid Model

IPANEMA

Executable System

int main()
{

initialize();
}

Dynamics Model

�
�

cos
2

2

�
dt

d
r

�
�

sin
2

2

g
dt

d
���

Deployment

Deployment

CAMeL

Binding
Tool

XMLXMLXML

CodeCodeCode

XML

Figure 6: Tool Integration Overview

C++ code is generated from the designed block diagrams.
It is executed or simulated within the run-time framework
IPANEMA (see Section 3.3). In order to achieve the pro-
jected integration, controller block hierarchies may be ex-
ported as hybrid components, consisting of the required in-
terface description and generated C++ code implementing
the system’s differential equations.7 The required exten-
sions are currently being implemented within the scope of a
bachelor’s thesis.

3.2 Fujaba
Fujaba currently offers a wide range of UML-based dia-

grams for the complete specification of (real-time) software.
Of particular interest in the current context are compo-
nent diagrams, deployment diagrams, and Real-Time Stat-
echarts. Discrete components already play a prominent role
in the composition and verification of systems, and for reuse
based on design patterns. From the specification, code for
the Java Real-Time platform may then be generated.

Within the scope of a student research project, the tool
suite is now being adapted to incorporate the proposed hy-
brid concepts by introducing support for hybrid compo-
nents, ports, and statecharts. Building closely on the ex-
isting conceptual framework, the code generation is under-
going a massive rewrite in order to allow the generation of
the required C++ code.

3.3 Binding Tool & Run-Time Framework
Though the exchange format provides an integrated model
of the complete component hierarchy, an additional step is
required to carry this conceptual integration to the execu-
tion level. The binding tool determines the correct evalu-
ation order from the signal flow information and then cor-
rectly interconnects the individual components.

As we do not consider the outlined integration approach
as limited to Fujaba and CAMeL only, the binding tool (see
Figure 6) under development operates at the interface spec-
ification level and merely binds the code generated by other
tools without taking their internal model into account.

7Note that the interface statechart of a continuous compo-
nent consists of just one discrete state.

21 Fujaba Days 2004

This means that any tool can provide hybrid components
for the binding tool, if it uses the exchange format and pro-
vides the C++ code itself. In order to ensure a correct
integration, the generated code fragments need to adhere to
the requirements set by a common run-time platform.

This platform is IPANEMA 2, a new run-time framework
that will introduce reconfiguration and support for C++
into the existing C-based IPANEMA framework [7]. It aims
to provide a common environment for the simulation of re-
configurable mechatronic systems, both in pure software and
with hardware-in-the-loop (HIL) execution. Using the de-
ployment information it receives from Fujaba, the binding
tool is capable of setting up such a simulation and assigns
the individual components to their respective nodes.

4. RELATED WORK
Support for the integration of continuous behavior is cur-
rently not provided within standard UML. The need for such
support is underlined by the OMG request for a proposal of
UML for Systems Engineering [10].

In the hybrid extensions HyROOM [14] and HyCharts [6],
two hybrid extensions of ROOM [13], complex architectures
are specified in a way similar to ROOM, but the behavior
is specified through statecharts whose states are associated
with continuous models. Their approach, however, is re-
stricted to a non-modular style of reconfiguration and does
therefore, unlike the outlined approach, not support recon-
figuration for complex, hierarchical systems.

A couple of modeling languages have been proposed to
support the design of hybrid systems (e.g. [1, 15]). Most
of these approaches provide models, like linear hybrid au-
tomata [1], that enable the use of efficient formal analysis
methods but lack methods for structured, modular design
and reconfiguration.

The de facto industry standard for modeling hybrid sys-
tems is MATLAB/Simulink and Stateflow.8 Modeling re-
configuration is achieved by adding discrete blocks, whose
behavior is specified by statecharts, to the block diagrams.
Thus, continuous and discrete behavior are separated and
not integrated as required for modeling the reconfiguration
of complex systems.

5. CONCLUSION AND FUTURE WORK
The presented approach is only a first step towards a com-
plete integration between mechatronics and software engi-
neering. It enables the seamless integration of CAE arti-
facts into UML in a modular fashion. Thus, the specific
complexity and propblems of the different disciplines such
as the stability of the control behavior or the correct real-
time coordination of the components can to some extent be
addressed separately.

In the future, we plan to further strengthen and extend
this integration. While currently the real-time processing
and the quasi-continuous digital control are combined in a
rather static manner, we plan to extend our approach to
also cover more dynamic reconfiguration scenarios as well
as compositional adaptation [8].

REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs,

T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,

8www.mathworks.com

J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(3-34), 1995.

[2] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[3] S. Burmester, H. Giese, and O. Oberschelp. Hybrid
UML Components for the Design of Complex
Self-optimizing Mechatronic Systems. In Proc. of 1st
International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2004), Setubal,
Portugal. IEEE, August 2004.

[4] H. Giese, S. Burmester, W. Schäfer, and
O. Oberschelp. Modular Design and Verification of
Component-Based Mechatronic Systems with
Online-Reconfiguration. In Proc. of 12th ACM
SIGSOFT Foundations of Software Engineering 2004
(FSE 2004), Newport Beach, USA. ACM, November
2004. (accepted).

[5] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the compositional verification of
real-time uml designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM press, September 2003.

[6] R. Grosu, T. Stauner, and M. Broy. A modular visual
model for hybrid systems. In Proc. of Formal
Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’98), LNCS 1486. Springer-Verlag, 1998.

[7] U. Honekamp. IPANEMA - Verteilte
Echtzeit-Informationsverarbeitung in mechatronischen
Systemen. PhD thesis, University of Paderborn, 1998.

[8] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. Cheng. Composing Adaptive Software. IEEE
Computer, 37(7), July 2004.

[9] O. Oberschelp, A. Gambuzza, S. Burmester, and
H. Giese. Modular Generation and Simulation of
Mechatronic Systems. In Proc. of the 8th World
Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), Orlando, USA, July 2004.

[10] Object Management Group. UML for System
Engineering Request for Proposal, ad/03-03-41, March
2003.

[11] K. Ogata. Modern Control Engineering. Prentice Hall,
2002.

[12] OMG. UML Profile for Schedulability, Performance,
and Time Specification. OMG Document
ptc/02-03-02, September 2002.

[13] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[14] T. Stauner, A. Pretschner, and I. Péter. Approaching
a Discrete-Continuous UML: Tool Support and
Formalization. In Proc. UML’2001 workshop on
Practical UML-Based Rigorous Development Methods
– Countering or Integrating the eXtremists, pages
242–257, Toronto, Canada, October 2001.

[15] R. Wieting. Hybrid high-level nets. In Proceedings of
the 1996 Winter Simulation Conference, pages
848–855, Coronado, CA, USA, 1996.

Fujaba Days 2004 22

Modifications of the Fujaba Statechart Interpreter for
Multiagent-Based Discrete Event Simulation

Nicolas Knaak
University of Hamburg

Department for Informatics
Vogt-Koelln-Strasse 30

22527 Hamburg, Germany

knaak@informatik.uni-hamburg.de

Keywords
UML Statecharts, Fujaba, Multiagent-Based Simulation

ABSTRACT
In this contribution the Java framework FAMOS for multi-
agent-based discrete event simulation is introduced. The
framework supports different methods for behaviour model-
ling like rule-based descriptions and executable UML stat-
echarts. The statechart interpreter used in the framework
is based on the statechart execution algorithm of Fujaba 3.
The original algorithm is extended with a correct treatment
of inter-level transitions, final states and orthogonal regions
with multiple history states according to the UML seman-
tic. Further changes are made to increase its performance
in models with many agents.

1. INTRODUCTION
Multiagent-based simulation (MABS) has become an im-
portant means for system analysis in several application
domains like social science, biology or logistics. MABS is
characterized by a microscopic modelling perspective, i.e.
the system to be analysed is modelled from the point of
view of the participating autonomous, self-interested and
goal-directed actors (agents). Compared to related simu-
lation techniques like individual-based simulation [13, pp.
51], object-oriented simulation or process interaction [21,
pp. 30]1, MABS places stronger emphasis on modelling the
agents’ complex behaviours, communications and coopera-
tions, borrowing many concepts from distributed artificial
intelligence (see e.g. [23]). According to Klügl MABS can
be considered a more general superset of traditional micro-
scopic simulation techniques [13, p. 70].

1Actually object oriented programming has its roots in the
language Simula[7] that was designed for simulation applica-
tions. The Simula-based DEMOS package even allowed the
implementation of rather “agent-like” simulation processes.

Today there are numerous software frameworks supporting
the development of agent-based models. Most of them, like
e.g. the well-known Swarm system [3], are tailor-made for
building spatially explicit grid-based models where simula-
tion time advances in equidistant steps. However, in do-
mains like transport or logistics that are characterised by
complex asynchronous processes, simulations with event-
driven time advance might be more appropriate.

2. A FRAMEWORK FOR AGENT-BASED
MODELLING AND SIMULATION

Motivated by the needs of a research project on the simula-
tion of courier service logistics [15] the agent-based simula-
tion framework FAMOS (Framework for Agent-based Mod-
elling and Simulation) was developed at the University of
Hamburg. FAMOS is based on the discrete event simulator
DESMO-J [22], which supports event scheduling, process
interaction, activity-oriented and transaction-oriented sim-
ulation.2 FAMOS extends DESMO-J with a framework for
spatial modelling with grids, graphs and continuous models
[19, 8] as well as constructs for modelling the behaviour of
agents [14].

Agents in FAMOS are active entities that communicate ex-
plicitly via typed signals. The notion of a signal roughly
corresponds to the UML semantics [6], an event in Fujaba
or a message in an agent platform like e.g. JADE [2]. Sig-
nals are either received from other agents or scheduled at
future points in simulation time by the agent itself. This
explicit communication mechanism fits discrete event simu-
lation very well and builds the basis for modelling reactive
and pro-active (i.e. self-initiated) agent behaviour.

Due to the variety of available architectures for implement-
ing agent behaviour (e.g. [13, pp. 21]) FAMOS agents
are associated an exchangeable behaviour object for signal
handling (see figure 1). Different agent architectures can be
implemented by extending a basic Behaviour-class.3 The
current version of FAMOS contains subclasses for simple
event- and process-oriented behaviour modelling as well as

2DESMO-J (Discrete Event Simulation and Modelling in
Java) is a Java port of the Modula II simulation package
DESMO [21] that builds on the concepts of Birtwistle’s DE-
MOS.
3Similar architectures can be found in some agent platforms
like JADE [2] or MadKit [5].

23 Fujaba Days 2004

0..*

v contains

0..*handles >

1
1has >

1

0..1

v controlled by

Signal

Schedule

Entity

StateMachine
Collapsed

SimpleBehaviour

RuleEngine

ProcessBehaviour

Behaviour
Collapsed

Agent

Figure 1: Class diagram showing the structure of an

agent in FAMOS.

rule-based behaviour description using the JESS expert sys-
tem shell [1] and an architecture for deliberate (i.e. dynam-
ically planning) agents [8].

Considering the importance of UML state- and activity-
charts for modelling reactive agent behaviour (see e.g. [20,
11]) a framework for executable statecharts is also avail-
able. Statecharts can be specified using either an XML-
based script or a simple graphical editor.

3. MODIFICATIONS OF THE STATECHART
INTERPRETER

The integration of executable statecharts into the FAMOS
framework is based on the statechart interpreter of Fujaba
3 [4] developed by Köhler as a part of his diploma thesis
[16, ch. 4]. Compared to other approaches the underlying
algorithm stands out by its straightforward implementation
of the UML semantics and covers most statechart elements.
The Fujaba statechart framework rests upon the idea of an
“object-oriented state table” [17, p. 4] representing state
machines as graphs of state and transition objects. Com-
posite states are realized as “states containing substates”
according to the Composite pattern [9]. Each composite
state can be assigend an initial state with an associated his-
tory type (none, shallow or deep). Concurrent states are
implemented in an ad-hoc fashion as composite states with
multiple initial states.

During execution the interpreter stores the leaf states of
the state machine’s configuration tree in a list. When an
event occurs, all states in the list are sequentially searched
for enabled transitions. According to the UML semantic
the interpreter searches transitions from inside out, i.e. leaf
states try to handle an event first and eventually propagate
it to their parent states. The Fujaba statechart interpreter
supports entry-, exit and do-activities of states as well as
guards and effects of transitions.

However, to the author’s understanding of the code (based
on a static analysis) there are some deviations from the UML

Figure 2: An example concurrent statechart with

multiple history states and explicit entry through

an inter level transition.

semantics:

• Since the history type can only be set for the first or-
thogonal region of a composite state, concurrent states
with multiple histories (see figure 2) are not allowed.

• Though composite states might be left explicitly via
inter-level transitions (i. e. outgoing transitions start-
ing from one of the substates), an explicit entry (as
from state C to state B3.2 in figure 2) seems not pos-
sible. In this case the interpreter enters the correct
state but does not execute entry activities of parent
states or enter parallel orthogonal regions.

• There is no difference between self-transitions (i.e. tran-
sitions with the same source and destination) and static
reactions (i.e. reactions to events that do not include
a state change). Actually, self-transitions in a Fujaba
statechart are treated like static reactions since entry-
and exit-activities of the assigned state are not exe-
cuted.

• The use of final states and default transitions does
not conform to the standard UML. A composite state
should be left via outgoing default transitions when all
orthogonal regions have reached a final state. However,
in Fujaba an event triggering the default transition
seems to be sent immediately after executing the do-
activity.

The FAMOS statechart framework is a modified and ex-
tended re-implementation of the Fujaba statechart inter-
preter and framework (see [17, p. 5]). Focus is put on an
exact implementation of the UML statechart semantic as
well as on increased performance, which is crucial in mod-
els with many agents. Conformance to the standard UML
is preferred since FAMOS will be used in courses for stu-
dents already familiar with basic UML constructs. Inter-
level transitions are sometimes deemed to be problematic
because they prohibit the modular composition of state-
charts (see e.g. [10]), but we nevertheless regard them as
a convenient modelling construct. Due to the complexity of

Fujaba Days 2004 24

1..*

configuration >

2

0..*

< has

1

0..*

< has

1..*

1

has as parent ^
1..*

v contains

1..*

has ^

1 1top >

AgentNewClass
FinalState

Region

 getHistoryKind () : Integer

 getInitialState () : State

Region

CompositeState

Reaction

 effect (a : Agent) : Void

 getTrigger () : Class

 guard (a : Agent) : Boolean

Transition

 getDestination () : State

 getSource () : State

State

 dt (a : Agent) : SimTime

 entry (a : Agent) : Void

 exit (a : Agent) : Void

 getReaction (trig : Class) : Reaction

 getTransition (trig : Class) : Transition

StateMachine

 handle (signals : List) : Void

Behaviour

 handle (signals : List) : Void

Figure 3: The FAMOS statechart framework.

agent behaviours, concurrent states with orthogonal regions
might also be relevant in MABS.

In the FAMOS statechart framework (see figure 3) orthogo-
nal regions are modelled explicitly as objects and each com-
posite state is associated a list of regions as containers for
its substates. When a composite state is entered, the state-
chart interpreter determines the entry type (default, history
or inter-level transition) of every region and enters the re-
spective substates. For each active composite state it keeps
track of the number of orthogonal regions that have reached
a final state. After all regions are finished, a signal trigger-
ing the state’s outgoing default transitions is sent. When the
state is left, the current state of each region with a history
is stored in a hashtable.4

Other than Fujaba, the FAMOS statechart interpreter sep-
arately handles transitions and static reactions. The state-
chart framework contains a class for reactions (aggregating
a trigger attribute, a guard and an effect method) as well
as a derived class for transitions with additional attributes
for source and destination states. According to the UML
semantic a state’s reactions are prioritised before its outgo-
ing transitions. Furthermore it is possible to differentiate
between self-transitions that leave and re-enter a state and
reactions with no state change at all.

A problem might occur in the statechart from figure 4 in con-
figuration [B, D]. On handling an event E1 the interpreter
first searches state B for a transition (without success) and
then proceeds to its parent state A executing the assigned
reaction. Since D is still in the configuration, the interpreter
searches this state next. D can not handle E1 and there-
fore propagates the event to A, thus executing the reaction
again. As a workaround for this unwanted behaviour the in-
terpreter ensures that every reaction is only executed once
for every event. Generally a breadth first transition search
(i.e. all leaf states are searched before ascending to their
parents) might be a better solution.

The last modification regarding the semantic of UML stat-

4Different from Fujaba the FAMOS statechart interpreter
only supports shallow history states so far.

Figure 4: An example for the execution of reactions

and transitions.

echarts is concerned with incoming inter-level transitions.
When executing the transition from state C to state B3.2
in figure 2 the Fujaba statechart interpreter would to the au-
thor’s impression directly insert the destination state B3.2
into the configuration. Entry activities of the parent state
B are not executed and parallel states (e.g. B1.1 and B2.1)
are not entered at all. The FAMOS interpreter determines
the highest parent state entered by the transition instead
(B in the example) and enters it recursively. In the exam-
ple, B3.2 is entered explicitly while the parallel regions are
entered via their history states.

Efficiency is an important criterion when using executable
statecharts in MABS. Agent-based models often contain a
large number of agents that must be executed in parallel on
a single processor. To enhance the statechart interpreter’s
efficiency the following changes were made:

• The state table is a static attribute of the agent, i.e.
it only exists once at runtime and is used by all agents
sharing the same behaviour. As a payoff the State

objects’ internal attributes have to be externalized. An
alternative proposed in [17, p. 8] is the use of the
Flyweight pattern [9].

• State and transition actions are not realized using re-
flection, that still lacks performance in Java. Instead
corresponding abstract methods (e.g. entry()) of the
State or Transition class must be implemented (see
[16, p. 62]).

• To avoid the overhead of thread handling, agents in
FAMOS do not run in a thread like active objects5

in Fujaba. The implementation of a state’s potentially
time consuming do-activity is no longer possible which
can be considered a minor drawback in the context of
discrete event simulation.

• The Fujaba statechart interpreter re-computes infor-
mation about the statechart structure in every step
though the values remain constant. Examples are the

5An active object is an object that runs in its own thread of
control and is capable of asynchronous event handling [18].

25 Fujaba Days 2004

depth of states or the highest state left by a transition.
In FAMOS these values are only determined once when
the statechart is built.

4. APPLICATION OF STATE-BASED MOD-
ELLING TO MABS

The FAMOS statechart framework and modelling tools were
applied in a research project on the simulation of alternative
logistic strategies for courier services [15]. Couriers and ra-
dio operators of a courier service were modelled as reactive
state-based agents with additional deliberation capabilities
e.g. for tour planning. The performance of the statechart
interpreter was sufficient to execute models of about 100 con-
currently active agents moving on a detailled road network
in reasonable time. On the one hand we regarded visual
modelling with UML statecharts as useful for analysing and
debugging agents’ behaviours. On the other hand some im-
portant facets of agent-oriented modelling like deliberation
or scheduling of concurrent tasks can not be expressed ad-
equately. Furthermore statecharts for complex agents often
grow too large to be handled conveniently. The latter aspect
might be improved by the enhanced modularity of UML 2.0
statecharts that allow explicit entry and exit points of sub-
machine states (see e.g. [12, p. 311]).

5. CONCLUSION AND OUTLOOK
The FAMOS framework for MABS uses a modified ver-
sion of the Fujaba 3 statechart interpreter for modelling
agent behaviour with executable statecharts. The original
interpreter was tuned for performance, and the handling of
inter-level transitions, final states and orthogonal regions
with multiple histories was corrected. While state-based
modelling has been successfully applied in simulations of
courier service logistics, a detailled performance comparison
between the statechart interpreters of FAMOS and Fujaba
is still missing. Moreover it should be examined if the mod-
ifications described above can be fruitfully applied to the
statechart frameworks of Fujaba 3 and 4. Besides this we
are currently exploring the usefulness of the new UML 2.0
notation for discrete event modelling and simulation in gen-
eral.

6. REFERENCES
[1] http://herzberg.ca.sandia.gov/jess.

[2] http://jade.tilab.com.

[3] http://wiki.swarm.org.

[4] http://www.fujaba.de.

[5] http://www.madkit.org.

[6] http://www.omg.org/cgi-bin/doc?formal/03-03-
01.pdf.

[7] G.M. Birtwistle. DEMOS, a System for Discrete
Event Modelling on Simula. Macmillan, London, 1979.

[8] R. Czogalla and B. Matzen. Agentenbasierte
Simulation von Personenbewegungen in
kontinuierlichem Raum. Diploma thesis, University of
Hamburg, Department for Informatics, 2003.

[9] E. Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
Reading, Mass., 1998.

[10] M. Glinz. Statecharts for Requirements Specification -
As Simple as Possible, as Rich as Needed. In
Proceedings of the ICSE 2002 Workshop on Scenarios
and State Machines: Models, Algorithms and Tools,
Orlando, Florida.

[11] M.L. Griss, S. Fonseca, D. Cowan, and R. Kessler.
Using UML State Machines Models for more Precise
and Flexible JADE Agent Behaviours. In AAMAS
AOSE Workshop, Bologna, Italy, July 2002.

[12] M. Jeckle et al. UML 2 glasklar. Hanser, München,
2004.

[13] F. Klügl. Multiagentensimulation - Konzepte,
Werkzeuge, Anwendung. Addison-Wesley, 2001.

[14] N. Knaak. Konzepte der agentenbasierten Simulation
und ihre Umsetzung im Rahmen des
Simulationsframeworks DESMO-J. Diploma thesis,
University of Hamburg, Department for Informatics,
2002.

[15] N. Knaak, R. Meyer, and B. Page. Agent Based
Simulation of Sustainable Logistic Concepts for Large
City Courier Services. In EnviroInfo 2003 - 17th
International Conference Informatics for
Environmental Protection, pages 318 – 325, Cottbus,
September 2003.

[16] H.-J. Köhler. Code-Generierung für UML
Kollaborations-, Sequenz- und Statechart-Diagramme.
Diploma thesis, University of Paderborn, 1999.

[17] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf.
Using UML as a Visual Programming Language.
Technical Report tr-ri-99-205, University of
Paderborn, Paderborn, Germany, August 1999.

[18] R.G. Lavender and C.D. Schmidt. Active Object: an
Object Behavioral Pattern for Concurrent
Programming. Proc.Pattern Languages of Programs,,
1995.

[19] R. Meyer. Agenten in Raum und Zeit: Agentenbasierte
Simulation mit expliziter Raumrepräsentation (in
preparation). Dissertation, University of Hamburg,
Department for Informatics, 2004.

[20] C. Öchslein, F. Klügl, R. Herrler, and F. Puppe. UML
for Behaviour-Oriented Multi-Agent Simulations. In
B. Dunin-Keplicz and E. Nawarecki, editors,
Proceedings of the 2nd International Workshop of
Central and Eastern Europe Multi-Agent Systems,
2001.

[21] B. Page. Diskrete Simulation - Eine Einführung mit
Modula 2. Springer, Berlin, 1991.

[22] B. Page, T. Lechler, and S. Claassen. Objektorientierte
Simulation in Java mit dem Framework DESMO-J.
Libri Book on Demand, Hamburg, 2000.

[23] G. Weiss, editor. Multi-Agent-Systems. MIT Press,
Cambridge (MA), 1999.

Fujaba Days 2004 26

Component Templates for Dependable Real-Time Systems∗

Matthias Tichy, Basil Becker, and Holger Giese
Software Engineering Group, University of Paderborn, Warburger Str. 100, Paderborn, Germany

[mtt|basilb|hg]@uni-paderborn.de

ABSTRACT
A general trend towards more complex technical systems can
be observed which results in an increasing demand for meth-
ods and tools to develop dependable, high quality software
for embedded systems. The UML in principle provides the
essential concepts which are required to model such complex,
safety-critical software systems. In this paper, we describe a
component template plugin for the Fujaba Real-Time Tool
Suite which has been especially tailored to support fault-
tolerance templates such as triple modular redundancy. We
report about the underlying concepts and the application of
the plugin by means of an example.

1. INTRODUCTION
Due to the trend that more and more ambitious and com-
plex technical systems are built today, an increasing demand
for dependable, high quality software can be observed. This
trend is characterized in [11] by very complex, highly inte-
grated systems of systems with subsystems that must have
a great degree of autonomy and, thus, are very demanding
w.r.t. safety analysis. The New Railway Technology (Rail-
Cab) project1 tackled by our efforts for the Fujaba Real-
Time Tool Suite is one very extreme example for such com-
plex systems of systems with very demanding safety require-
ments.

In such engineering projects, most often the involved engi-
neers are not safety experts and, thus, sophisticated, appli-
cation specific fault-tolerance techniques can often not be re-
alized. Systematic fault-tolerance approaches such as triple
modular redundancy (TMR), n-version programming, hot
stand-by, etc. [14] can in contrast be employed by non ex-
perts.

However, in practice the additional complexity and pit-
falls during their implementation are often a hindrance to
finally achieving the intended improved dependability. We
therefore propose to support the design of fault-tolerant sys-
tems by means of templates and automate the code genera-
tion for the additional logic. The templates permit to reuse
well analyzed and understood solutions for systematic fault-
tolerance and therefore minimize the risk that inadequate
and error prone ad hoc solution are invented. The automatic
generation of the glue logic can further exclude coding faults

∗This work was developed in the course of the Special Re-
search Initiative 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.
1http://www-nbp.upb.de

and therefore exclude that the additional complexity which
results from the application of systematic fault-tolerance ap-
proaches themselves deteriorates the dependability of the
resulting system in practice.

The UML as an object-oriented technology is one candi-
date to handle these safety-critical systems with software
and overwhelming complexity. However, the current and
forthcoming UML versions do not directly support the de-
sign of fault-tolerant designs for safety-critical system de-
velopment. The presented approach tries to narrow the de-
scribed gap between safety-critical system development and
available UML techniques. As there is little value in propos-
ing extensions to UML if they are not accepted by the com-
munity and tool vendors (cf. [11]), we instead propose to
use only a properly defined subset of the UML 2.0 [12] com-
ponent and deployment diagrams and templates for fault-
tolerance to ease the task of integrating systematic fault-
tolerance techniques into a UML design.

After reviewing related work in Section 2, we present our
approach for component templates for fault-tolerance in Sec-
tion 3. The provided tool support and application of the
Fujaba Real-Time Suite Plugin are described in Section 4.
We finally present some conclusions and give an outlook to
planned future work.

2. RELATED WORK
Templates are a standard approach used in many differ-

ent application areas. Constructs like C++ templates [15]
and Java Generics [16] offer templates for programming lan-
guages. In the modeling domain templates are available in
a number of different contexts.

For multimedia artifacts Cybulski [6] presents the Tem-
plate pattern. The Template pattern is a solution to the
”[. . .] need to produce a collection of composite artifacts
similar in structure and contents.” The Template pattern
provides support for (1) the structural specification of a col-
lection of composed artifacts and (2) the instantiation of
the template by replacing template artifacts by concrete ar-
tifacts. Although destined for the use in multimedia ap-
plications, the Template pattern can be tailored to the use
in real-time component-based applications. Our component
template plugin implements an extended variant of this pat-
tern.

The UML [12, p.541 ff.] includes a Template package.
This Template packages provides Metaclasses, which allow
the specification of TemplateElements which have a num-
ber of TemplateParameters. A TemplateBinding “specifies the
substitution of actual parameters for the formal parameters

27 Fujaba Days 2004

of the template”. The general UML template approach al-
lows template applications with meaningless template bind-
ings. While such an approach is possible for modeling stan-
dard software, we target the domain of safety-critical em-
bedded systems. Thus, a more strict template mechanism
is required. The presented template mechanism is similar
to the general one in the UML, but includes special sup-
port for real-time component templates in contrast to the
general UML template mechanism. Here special support
means, that e.g. if a component has been used in the appli-
cation of a template, only ports of this component and not
arbitrary ones can be used.

3. COMPONENT TEMPLATES
In the following, we will present the Fujaba real-time com-

ponent diagrams. Thereafter, we will show how component
templates are specified and how they can be applied.

The Fujaba real-time component diagrams [5, 8] are based
on concepts originally proposed in ROOM and UML 2.0 [12,
13]. They are used for the specification of system structure.
Component diagrams specify components and their inter-
action in form of connectors. We differentiate component
types and their instances during runtime. Connectors model
the communication between different components via ports
and interfaces. Ports are distinct interaction points between
components and are typed by provided and required inter-
faces. Behavior of components is specified by real-time stat-
echarts [3]. As this paper deals with structural templates,
we will, in the following, not consider the behavioral aspect
of components and component templates. As example, we
will use the triple-modular-redundancy (TMR) fault toler-
ance technique.

3.1 Template specification
In a first step, the structure of the fault-tolerance tech-

nique must be specified. This is done by creating a compo-
nent template specification. This specification is merely a
standard real-time component diagram.

Figure 1: Component template specification for

TMR

Figure 1 shows the component template specification for
the triple modular redundancy fault tolerance technique. A
triple modular redundancy system uses a multiplier compo-
nent which triples the input received and forwards it to the
three services ComputingUnit1 . . . 3, which actually perform
the computation. The voter compares the different results
and chooses the result which at least two of the components
returned. Thus, a triple modular redundancy system can

tolerate one crashed or malfunctioning service. The ports
and interfaces attached to the left of the MultiplierTMR com-
ponent and right of the VoterTMR component are not part
of the fault tolerance pattern but are important for connect-
ing the using and used components during application of the
component template.

3.2 Application
The specified fault tolerance component templates are

later used to build more robust applications by applying
them to the component structure of a system. First, an
appropriate component template is selected and added to
the component structure. Then, the different parts of the
component template must be replaced by the actual im-
plemented parts. The different parts here are components,
ports, and interfaces. Thus, a mapping must be defined by
the user between the components of the component template
and implemented components. Thereafter, the ports of this
template component and the ports of the implemented com-
ponent are mapped. Finally, the interfaces attached to the
ports are mapped. The mapping of interfaces must respect
the type of the interfaces, e.g. required interfaces of the tem-
plate component must be mapped to required interfaces of
the implemented component. In addition the interface of
the implemented component must be a subclass of the in-
terface of the template component. This constraint offers
support for more application specific templates where con-
sistency between interface types is required. However, this
constraint can be relaxed for broader usage of the compo-
nent template.

Figure 2: Application of the TMR template

Figure 2 shows the application of the TMR component
template. The TMR template is applied for the sensor con-
trol software as well as for the actuator control software as
shown on the bottom of each component in Figure 2. The
different parts of the TMR template are already mapped to
implemented components, ports, and interfaces.

After all parts of the template are mapped to implemented
parts, the template in the component diagram is replaced
by the template structure (cf. Figure 1) using the mapped
implemented parts. This replacement, thus, makes the fault
tolerance techniques explicit in the design of the system.
After this step, the standard code generation of the Fujaba
Real-Time Tool Suite can be employed to synthesize the
source code for the fault-tolerance enhanced system.

Fujaba Days 2004 28

3.3 Multistage arrangement
A fault tolerance template like TMR can be employed

multiple times in the component structure of an embedded
system. A naive usage of this template would result in a
situation where three redundant components are connected
to three other redundant components by single voter and
multiplier components. Thus, the redundancy gained by the
application of the TMR template is defeated by the single-
point-of-failure voter and multiplier components.

A better approach is the usage of a multistage arrange-
ment. A multistage arrangement uses redundant voter and
multiplier components in contrast to the mentioned single
voter and multiplier approaches. Thus, a transformation of
multiple applications of TMR or other templates to a multi-
stage arrangement is important for the fault-tolerance of the
system. Using the Story-Pattern language [7, 10] of Fujaba,
it is possible to specify an accordant transformation from a
multiple application of TMR to a multistage arrangement.

After this description of component templates, we present
in the next section the tool support offered by the compo-
nent template plugin.

4. TOOL SUPPORT
We have developed a Fujaba plugin that provides tool sup-

port for the mentioned component template specifications
and the mappings between template components, ports and
interfaces and implemented ones. In the following, we high-
light the plugin dependencies, the meta-model extension,
and special mapping support.

Plugin structure
The developed RealtimeComponentTemplate plugin (RCT
plugin) depends on two other plugins developed at the Uni-
versity of Paderborn. First it depends on the RealtimeCom-
ponent (cf. [5]) plugin. We use the RealtimeComponent plu-
gin’s component diagrams for the specification of component
templates. As the RealtimeComponent plugin depends on
the RealtimeStatechart plugin [3] our RCT plugin depends
on it, too.

Meta-model extension
How are the mappings between components, interfaces and
ports realized? At first sight one might think that this won’t
be a problem, because all used classes are defined in one
plugin - the RealtimeComponent plugin. The easiest way
would be to define one-to-many self-associations between the
component, port, and interface classes. But then we would
have to change the RealtimeComponent plugin which we
wanted to avoid. Fortunately, Fujaba provides the ASG
mechanism [4] to avoid these problems. In the following
paragraphs, we will restrict our explanations to the mapping
of components. The mapping of ports and interfaces is done
analogously.

Each mapping between components is represented by an
instance of RTCompMapping. This mapping has two ref-
erences to an extension of ASGElementRef; one for the in-
coming and one for the outgoing mapping. These exten-
sions of ASGElementRef have a one-to-one ASG reference
to the Component class. As we need one-to-many associ-
ations between Component and RTCompMapping (e.g. one
component from a given specification is used in more than
one template application), however ASG only provides one-

to-one associations, we implemented the one-to-many asso-
ciation between RTCompMapping and the ASGElementRef

extensions. The ASGElementRef extensions have the role of
a proxy for the Component class. This means we displaced
the one-to-many association needed in our plugin. As men-
tioned earlier the interface and port mapping is implemented
in the same way.

A few words on the hierarchy of the different mapping
types: Each template has a set of component mappings to
implemented components. Since every port is owned by ex-
actly one component, the port mappings are stored in each
component mapping. The same argumentation applies for
interface mappings.

Mapping support
In the following, we present the way in which the plugin
supports the mapping specification. Tool usability2 is a ma-
jor factor for the acceptance of an approach and its sup-
porting tool. Therefore, we explicitly emphasized usability
especially for the mapping specification.

Figure 3: Interface mapping dialog

As mentioned, interface mapping is subject to constraints
regarding the type of the interfaces (required/provided) and
the subclass relation between template interfaces and imple-
mented interfaces. To improve the usability of this interface
mapping the interface mapping dialog produces immediate,
easy to understand feedback. This means every time you
select two interfaces you want to map, the plugin checks
whether this mapping will be correct or not. A mapping
of interfaces is correct if both interfaces are of the same
type (provided or required interface) and the interface de-
clared in the implementation is a subclass of the interface
in the specification. This direct feedback is realized either
by a red crossed out or by a green checked off interface icon
(cf. Figure 3). If the mapping is incorrect the tooltip of the
interface in the implementation gives a short explanation
why the mapping is wrong.
2To introduce our understanding of usability we will first
give a short definition of it found in [1]: “Usability is the
ease with which a user can learn to operate, prepare inputs
for and interpret outputs of a system or component.”
The expression usability is used in different contexts. In our
context, i.e. software development, usability is often called
software ergonomics. Ergonomics is the conformity of tech-
nology (i.e. software) to human psychophysical capabilities.
For further details on ergonomic and usable software see [2].

29 Fujaba Days 2004

Concerning the order of the different mappings, the stan-
dard order would be mapping components, then ports, and
then interfaces. We provide a small shortcut for this map-
ping based on the fact that a interface can only be connected
to exactly one port, i.e. if you know the interface, you know
the corresponding port. The plugin exploits this property
and allows you to map the interfaces without mapping the
ports. Every time you map an interface, the corresponding
port mapping is automatically determined.

5. CONCLUSION AND FUTURE WORK
We presented an approach for specification of dependable,

component-based, embedded systems. We aim for improv-
ing the fault tolerance of distributed systems by the applica-
tion of fault tolerance component templates. Tool support
for specification and application of component templates has
been developed including special care for the usability of the
mapping.

Currently, the component templates only cover the struc-
tural parts of fault tolerance techniques. In the future, we
will also consider the glue logic resulting of the behavior
of voter and multiplier components. We believe, that the
behavior of these two component types can in principle be
synthesized based on the behavior of the other components.

In the future, we will consider the deployment issues of
fault tolerance templates. Fault tolerance templates typi-
cally employ redundancy to enhance fault tolerance. If the
redundant components of a fault tolerance template are de-
ployed to the same host, there is no fault tolerance w.r.t. fail-
ures of this host. Thus, appropriate deployment constraints
must be specified for fault tolerance templates. These con-
straints would specify that each of the redundant compo-
nents must be deployed to different hosts.

In [9], an approach for a compositional hazard analysis
of component-based systems is presented. The knowledge
about the employed fault tolerance provided by the tem-
plates could be exploited in the hazard analysis.

Currently, the user can use arbitrary components in the
application of the fault tolerance template. Fault toler-
ance techniques like n-version programming explicitly re-
quest heterogeneous components in order to tolerate system-
atic implementation errors. Adding appropriate constraints
to component templates would ease the use of component
templates for heterogeneous fault tolerance techniques.

REFERENCES
[1] IEEE Standard Computer Dictionary: A Compilation

of IEEE Standard Computer Glossaries. Institute of
Electrical and Electronics Engineers, New York, 1990.

[2] A. Brenneke, R. Keil-Slawik, and W. Roth.
Designorientierung und Designpraxis - Entwicklung
und Einsatz von konstruktiven Gestaltungskriterien.
In U. Arend, E. Eberleh, and K. Pitschke, editors,
Software-Ergonomie ’99 Design von
Informationswelten, pages 43–52. B. G. Teubner
Stuttgart, 1999.

[3] S. Burmester and H. Giese. The Fujaba Real-Time
Statechart PlugIn. In Proc. of the Fujaba Days 2003,
Kassel, Germany, October 2003.

[4] S. Burmester, H. Giese, J. Niere, M. Tichy,
J. Wadsack, R. Wagner, L. Wendehals, and
A. Zündorf. Tool Integration at the Meta-Model Level

within the FUJABA Tool Suite. International Journal
on Software Tools for Technology Transfer (STTT),
2004. (accepted).

[5] S. Burmester, M. Tichy, and H. Giese. Modeling
Reconfigurable Mechatronic Systems with
Mechatronic UML. In Proc. of Model Driven
Architecture: Foundations and Applications (MDAFA
2004), Linköping, Sweden, June 2004.

[6] J. L. Cybulski and T. Linden. Composing Multimedia
Artifacts for Reuse. In Proc. of the 1998 Pattern
Languages of Programs Conference, Monticello,
Illinois, USA, August 1998.

[7] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In G. Engels
and G. Rozenberg, editors, Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764, pages 296–309. Springer Verlag,
November 1998.

[8] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the Compositional Verification of
Real-Time UML Designs. In Proc. of the European
Software Engineering Conference (ESEC), Helsinki,
Finland, pages 38–47. ACM Press, September 2003.

[9] H. Giese, M. Tichy, and D. Schilling. Compositional
Hazard Analysis of UML Components and
Deployment Models. In Proc. of the 23rd International
Conference on Computer Safety, Reliability and
Security (SAFECOMP), Potsdam, Germany, Lecture
Notes in Computer Science. Springer Verlag,
September 2004. (to appear).

[10] H. Köhler, U. Nickel, J. Niere, and A. Zündorf.
Integrating UML Diagrams for Production Control
Systems. In Proc. of the 22nd International
Conference on Software Engineering (ICSE),
Limerick, Ireland, pages 241–251. ACM Press, 2000.

[11] J. A. McDermid. Trends in Systems Safety: A
European View? In P. Lindsay, editor, Seventh
Australian Workshop on Industrial Experience with
Safety Critical Systems and Software, volume 15 of
Conferences in Research and Practice in Information
Technology, pages 3–8, Adelaide, Australia, 2003.
ACS.

[12] Object Management Group. UML 2.0 Superstructure
Specification, 2003. Document ptc/03-08-02.

[13] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[14] N. Storey. Safety-Critical Computer Systems.
Addison-Wesley, 1996.

[15] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 1991. Second Edition.

[16] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé,
G. Bracha, and N. Gafter. Adding wildcards to the
java programming language. In Proceedings of the
2004 ACM symposium on Applied computing, pages
1289–1296. ACM Press, 2004.

Fujaba Days 2004 30

Visualizing differences of UML diagrams with Fujaba

[Position Paper]

Jörg Niere
Software Engineering Group

Hölderlinstr. 3
D-57068 Siegen, Germany

joerg.niere@uni-siegen.de

1. MOTIVATION
Software Configuration Management (SCM) is indispensable
when developing large software systems. There exists well
established tool support such as the popular open source
tool CVS or several commercial systems, e.g. Microsoft Vi-
sual SourceSafe. Common to those tools is that the man-
agement is based on text files and therefore mostly used in
the late phases of the software development process, i.e., the
implementation phase.

In early phases of a software development process such as
the requirements or design phase, engineers use CASE tools
and more precise UML modeling tools. Today, CASE tools
usually provide a set of different diagrams and use an ab-
stract syntax graph representation, namely a meta-model.
Persistently storing an actual syntax graph representing of
a set of diagrams in text files is a possible solution, but man-
aging those persistent text files with a textual SCM tool is
not feasible [7, 5]. Suppose the situation, that you load a
set of diagrams and save the diagrams without changes. If
the sequence of diagram items has been changed, e.g. de-
pending on the internally used container classes, the SCM
tool will say that the file as changed although the diagrams
have not.

CASE tools need their own SCM tool working on the in-
ternal abstract syntax graph representation [6] in order to
prevent problems such as sequence changes that have no se-
mantical meaning for the diagrams. For example the Rose
tool [4] comes along with an SCM tool, which supports cal-
culating differences between two versions of a set of dia-
grams. The Rose Model Integrator uses the internal unique
identifiers to compare diagram items in different versions
and represents the differences in a kind of internal abstract
syntax tree view. The engineer has to know for example
that the class MethodDecl is the internal representation of a
method in a class diagram, or class RelEnd represents roles
of associations. Especially when there are a large number of
differences, the actual context of a certain difference is not
always clear to the engineer.

The Fujaba CASE tool also supports versioning of diagrams
[8]. Fujaba’s approach is to log all edit operations; so-called
changed-based versioning [5]. Calculating differences be-
tween two versions means to replay the edit operations start-
ing from the common original diagram and using unique

identifiers to compare diagram items in the different ver-
sions. Fujaba displays difference information about internal
syntax graph classes similar to the Rose Model Integrator.

As the previous examples show, the inner tool SCM support
is already understood for CASE tools, although the repre-
sentation of the difference information is inadequate. This
position paper sketches our approach of visualizing differ-
ences of UML diagrams within the diagrams themselves. We
call those diagrams difference diagrams. Although we use
Fujaba as tool to display difference diagrams, our approach
is independent from a certain internal representation of di-
agrams, because the calculation algorithm takes two XMI
documents as input and does not depend on unique identi-
fiers. Those XMI files may be produced any CASE tool.

2. DIFFERENCE VISUALIZATION
Our approach takes two XMI documents as input for the dif-
ference calculation algorithm and the algorithm produces a
unified XMI document including difference information. To
represent the difference information within the unified XMI
document we use the XML extension mechanism. The ad-
vantage is that the unified document can also be understood
by other CASE tools having a standard XMI import facility
where our specific extension will have no effect. Currently
the difference calculation algorithm handles class diagrams
only and the visualization is under construction.

Figure 1 shows two different class diagrams. Each diagram
represents a subset of the internal structure of HTML docu-
ments containing advanced features such as forms, lists and
combo boxes. Both class diagrams have been produced inde-
pendently by different development teams during a practical
software engineering course at the university. The class dia-
gram on the left hand side contains hard restricted relations
between the different elements such as forms only have one
combo box element and one list. The class diagram on the
right hand side uses the composite design pattern [2] where
an actual HTML document can contain a number of forms
that can contain a number of lists and combo boxes. In
addition, a combo box is subtype of a list, because combo
boxes are also lists but showing only the selected item and
not the whole list. A design such as on the right hand side
in Figure 1 can be found in many graphical user interface
libraries, e.g. the Java Swing library. In the following we
call the class diagram on the left hand side in Figure 1 sim-

31 Fujaba Days 2004

Figure 1: Two class diagram variants of an internal HTML document representation.

ply the left class diagram and the other one the right class
diagram.

After three weeks design phase, the different development
teams must present and defend their design solutions and
all teams have to agree on a common design as basis for
further work. In general the common design includes parts
from more than one original diagram and the question of
how such an operation is supported arises. One solution is
to create a unified class diagram containing all classes and
relationships in such a way that all elements of both dia-
grams are contained in the unified diagram. The result is
comparable with the union operation presented by Selonen
[9]. Consequently you get a unified diagram where the orig-
inal two diagrams lie next to each other, similar to Figure
1. The similarities in both diagrams such as combo boxes,
lists, forms or documents have been completely ignored.

Our difference calculation algorithm tries to identify similar
diagram elements automatically, which results in a differ-
ence diagram containing all elements of both original dia-
grams but also glued elements identified as similar. The
resulting difference class diagram is shown in Figure 2. In
addition, we use Fujaba’s internal class diagram layout algo-
rithm. On the one hand layout is an important information,
especially when handling large diagrams. On the other hand
our approach takes independently developed diagrams with
different layout aspects as starting point and thus we cur-
rently use standard layout algorithms available in the actual
visualization tool and skip the layout information of the di-
agrams, completely.

Our approach of calculating and visualizing differences bases
on the definition of diagram elements. For example, we de-
cided that diagram elements of class diagrams are classes,
attribute definitions, method signatures, associations, inher-
itance relations, notes, etc. Diagram elements consist of at-
tributes and can contain other diagram elements and can
also be connected to other diagram elements. Simplified we
get something like an internal meta-model for which we can
define similarity rules. The difference calculation algorithm
applies these rules to the input files after parsing them.

Based on the internal meta-model, we distinguish between
three kinds of differences. Most simple are move differences,
because they indicate a renumbering of elements. For exam-
ple, a rearrangement of attributes or methods of a class. We
visualize move differences by adding a small number but-
ton (n-button) to the diagram element. Hence the current
implementation automatically sorts attributes and methods
by name and all other sequences are ignored, there exists no
move difference in Figure 2.

Structural differences indicate that a certain diagram ele-
ment belongs only to one of the original diagrams, i.e., there
exists no similar element in the other diagram. In gen-
eral, elements contained only in the left class diagram are
displayed in red color and elements contained in the right
class diagram are displayed in green color. Referring to the
screen-shot in Figure 2, the red color becomes light gray and
the green color is shown as dark gray.1 For example, class
HTMLDocElem belongs only to the right class diagram and
therefore the whole class, i.e., its name and border as well
as its attributes and methods, get green color. All other
classes have been identified as similar and therefore we vi-
sualize them in black color, e.g. HTMLDoc, HTMLForm,
HTMLList and HTMLCombo.

The difference calculation algorithm has identified no sim-
ilar relationships between the classes, i.e., inheritance rela-
tionships and associations. Therefore the two elements as-
sociations and the two inheritance relations starting from
class HTMLDocElem to HTMLForm as well as HTMLList and
the inheritance relation between HTMLCombo and HTML-
List are shown in green (dark gray) color. All others are
shown in red (light gray) color.

Structural differences can also occur within classes as shown
in Figure 2. Attributes and methods, which have not been
identified as similar are shown in red color if they belong to
the left class diagram and shown in green color if they belong
to the right class diagram. For example the name attribute

1We are working on using dotted line styles and fonts instead
of using colors for better readability of gray-scaled screen-
shots.

Fujaba Days 2004 32

Figure 2: Difference class diagram.

and the method add(name:String) of class HTMLForm belong
only to the left class diagram, whereas the attributes script
and submit belong to both class diagrams and are shown in
black color. A situation where a green or red class contains
attributes and/or methods of a different color than the class
itself can not occur, because a movement of attributes and
methods from one class to another not similar class will not
be identified by the algorithm. Such a movement is only
detectable with a three-way-difference approach and not by
a two-way-difference approach, see [6].

The third kind of differences are so-called update differences.
Update differences are differences within one diagram ele-
ment, i.e., attribute value changes of a diagram element. For
example, the difference calculation algorithm has identified
that two attributes of a class are similar, but the names are
not identical. In addition, not identical visibilities, types
and initial values of attributes result in update differences
as long as the difference calculation algorithm identifies two
attributes as similar. Otherwise it is a structural difference.

We visualize update differences by showing a small yellow

button (u-button), cf. Figure 2. The u-button has three
states. One state in which the value from the left class
diagram is shown in red color, one state in which the value
from the right class diagram is shown in green color and one
state in which both values are shown side-by-side in red and
green color, respectively. For example in Figure 2 the type
BooleanArray of attribute multiSel in class HTMLList is the
value in the left class diagram. In case of the attribute with
type Dimension both name values are shown, i.e. size and
sizeDim.2

3. TECHNICAL REALIZATION
The difference calculation algorithm and the visualization
come along as Fujaba plug-ins. The difference calculation
algorithm plug-in is coupled in such a way, that the algo-
rithm is started by a menu entry in the tools menu. After
selecting two XMI documents to be compared, the algorithm
produces an output XMI document including the difference
information. The last part of this process is to notify the
visualization if required and pass the produced XMI docu-
ment as parameter. This design allows us to ship also an

2The font looks a little bit bold.

33 Fujaba Days 2004

independent tool, which can be used outside of Fujaba, e.g.
as extension tool to commercial UML tools.

The second plug-in is the visualization plug-in. As we have
started with the project we wanted to use the meta-model
enhancement facilities [1] to reuse the already existing dia-
gram meta-models for class diagrams, statecharts, activity
diagrams, etc. Unfortunately, Fujaba’s graphical user inter-
face library, i.e. the FSA library, can not deal with different
visualizations in different contexts. The idea was to display
classes in a conventional class diagram context as they are
and in a difference view context as classes with difference in-
formation such as red and green color. Enhancing the FSA
library would have been resulting in a complete redesign of
the library and an adaptation of all existing diagrams and
plug-ins using the library. Therefore we decided to cut-out
the meta-model for each diagram and copy it to our plug-in.
In addition, we had to relax some restrictions concerning
association types and cardinalities, e.g. difference class dia-
grams may contain classes with the same name and the same
package, which was not allowed in the original meta-model.

Today, we support difference class diagrams and therefore
the visualization plug-in consists of copies of nearly all meta-
model elements representing class diagrams such as DiffUML-
Class, DiffUMLAttr, DiffUMLAssoc, etc. We also developed
a generic solution to add unparsing facilities for the differ-
ence information, which enables us to easily modify existing
meta-models to display difference information.

In order to test our calculation algorithm, we developed a
plug-in, that exports the pure model information of Fujaba
class diagrams as XMI document. In general, we export
all visible class diagram elements and leave out all other
elements, e.g. get- and set-methods. The exported model
is consistent, which means that we also export all neces-
sary data types as well as all stereotypes. The XMI doc-
ument format is compatible with Poseidon’s XMI format
[3]. Therefore our difference calculation algorithm is able
to work with XMI documents produced either by Fujaba as
well as by Poseidon.

4. FUTURE WORK
The short-term target is to complete the visualization plug-
in and to enhance the plug-in with additional kinds of di-
agrams. We plan a sequence such as statecharts, activity
diagrams and collaboration diagrams. An integration of ad-
ditional diagram kinds will be long-term targets. Equipped
with our generic difference unparsing facilities such an in-
tegration should be easy. In particular, we will test our
developed facilities by integrating statecharts, first. In ad-
dition, we hope to benefit from the UML 2.0 MOF based
meta-model and XMI export, which will produce a normal-
ized XMI document and not specific documents from Rose,
Fujaba or Poseidon.

Our long-term target is to develop an interactive merging
process. Hence our difference calculation algorithm uses
heuristics, which have been optimized for a certain set of
diagrams but will also produce bad results on other ones.
The idea is to integrate the developer in the process and
benefit from his/her changes. Therefore we also support the
developer with specific editing operations either for setting

similarities as well as for merging elements. A first step is
the n-button and u-button, which allow the developer to
select one of the two available alternatives from the differ-
ent diagrams. The result of the process will be a consistent
merged class diagram.

5. ACKNOWLEDGMENTS
Special thanks to Jürgen Wehren, who is developing the
difference calculation algorithm and to Stephan Lück, who
is integrating the difference view plug-in into the Fujaba
Tool Suite.

6. REFERENCES
[1] S. Burmester, H. Giese, J. Niere, M. Tichy, J. Wadsack,

R. Wagner, L. Wendehals, and A. Zündorf. Tool
integration at the meta-model level within the fujaba
tool suite. In Proc. of the Workshop on Tool-Integration
in System Development (TIS), Helsinki, Finland,
(ESEC / FSE 2003 Workshop 3), pages 51–56,
September 2003.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, 1995.

[3] Gentleware. Poseidon for UML. Online at
http://www.gentleware.com (last visited June 2004).

[4] IBM. Rose, the Rational Rose case tool. Online at
http://www.rational.com (last visited June 2004).

[5] T. Mens. A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering,
28(5):449–462, 2002.

[6] D. Ohst. Versionierungskonzepte mit Unterstützung für
Differenz- und Mischwerkzeuge. PhD thesis, University
of Siegen, Siegen, Germany, 2004. in german (to
appear).

[7] D. Ohst, M. Welle, and U. Kelter. Difference tools for
analysis and design documents. In Proc. of the IEEE
International Conference on Software Maintenance
2003 (ICSM2003), Amsterdam, The Netherlands, pages
13–22. IEEE Computer Society Press, 2003.

[8] C. Schneider, A. Zündorf, and J. Niere. Coobra - a
small step for development tools to collaborative
environments. In Proc. of the Workshop on Directions
in Software Engineering Environments (WoDiSEE),
Edinburgh, Scotland, UK, May 2004.

[9] P. Selonen. Set operations for unified modeling
language. In Proceedings of the Eight Symposium on
Programming Languages and Tools, SPLST’2003,
Kuopio, Finland, June, pages 70–81. Kuopio, Finland:
University of Kuopio, 2003.

Fujaba Days 2004 34

An Adaptable TGG Interpreter for In-Memory Model Transformations
∗

Ekkart Kindler, Vladimir Rubin, Robert Wagner
Software Engineering Group, Department of Computer Science, University of Paderborn

[kindler|vroubine|wagner]@upb.de

Abstract
Triple graph grammars are a technique for defining corre-
spondences between different kinds of models. Triple graph
grammars can even be used for implementing translations
and maintaining consistency between two models. But the-
se implementations work only for automatically generated
models. Therefore, the transformations cannot be applied to
third-party models. In this paper, we discuss this problem
and ideas for its solution.

1. Introduction
With the advent of Model Driven Architecture (MDA) [5],

generation and transformation of models have become more
and more important. There are many different techniques
for defining and implementing such transformation; for a
good overview and a discussion of the different approaches
see [2].

Triple graph grammars (TGGs) [9], an extension of graph
rewriting [7], is one of these techniques. TGGs are parti-
cularly useful for graph based models such as diagrams. A
TGG defines a translation on a relatively high level of ab-
straction based on the syntactic structure of the underlying
models. This way, it is possible to prove the correctness of
the defined translation. In addition, TGGs do not only defi-
ne a translation from one model to another, but also capture
the correspondence between the source and the target mo-
del. Therefore, they can be used to translate back to the
source model after some changes of the target model, and
they can be used to check and maintain the consistency bet-
ween two models.

TGGs have been used in different projects, and there are
different implementations of TGGs. To apply TGG rules in
Progres [8], they are translated to simple graph rewriting
rules, which are then applied to the complete model sto-
red in a database. Fujaba [10] applies Story Charts and
pattern matching for this transformation. This results in a
simple and quite natural implementation. This implementa-
tion, however, requires that there is a model on top of which
the TGG rules are formulated; in fact there are three mo-
dels, one for the source, one for the target and one for the
correspodence part. Moreover, it is necessary that the mo-
dels for which the rules are to be applied are generated from
this meta model according to the rules of Fujaba. When de-
aling with models of third parties, where the mapping from

∗This work has partly been supported by the German Research
Foundation (DFG) grant GA 456/7 Isileit as part of the SPP
1064.

the meta model to a Java implementation differs from Fu-

jaba’s implementation, this implementation does not work
anymore.

In this paper, we present an idea for applying TGG trans-
formations to models that have not been generated from the
meta model underlying the TGG rules. Rather, we would li-
ke to use any (Java) implementation of the model. We call
these models in-memory models. In order to apply a TGG
translation to such in-memory models, there must be a map-
ping which defines how the constructs of the meta model, its
classes, its attributes, and its associations are implemented.
Though it would be a worthwhile task to develop a frame-
work for defining such mappings in the most general way,
we propose a simple technique to start with, which can be
extended in the future. The idea is quite simple: The map-
ping is implemented by a class with a particular interface.
This interface requires methods, which map arbitrary ob-
jects from the implementation to the corresponding class of
the meta model. And it requires methods that, for a given
object, provides all links corresponding to an association of
the meta model. Moreover, this class must provide methods
for generating objects and links in the implementation. With
this additional mapper class it is easy to translate models
by a TGG interpreter. In fact, there are two mapper classes:
one for the source and one for the target meta model.

The ideas of this paper were inspired by a project and
tool called Component Tools. For understanding this back-
ground, we will briefly discuss this project in Sect. 2. Then,
we will rephrase the concept of TGGs in Sect. 3. The co-
re ideas and implementation techniques for an in-memory
TGG transformation will be discussed in Sect. 4.

2. Tool Support for System Engineering
In this section we give a brief overview on the concepts for

a tool called ComponentTools (see [3] for a more detailed
description). Parts of this tool have been implemented as a
prototype already. The tool will support building a system
from components, transforming these models, and for ex-
porting them for analysis purposes as well as for importing
analysis results back to the component view.

ComponentTools was originally inspired by the case
study within the Isileit

1 project. The Isileit project aims
at the development of a seamless methodology for the inte-
grated design, analysis, and validation of distributed produc-
tion control systems. Its particular emphasis lies on reusing

1
Isileit is the German acronym for “Integrative Specifi-

cation of Distributed Production Control Systems for the
Flexible Automated Manufacturing”.

35 Fujaba Days 2004

existing techniques, which are used by engineers in industry,
and on improving them with respect to formal analysis, si-
mulation, and automatic code generation.

The specification of such systems is done in close coopera-
tion with mechanical and electrical engineers. It turned out
that system engineers prefer to construct systems from some
components in a way that is independent from a particular
modelling technique. However, they still would like to use
the power of different techniques, once they have construc-
ted their system.

Faced with this requirements, we have started to build
a tool solving these problems. In the following, we will use
a simplified toy train example representing a material flow
system within our case study for explaining the main ideas.

Figure 1 shows such a simple toy train system built from
components. There are basically four different components:
straight tracks, curved tracks, tracks with a stop signal and
switches. The components are equipped with some ports,
which are graphically represented as small boxes or circles at
the border of the component. The ports are used to connect
the components to each other. In our example, there are
ports representing the physical connections of tracks, and
there are ports which allow to attach controller components,
e.g. for the switches or the light signals. Note that, for sim-
plicity, in our example we did not connect the system to
controller components and only the physical connections of
tracks are presented.

Figure 1: A toy train build from components

In order to build such a system, we need to provide a
component library, which contains these four components.
The component library defines all the available ports, their
graphical appearance, and how ports may be connected. Mo-
reover, the component allows us to provide a model for each
component that defines its dynamic behaviour.

Figure 2 shows the Petri net models for two of the com-
ponents. In fact, we can provide even more models for each
component. For example, there could be abstract models as
shown in Figure 2, or there could me more concrete ones. Or
there could be additional models in different notation such
as State Charts or other notations. From these models, and
the system built by the user, ComponentTools generates
several overall models of the system, each in one particular
notation, which can then be used by appropriate tools sup-
porting this formalism, e.g. for analysis, verification or code
generation.

The presented tool is implemented in some parts as a pro-
totype [4], whereas the model generation and transformati-
ons will be implemented in a course called “project group”
at the University of Paderborn.

In the next section, we give a short introduction to triple
graph grammars, which we are using for the specification

Figure 2: Two models for components

and execution of model transformations between the com-
ponent model and the underlying models of each component
to the overall models in a particular notation.

3. Triple Graph Grammars
In his original work, Schürr [9] extended pair grammars [6]

to triple graph grammars. In contrast to pair graph gram-
mars, triple graph grammars support context-sensitive pro-
ductions with rather complex left-hand and right-hand sides.
Generally, the separation of correspondence objects enables
the modeling of m-to-n relationships between related sides.

The triple graph grammar approach makes a clear distinc-
tion between source and target models; it also keeps the
extra links needed for specifying the transformations as a
separate specification.

Figure 3: TGG Rule Example

A triple graph grammar specification is a declarative de-
finition of a mapping between two meta models. In Fig. 3 a
triple graph grammar rule is shown, defining the correspon-
dence between a component and a Petri net model. It con-
sists of a triple of productions (left production, correspon-
dence production, right production), where each production
is regarded as a context-sensitive graph grammar rule. The
left production shows the generation of a new component
and linking it to the existing one. The right part shows the
addition of a new place, a transition and two arcs to the exi-
sting Petri Net. The correspondence production shows the
relations between the left-hand and right-hand sides.

This declarative specification can be translated into sim-
ple graph rewriting rules which are used for the transforma-
tion in both directions. In Fig. 4 the forward transformation
rule is presented.

The forward transformation rule is applied to the model, if
the left production of the triple graph grammar is detected,

Fujaba Days 2004 36

Figure 4: Forward graph rewriting rule

i.e. if a component was added to the project. In this case, the
graph rewriting system will search for all objects contained
in the left-hand side of the forward transformation rule. If
a match is found, the correspondence objects, the objects
representing new places, transitions, arcs, and links between
the objects are created.

In contrast to the forward rule, the rule which handles the
translation from the right-hand model to the left-hand mo-
del, i.e. from the Petri net model to the component model,
is called backward rule. It is created from the triple graph
grammar in the very same way as the forward rule: we just
exchange the left and right side. For more details, we refer
to [9].

The advantage of triple graph grammars over the other
approaches lies within the definition of inter-graph relati-
onships, which provide the flexibility to use productions for
both forward and backward transformation and correspon-
dence analysis. A triple graph grammar, as a declarative
definition of the mapping between the two graphs, can be
used for the implementation of a translator in either directi-
on. Such an translator will be presented in the next section.

4. Interpreter
In this section, we present the core ideas and implemen-

tation techniques for an in-memory model transformation
based on triple graph grammars. Before explaining our ap-
proach, we give a brief description of Fujaba’s approach for
graph rewriting and discuss its limitations.

The problem. In order to execute triple graph grammar ru-
les in Fujaba, the specified rules are transformed into simple
graph rewriting rules. These graph rewriting rules are trans-
lated to a Java implementation which performs the desired
graph pattern matching and graph rewriting. However, this
implementation is based on the meta models of the source,
the target, and the correspondence graphs and requires that
both meta models are implemented in a predefined way.

In fact, Fujaba requires the implementation to be auto-
matically generated from the meta models by Fujaba. For
example, each attribute of a meta model class must be im-
plemented as a private variable with appropriate get and
set methods. Associations must be implemented as bidirec-
tional references with well-defined access methods following
some naming conventions. These access methods allow navi-
gation between in-memory objects, accessing and modifying
in-memory objects, and creating new objects. The mapping
between the conceptual model and its implementation is im-

plicitly given by the code generator, which is fundamental
for Fujaba’s graph rewriting algorithm.

In the ComponentTools project, we deal with already
existing third-party models. In some cases, the source code
of the model implementation is given. In other cases only
some kind of an Application Programming Interface (API),
which typically differ from Fujaba’s model implementati-
on. Hence, the graph pattern matching and graph rewriting
algorithms of Fujaba will not work for these models.

Transition

fire() : void

PetriNetElement

label : String

Conceptual

Model Implementation Model

 Mapping

<<interface>>

PetriNetElement

setLabel(String) : void

getLabel() : void

<<interface>>

Transition

fire() : void

TransitionImpl

fire() : void

PetriNetElementImpl

setLabel(String) : void

getLabel() : void

Figure 5: Simple mapping example

Figure 5 shows a part of an example of a conceptual model
underlying the rules of a TGG and a typical implementati-
on, which, for simplicity, is represented also in UML. This
example shows that we cannot be even sure that the names
of elements in the conceptual model have the same names
in the implementation. In order to generate new objects,
the TGG interpreter needs to know the names of the classes
implementing the interfaces and how associations are imple-
mented.

Architecture. In general, there is no way to map some ob-
jects and references of an implementation to the correspon-
ding classes and associations of the conceptual model ful-
ly automatically without providing additional information.
Therefore, we need a mechanism that defines this mapping
such that the TGG interpreter can understand the imple-
mentation model. To this end, we propose a simple archi-
tecture which is shown in Fig. 6.

Figure 6: Architecture with Mapper Class

Between the TGG interpreter and the source and target
model, there are mapper classes, which define the mapping
between the conceptual model and the implementation. The-
se classes provide methods that, for a given object of the
implementation, return the corresponding class in the con-
ceptual model. Moreover, they provide methods that return
all links in the conceptual model for a given object of the
implementation. On the other hand, the mapper classes pro-
vide methods for generating new objects in the implementa-
tion model for a given class of the conceptual model and they
provide methods for generating links in the implementation.

For each conceptual model underlying the TGG and each
implementation of such a model, a user must implement

37 Fujaba Days 2004

such a mapper class. These classes are passed to the TGG
interpreter as additional parameters. In order to pass these
mapper classes to the TGG interpreter, the TGG interpreter
defines a mapper interface, which must be implemented by
all mapper classes. The interface requires that there are all
the methods which have been discussed above: methods for
mapping objects of the implementation to the correspon-
ding classes of the conceptual model, methods for getting
all links corresponding to some particular association of the
conceptual model of an object of the implementation, and
methods for generating objects and links in the implemen-
tation models that correspond to some class or association
of the meta model.

Discussion. Though the mapper class approach is quite
simple, it is the most powerful one because, in principle,
any mapping can be implemented as a mapper class. The
disadvantage of this approach is that it requires program-
ming the mapper classes for each new implementation of a
model, which is tedious work. In particular, an inexperienced
user might provide a flawed mapper class, which would re-
sult in flawed translations even if the TGG interpreter works
correctly.

Therefore, it would be nice to define the mappings from
the conceptual model to the implementation on a higher le-
vel of abstraction and in a notation particularly tailored for
this purpose. A good notation for defining such mappings,
however, needs more detailed investigation. Once such a no-
tation is available, it is easy to implement a standard mapper
class, which receives such a mapping definition as input and
which uses the Java Reflection API for implementing the
methods required by the mapper interface. With this gene-
ric mapper class, it will no longer be necessary for the user
to implement a mapper class for each new implementation.
Rather, it will be necessary to provide an abstract definition
of the mapping in the new notation.

Likewise, the TGG interpreter could be easily used with
implementations that are generated automatically from the
conceptual models. In this case, the mapper classes could be
generated automatically too. Then, it will not be necessary
to implement mapper classes for generated models. For ex-
ample, we could use JMI generated and reflective interfaces.

Another idea for implementing mapper classes would be
to have a standard mapper class which is provided with some
scripts for implementing the mapping. Then, it would not
be necessary to implement a complete mapper class; rat-
her it is necessary to provide some scripts for defining the
mapping only. For example, we could use the scripting lan-
guage BeanShell [1] for this purpose. On the one hand, this
approach would avoid the compilation step for the mapper
class, which might be an advantage for a stand-alone tool.
On the other hand, using a scripting language will result
in some performance loss in comparison to a programming
language.

Anyway, all these extended mapping concepts can be built
on top of our mapper class concept by implementing a ge-
neric mapper class.

Implementation. Currently, we are working on an imple-
mentation of the above ideas in the context of Component-

Tools. But, the TGG interpreter itself will be completely
independent from the graphical user interface, so that it can
be easily used in other tools such as Fujaba or as a stand-

alone tool.
Even more, our interpreter and mapping concept can also

be used for graph rewriting because triple graph grammars
are just a specialized sort of graph grammars. The mapping
concept immediately carries over to graph rewriting.

5. Conclusion and Future Work
In this paper, we have presented the problem of apply-

ing TGG transformations and consistency algorithms to in-
memory models that have not been automatically generated.
We have presented some ideas for an interpreter for TGGs
that solves this problem. This way, TGG techniques can be
applied to legacy code and models that have not been gene-
rated from our own models.

We just started with a detailed design of the mapper in-
terface and with an implementation of the in-memory TGG
interpreter. But, we hope to have a first prototype soon.

Acknowledgments
We would like to thank all members of the project group
Component Tools at Paderborn University for all their dis-
cussions, which help to clearly identify the problem and to
come up with the first concepts of the in-memory TGG in-
terpreter.

References
[1] BeanShell. Leightweight Scripting for Java.

http://www.beanshell.org (last visited July 2003).

[2] K. Charnecki and S. Helsen. Classification of model
transformation approaches. In OOPSLA 2003
Workshop on Generative Techniques in the Context of
Model-Driven Architecture, Anaheim, CA, USA,
October 2003.

[3] A. Gepting, J. Greenyer, E. Kindler, A. Maas,
S. Munkelt, C. Pales, T. Pivl, O. Rohe, V. Rubin,
M. Sanders, A. Scholand, C. Wagner, and R. Wagner.
Component Tools: A vision for a tool. In preparation,
July 2004.

[4] J. Greenyer. Maintaining and using component
libraries for the design of material flow systems:
Concept and prototypical implementation, October
2003.

[5] OMG. Model Driven Architecture.
http://www.omg.org/mda/.

[6] T. Pratt. Pair grammars, graph languages and
string-to-graph translations. Journal of Computer and
System Sciences 5, pages 560–595, 1971.

[7] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 1.
World Scientific, Singapore, 1999.

[8] A. Schürr. PROGRES, A Visual Language and
Environment for PROgramming with Graph REwrite
Systems. Technical Report AIB 94-11, RWTH
Aachen, Germany, 1994.

[9] A. Schürr. Specification of graph translators with
triple graph grammars. In Proceedings of the 20th

International Workshop on Graph-Theoretic Concepts
in Computer Science, Herrschin, Germany, June 1994.
Spinger Verlag.

[10] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

Fujaba Days 2004 38

Standardizing SDM for Model Transformations

Hans Schippers
Aspirant FWO - Vlaanderen

Formal Techniques in Software Engineering
Universiteit Antwerpen, Belgium

Hans.Schippers@ua.ac.be

Pieter Van Gorp
Formal Techniques in Software Engineering

Universiteit Antwerpen, Belgium

Pieter.VanGorp@ua.ac.be

ABSTRACT
Transformations are a key technology in model driven software en-
gineering since they are used to implement refinements for platform
independence, restructurings for software migration and weavings
for aspect composition. By considering transformations as mod-
els, one can develop transformations in the same paradigm as con-
ventional applications. In this paper, we illustrate how Fujaba’s
language for graph rewriting has been applied for the CASE tool
independent development of model transformations.1

1. MODEL TRANSFORMATION IN FUJABA
As Sendall and Kozaczynski state [2], model transformation can be
seen as the heart and soul of model driven software development.
Model transformations therefore deserve to be treated as first class
entities in software development.

Considering transformations as models [3], recent experiments [4]
have shown that Story Driven Modeling (SDM [5]) can be used
as a language for the visual development of refactorings (which
are a particular kind of “horizontal” model transformations). How-
ever, SDM’s implementation in Fujaba suffers from two significant
problems. First, the SDM metamodel in Fujaba is non-standard
and it is only implicitly present in the source code. As a conse-
quence, only the Fujaba editor is suitable to create and store SDM
instances. Second, the Fujaba code generator exclusively gener-
ates code conforming to non-standard conventions, meaning it can
solely be deployed on the Fujaba repository.

2. A NEW SDM COMPILER BASED ON MDA
STANDARDS

Both these problems can be overcome by making use of a few MDA
standards. More specifically UML, as an alternative for SDM,
MOF for standardized (meta)model access and storage, and finally
JMI as the binding between MOF and the Java programming lan-
guage.

1A more elaborated paper on this work has been accepted at the
ICGT’04 workshop on Software Evolution through Transforma-
tions [1].

2.1 UML Profile for Model Transformation
The first issue has been tackled by designing a UML profile for
SDM, the aim being to resemble the SDM concrete syntax as closely
as possible, while keeping the semantics in place. Thus, an attempt
was made to associate each SDM construct with a suitable UML
counterpart. To handle different variations of the same construct
(such as for each activities versus code activities versus normal
story activities), UML stereotypes have been used to make the dis-
tinction.

Mapping the control flow part of SDM proved to be fairly straight-
forward, because of the presence of activity diagrams in the UML
standard. For the Story primitives, the closest match were object
(collaboration) diagrams. However, these don’t seem to be avail-
able in every CASE tool, and even if they are, they often offer
less visual features (such as displaying attribute assignments), than
class diagrams. Therefore, the latter were the preferred candidate.

The fact that the semantics of UML class diagrams in the context
of model transformation differ somewhat from their conventional
usage, does not really pose a problem, as people probably know
what context they are dealing with. Furthermore, the model trans-
formation semantics are formalized in OCL, although this currently
needs to be checked in a separate tool, as CASE tools typically do
not allow the addition of meta-constraints yet. As an illustration,
Table 1 lists part of the actual mapping of SDM to UML.

SDM Construct UML Construct
Story Activity ActionState

ForEach Activity ActionState with «for each» stereotype
Unbound object UmlClass
Bound Object UmlClass with «bound» stereotype

Table 1: Extract from SDM to UML mapping

It should be clear that any UML compliant CASE tool can now be
used to create SDM instances. Additionally, since UML complies
to the MOF [6] standard, any MOF repository can be employed
for storing the models in a standardized way. For example, the
NetBeans MetaData Repository (MDR [7]) is an open source Java
implementation of MOF (or JMI [8] to be more precise) that is
used in several UML and MDA tools [9, 10]. Note that the latter
does not put any additional requirements on the CASE tool being
used. Having a CASE tool which makes use of a MOF repository
internally, is certainly convenient if it makes its API accessible to
the code generator, but this can easily be circumvented by exporting
UML models to XMI, and importing the result in an external MOF

39 Fujaba Days 2004

MOF Repository

Transformation Model

Model to transform

Code Generator

Dynamic content Templates

Analyze through JMI calls

Generate transformation code

Transform through JMI calls

Java Transformation Code

Instance Of
I/O Metamodel

Is defined on

Figure 1: Code Generation Process

repository. Obviously, in that case, XMI export capabilities need to
be available in the CASE tool in question, but the majority of tools
do provide this feature nowadays.

2.2 Generation of Transformation Code
To solve the second problem, the Fujaba code generator was re-
placed by another open source solution called AndroMDA [11] for
two reasons. On the one hand, AndroMDA was designed to get
the information necessary to generate code from MOF compliant
models inside a MOF repository. On the other hand, at the heart of
the code generator is a set of dynamic content templates, which can
easily be replaced in order to support different target platforms.

The code generation process is depicted in Figure 1. The MOF
repository (MDR) could be seen as the starting point, as it holds the
transformation specification (transformation model). The dynamic
content templates contain directives in order to extract information
from this model, and based hereon, deliver a java source file with
the actual transformation code. A sample of such a template can be
found in Figure 2. It handles a UML ActionState (the state vari-
able), by first checking what kind of activity it actually is, and then
performing the appropriate action. To find out the required infor-
mation, the template calls upon a helper object, accessible via the
transform variable, which does the actual querying of the transfor-
mation model. The result consists of all text not surrounded by any
type of brackets (just _jcmtg_success in this case), as well as the
(string-formatted) result of any calls surrounded by ${}.

1 <#if transform.isCodeState(state)>
2 <#-- Code state => process its entry action
3 and put the result here -->
4 <#list transform.getProcessedStatements(state) as statmnt>
5 <@indent/> ${statmnt}
6 </#list>
7 <#elseif transform.isLinkState(state)/>
8 <@indent/> _jcmtg_success${nd} =
9 <@indent/> ${transform.getMethodCallEntryAction(state)};

10 <#else/>
11 <#-- State with Transformation Primitive (diagram) -->
12 <#local primPkg = transform.getTransPrimitivePackage(state)/>
13 <#include "TransPrimitive.ftl">
14 </#if>

Figure 2: Dynamic Content Template Sample

At the moment, only one set of templates is available, which is re-
sponsible for the generation of Java code conforming to the JMI
standard, which is a mapping of MOF to Java. In other words,
the resulting code is capable of accessing a JMI-compliant MOF

repository such as MDR, and performing the actual transforma-
tion upon a model stored within there. Thus, model transformation
code can be generated for any model, instantiating any metamodel,
stored in a MOF repository which can be accessed through JMI
interfaces, while other configurations (like EMF [12]) can be sup-
ported by writing a new set of templates. Note that currently, only
intra-metamodel transformations are supported, that is, transform-
ing an instance of a certain metamodel into another instance of the
same metamodel.

Figure 3: Refactoring Plugin generated for Poseidon.

3. EXAMPLE TRANSFORMATION
In order to validate the CASE tool independent approach to trans-
formation development, we used the MagicDraw UML tool [13] to
specify the “Pull Up Method” refactoring that illustrated the orig-
inal Fujaba approach in [4]. Figure 3 shows the plugin that the
new compiler generated for the Poseidon UML tool [9]. This com-
prises the model transformation code on the one hand, and some
plumbing code on the other hand, the latter generated by a separate
so-called AndroMDA “cartridge”. Obviously, Poseidon could be
used for the specification as well, instead of MagicDraw, but we
wanted to stress interoperability between several tools.

Figure 4 visualizes that the actual transformation should only be ap-
plied if the input model satisfies a certain precondition (The «link»
stereotype merely indicates that the specification of this precondi-
tion is to be found in a separate diagram, pointed to by means of a

Fujaba Days 2004 40

Figure 4: Transformation Flow edited in MagicDraw.

tagged value). Basically, the precondition is satisfied if and only if
it makes sense to perform a Pull Up Method. In other words if, for
example, the class owning the method in question, does not have
a superclass, the precondition would fail. Equivalent to Fujaba,
the underlying semantics are based on programmed (or controlled)
graph rewriting [14].

Figure 5 displays the primitive graph transformation rule that re-
moves a method from its containing class and adds it to the list
of methods from the superclass: The bound object named method
represents the method which should be pulled up, and serves as a
starting point for the lookup of its containing class container via
the UML meta-association owner. Once container is bound too, its
superclass is looked up in a similar way. The precondition guaran-
tees that it is indeed possible to bind all objects. At that point, the
owner of the method is changed from container to superclass, in-
dicated by the «create» and «destroy» stereotypes. This completes
the transformation.

Some problems, for example complex numerical calculations, seem
to be solved more easily when using a conventional programming
language like Java than when using graph rewriting. To illustrate
that one does not have to choose for one approach exclusively, a
part of the precondition is currently implemented using Java that
integrates with the generated part of the transformation. It can also
be specified completely using visual SDM constructs equivalent to
those in Figure 4 and 5.

4. CONCLUSIONS AND FUTURE WORK
We can conclude that the model driven engineering techniques for
platform independence can be applied to model transformations as
well. This enables the developers of refactorings, normalizations,
refinements and other kinds of program transformations to bypass
CASE tool vendor lock-in.

Future work that will affect MDA and graph rewriting practitioners
includes the integration of OCL into SDM, the possible support for
additional visual language constructs, repository-platform indepen-
dent Java transformations and the development of a dedicated GUI.
Concerning the latter, it would be interesting to replace Fujaba’s
code generators for class and story diagrams by the discussed open
source alternatives since it will reuse Fujaba’s powerful editor. At
the same time, Fujaba’s models would be more interchangeable by

Figure 5: Transformation Primitive edited in MagicDraw.

reusing mature XMI serializers from NetBeans’ MDR. Finally, the
generated code could be deployed to any JMI repository and sup-
port for other repositories could be added with moderate effort.

The OCL integration would improve the transformation tool in two
ways. Firstly, it would remove the current dependency on an exter-
nal OCL tool to evaluate the well-formedness of model transforma-
tions. Secondly, constraints within the transformation model could
be expressed not only in plain Java but also in OCL. The hybrid
graphical/textual language would support the complete specifica-
tion of repository independent model transformations.

The code driven Java approach, described in the context of the pre-
condition of our example in Section 3, currently suffers from direct
dependence on the framework of the target repository. Building
Java wrappers [15] around the metaclasses of different repository
platforms (JMI, EMF, ...) is a solution that is not efficient in terms
of developer effort when these classes are implemented manually.
One could follow a hybrid model/code driven approach by gener-
ating such wrappers on the one hand and writing pieces of manual
transformation code that use the generated wrappers on the other
hand. The current compiler does not use such a wrapper-based
approach but generates code that calls the repository-platform spe-
cific metaclasses directly. However, if the Java “backdoor” turns
out to be desirable in the long term, one can extend the compiler to
generate wrappers that could be used to write repository-platform
independent transformation fragments in Java.

Future work that will affect maintainers of the SDM compiler in-
cludes applying vertical model transformation on the compiler it-
self. It is motivated by the objective to reuse the graph matching
and rewriting algorithm for different target repositories and to make
the dynamic content templates as trivial as possible. This work
should lead to more insight into how one can maximally reuse and
specialize parts of MDA code generators.

5. ACKNOWLEDGMENTS
This work has been sponsored by the Belgian national fund for
scientific research (FWO) under grants “Foundations of Software
Evolution” and “A Formal Foundation for Software Refactoring”.
Other sponsoring was provided by the European research training
network “Syntactic and Semantic Integration of Visual Modeling
Techniques (SegraVis)”.

41 Fujaba Days 2004

6. REFERENCES
[1] Hans Schippers, Pieter Van Gorp, and Dirk Janssens.

Leveraging UML profiles to generate plugins from visual
model transformations, October 2004. Accepted at Software
Evolution through Transformations (SETra). Satellite of the
2nd Intl. Conference on Graph Transformation.

[2] S. Sendall and W. Kozaczynski. Model Transformation - The
Heart and Soul of Model-Driven Software Development.
IEEE Software, Special Issue on Model Driven Software
Development, pages 42–45, Sept/Oct 2003.

[3] Jean Bézivin and Sébastien Gérard. A preliminary
identification of MDA components. In Proc. Generative
Techniques in the context of Model Driven Architecture,
2002.

[4] Pieter Van Gorp, Niels Van Eetvelde, and Dirk Janssens.
Implementing Refactorings as Graph Rewrite Rules on a
Platform Independent Metamodel. In Proceedings of the 1st
International Fujaba Days, University of Kassel, Germany,
October 2003.

[5] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A New Graph Rewrite Language Based on the
Unified Modeling Language and Java. In Proceedings of the
6th International Workshop on Theory and Application of
Graph Transformation (TAGT), volume 1764 of LNCS, pages
296–309. Springer Verlag, November 1998.

[6] Object Management Group. Meta-Object Facility
Specification, April 2002. version 1.4. document ID
formal/02-04-03.

[7] Sun Microsystems. NetBeans Metadata Repository, 2002.
<http://mdr.netbeans.org/>.

[8] Sun Microsystems. Java Metadata Interface Specification,
June 2002. document ID JSR-40.

[9] Gentleware. Poseidon for UML, version 2.2, 2004.
<http://www.gentleware.com>.

[10] Compuware. OptimalJ.
<http://www.compuware.com/products/optimalj/>, 2004.

[11] M. Bohlen. AndroMDA - from UML to Deployable
Components, version 2.1.2, 2003.
<http://andromda.sourceforge.net>.

[12] Bill Moore, David Dean, Anna Gerber, Gunnar
Wagenknecht, and Philippe Vanderheyden. Eclipse
Development using the Graphical Editing Framework and
the Eclipse Modeling Framework. IBM Redbooks.
International Business Machines, January 2004.

[13] No Magic. Magicdraw. <http://www.magicdraw.com/>,
2004.

[14] Horst Bunke. Programmed graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph Grammars and
Their Application to Computer Science and Biology,
volume 73 of Lecture Notes in Computer Science, pages
155–166. Springer-Verlag, 1979.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, chapter 4, pages 139–150.
Professional Computing Series. Addison-Wesley, 1995.

Fujaba Days 2004 42

A MOF 2.0 Editor as Plug-in for FUJABA

Carsten Amelunxen
Technische Universität Darmstadt

Institut für Datentechnik, FG Echtzeitsysteme
Merckstr. 25

Darmstadt, Germany

carsten.amelunxen@es.tu-darmstadt.de

ABSTRACT
In this paper we describe how we build a MOF 2.0 editor
as a plug-in for Fujaba. The new versions of UML and
MOF offer new concepts for structural modeling. We will
use these new concepts to generate metamodels for several
domains in compliance with common standards like MOF
2.0, JMI, OCL. We figure out how our efforts can be used as
a starting point to improve Fujaba with regard to UML 2.0.
Finally we present how we implemented the plug-in, what
kind of technologies and components we used and what we
will achieve with our efforts.

1. INTRODUCTION
The new upcoming version of the Unified Modeling Lan-
guage (UML) [7] introduces new modeling concepts. Beside
the new version of the UML there is also a new version of
the Meta Object Facility (MOF) [1] which strongly depends
on UML. The part of the UML specification that describes
structural modeling (UML infrastructure [6]) is adopted by
MOF. So MOF comprises the new UML constructs for struc-
tural modeling, too. We want to use MOF 2.0 and decided
after a period of evaluating alternatives to realize our ap-
proaches in Fujaba.

One aim of our contributions for the development of Fujaba
is to realize a MOF 2.0 plug-in which is able to generate
metamodels for several domains. The generated metamodel
implementations should comply with the Java Metadata In-
terface (JMI) [4] a standard provided by SUN. We want to
use the generated metamodels in several fields like tool inte-
gration and re-engineering for example. Thus we have to be
able to generate different kinds of metamodel implementa-
tions with a flexible code generation mechanism which uses
MOF 2.0 compliant metamodels created with Fujaba as in-
put.

The realization of our target plug-in or rather the actual
stage of development as well as the benefits for Fujaba are
subjects of this paper. The new features of MOF 2.0 com-
pared to Fujaba are described in section 2 followed by an
overview of further steps of development in section 3. Sec-
tion 4 gives an overview on JMI. The application of JMI is
described in section 5. Finally the conclusions and future
work are part of section 6.

2. FEATURES OF MOF 2.0
The new features of the MOF 2.0 plug-in compared to the
actual features of Fujaba’s UML class editor mainly concern

associations and packages. MOF 2.0 separates between real
associations and implicit relations. Each class attribute may
have an opposite attribute thereby realizing a simple bidi-
rectional association. Such implicit relations are visualized
by the MOF 2.0 plug-in as usual associations are visualized
in the current Fujaba version. The separation of implicit
relations and real associations gets clear regarding code gen-
eration. Implicitly related attributes would be mapped on
code by using referencing attributes. A real association is
mapped on an own class as demanded by the JMI specifi-
cation. The separation has to be reflected in visualization
and therefore real associations are depicted by a diamond
node according to the MOF 2.0 specification (see figure 1).
Each diamond node represents an association and each line
connecting the association with the associated classes rep-
resents an association end. With such a mechanism we keep
the opportunity to extend the plug-in for n-ary association
although in MOF 2.0 only binary associations are allowed.

Other new features of MOF 2.0 compared to Fujaba are the
relations between association ends. MOF 2.0 offers the op-
portunity to declare an association end as redefinition, sub-
set, or union of other association ends (see figure 1). Those
relations enhance the possibilities of modeling by specify-
ing the relation between associations which are indirectly
related by the type compatibility of their associated classes.
Considering the example in figure 1 it is also possible to
associate an instance of class HardwareDeveloper with an in-
stance of class HardwareProject by using association Develop
instead of association DevelopHardware due to the type com-
patibility of the associated classes. Such an implicit relation
can now explicitly be marked as redefinition or subsetting.
Without those constructs it would not be possible to express
that a hardware developer develops only hardware (without
using OCL constraints). The redefinition of association end
developer by the association end hwDeveloper ensures that
a hardware developer just develops hardware projects by
suppressing the instantiation of the association develops be-
tween an instance of class Project and an instance of class
HardwareDeveloper.

Another important feature is the possibility to define an
association end as subset of another association end. The
subsetting of an association end causes the propagation of
link instances from the subsetting association end to the
subsetted association end. In the example of figure 1 the
query on association Develop for all projects for a specific
hardware developer returns all projects that have been reg-

43 Fujaba Days 2004

istered as instance of association DevelopHardware although
there have never been an instantiation of association Develop
with those instances. The linkage between both association
is caused by the subsetting.

In addition to the mechanism of subsetting it is possible to
declare a superset as exclusive union of its subsets. The
definition of association end project as union of its subsets
means that a developer can either develop hardware or soft-
ware. The instances of the association ends hwProject and
swProject are also part of the association end project. The
union constraints prevents that there are instances of project
beside the instances of the subsets. For further details see
[6] or [2].

Figure 1: Screenshot of the MOF 2.0 plug-in

Furthermore MOF 2.0 offers the possibility to define de-
pendencies between packages. Those dependencies (import,
combine, merge) specify how packages are related to each
other. Our work on the package editor has not proceeded
far enough that an appropriate discussion is possible at the
time of writing this paper. As a result of the packages and
their significance in MOF 2.0 the current Fujaba package
browser is not sufficient anymore. So we decided to build a
new browser that supports package hierarchies and offers a
higher degree of structuring.

Beside the new features which are undoubtedly an enrich-
ment of available modeling facilities there are also useful
features in the current version of Fujaba that are not avail-
able in MOF 2.0. For example, in MOF 2.0 class attributes
are public or private. There is no possibility in MOF 2.0 to
define an attribute as protected nor as static or final. That
problem can be solved by the use of the adapter pattern as
described in [9].

Table 2 summarizes some significant features and their avail-
ability in UML 1.x, Fujaba’s UML, MOF 2.0 and UML 2.0.
Obviously the most desirable modeling language concerning
the widest range of modeling constructs is UML 2.0. There
is a big gap between the possibilities UML 2.0 offers and
the possibilities implemented by Fujaba as well as between
Fujaba and MOF 2.0.

3. FURTHER STEPS OF DEVELOPMENT
Our work on MOF 2.0 can be regarded as an initial step for
the evolution of Fujaba towards UML 2.0. Basically MOF

Constructs UML 1.x Fujaba MOF 2.0 UML 2.0

private
public

+ + + +

protected
static

+ + +

packages + + +
package merge + +
kinds of
package merges

+

qualified
associations

+ + +

aggregations + + +
composition + + + +
opposite - asso-
ciation

+ +

n-ary associa-
tions

+ +

related associa-
tion ends

+ +

inheritance
between
associations

(+) + +

inner classes (+) +
dependencies + +
interfaces + +
reflection +

Table 1: Availability of modeling constructs

2.0 is a subset of UML 2.0 which covers the structural mod-
eling of UML 2.0 (UML 2.0 Infrastructure [6]) expanded by
some specific metamodeling features like extensibility and
reflection. MOF 2.0 is a metamodeling language that can
be used to specify modeling languages. The best known in-
stances of MOF 2.0 are UML 2.0 as well as MOF itself. The
features of MOF are limited compared to UML 2.0 but op-
timized with respect to the demands of metamodeling. So
MOF represents a starting point in the definition of UML
2.0 and therefore can also be a good starting point for imple-
menting UML 2.0. The mapping from MOF to Java (JMI)
is designed regarding the demands of metamodels.

Thus a MOF 2.0 compliant Meta-CASE tool with a JMI
compliant code generator is an appropriate basis to realize
an extensible UML 2.0 CASE tool. Regarding those rela-
tions as described before we propose a scenario of evolution
as follows.

1. First we realized an editor that is capable of generating
code from an intersection of the modeling constructs of
MOF 2.0 and the current Fujaba version. The graph
transformations can be applied to the resulting mod-
eling constructs. In the future we are interested to
optimize the generated code with respect to the de-
mands of embedded systems.

2. The second step will be the adaptation of the graph
transformation for the generation of JMI compliant
code. That code will be used for Meta-CASE applica-
tions.

3. The next major step is to expand the set of model-
ing constructs from an intersection of MOF 2.0 and
Fujaba to a union of the concepts of both languages.
There should also be both kinds of code generation

Fujaba Days 2004 44

(JMI compliant code for Meta-CASE applications and
target code for embedded systems) with regard to the
different kinds of application.

Those steps are planned for the near future and are intended
to result in a Fujaba that is based on UML 2.0 Infrastruc-
ture. At least we propose to keep MOF and UML separately
due to different code generations and different purposes. For
both versions of the UML Infrastructure the graph transfor-
mation has to be adjusted to the new concepts.

4. METAMODELING WITH JMI
One of the central aspects of the implementation of our MOF
plug-in is the compliance to the Java Metadata Interface.
Therefore we give a short overview of JMI. JMI defines a
structure for the creation, storage, access and discovery of
metadata by specifying a Java language mapping for MOF
1.4. JMI provides a common Java programming model for
handling of metadata. This is done by the description of a
set of interfaces which represents the reflective parts of MOF
as well as the structural characteristics of MOF instances.
The interfaces that cover the structure of the metamodels
are divided into four categories. An example for a concrete
JMI mapping which covers instances of all four categories
is depicted in figure 2. It shows the mapping of a package
with a binary association between two classes on JMI. The
four categories are:

Package Objects create and manage instances of all in-
cluded metaclasses. Instances are class proxy objects,
association objects and package objects for nested pack-
ages. The package MetaModel in figure 2 is mapped
to the interface MetaModel and the appropriate imple-
mentation MetaModelImpl. The instance of the pack-
age implementation is the initial point for the instan-
tiation of the metamodel. There are accessor methods
for all class proxy objects as well as for all association
objects.

Class Proxy Objects act as a factory and as a container
for creating and storing instance objects. There is only
one class proxy object for each metaclass. The class
proxy object of the metaclass Operation in figure 2 is
of the type OperationClass. The class proxies are man-
aged by the superior package instance.

Instance Objects represent an instance of the appropriate
metaclass. Each instance object is created and stored
by a class proxy object.

Association Objects are just like class proxy objects con-
tainer for the handling of association instances. There
is only one association object of the same type at run-
time. The association objects are created and stored
just like the class proxies by the superior package. As-
sociation instances are stored by the use of an unspec-
ified link object contrary to the handling of class in-
stances. In figure 2 the association Has is mapped to
the interface Has with the appropriate implementation
HasImpl.

For example the instantiation of the class Operation assumes
an instance of the package implementation (MetaModelImpl)

RefObject

RefPackage
<<interface>>

RefAssociation
<<interface>>

RefBaseObject
<<interface>>

MetaModel
<<interface>> <<interface>>

HasOperationClass
<<interface>>

Operation
<<interface>>

Operation Parameter

RefFeatured
<<interface>>

OperationImpl OperationClassImpl HasImplMetaModelImpl

MOF

JMI

ownerFormalParam

0..1 *

formalParameter

MetaModel (de.tu_darmstadt.fujaba.mof)

Has

<<interface>>
RefClass

<<interface>>

Figure 2: Example of JMI code mapping

which provides access to the class proxy objects. The class
proxy object contains the factory method createOperation
that returns an instance object. Finally, the instance ob-
ject can be used to store instance scoped attributes. The
instantiation of an association requires just like the instan-
tiation of classes the request of an association object from
the package object. Association instances (so called links)
can be handled by using the association object’s methods
like add, remove etc.

A metamodel conforms to the JMI specification as long as
the interfaces are satisfied. The implementations of the in-
terfaces are just informally described and therefore may vary
depending on different usages of the metamodel.

The currently existing JMI specification is designed to map
MOF 1.4 compliant metamodels to Java. So the actual JMI
specification does not cover the latest version of MOF. There
are a lot of features in MOF 2.0 that force an extensive revi-
sion of JMI. For example, the current storage of association
instances is not able to cover all features of MOF 2.0, actu-
ally it is not even able to cover MOF 1.4 properly. Such a
revision is an essential motivation of our work on JMI.

5. A JMI-COMPATIBLE MOF 2.0 PLUG-IN
One of the central components of the MOF 2.0 plug-in is
a code generator for JMI compliant metamodels. We need
a code generator that is highly flexible and easily config-
urable for several target applications. Such a generator is
the MOF Metamodeling Tool (MOmo) Compiler [3]. The
MOmo Compiler is able to generate JMI compliant MOF
metamodels from XMI [8] files. Its great advantage lies in
its modularity concerning the architecture as well as the
handling of several styles of target code by applying differ-
ent sets of templates. Hence, the appropriate way to re-
alize the Fujaba MOF plug-in was to bootstrap the meta-
model by using MOmoC and a special rudimentary MOF 2.0
metamodel. The rudimentary MOF 2.0 metamodel for boot-
strapping consists of just one package including the minimal
set of necessary features. The distribution of the MOF 2.0

45 Fujaba Days 2004

specification over several packages as done in the specifica-
tion is planned for further iterations.

The first version of the plug-in’s metamodel has been mod-
elled in Rational Rose and passed to the MOmoC code gen-
erator via export of UML XMI. So the first metamodel that
makes use of the new features of MOF 2.0 as done in the
specification may not be introduced before the first boot-
strap iteration due to the lack of MOF 2.0 features in com-
mon modeling tools. The way of realizing the plug-in is
depicted in figure 3. Figure 3 shows a scenario with some of
the main functions of the plug-in. The functionalities real-
ized yet and needed for bootstrapping are marked in gray.

(other)

Fujaba

JMI / etc.

MOF XMI

MOF 2.0
Plugin

bootstrap

export

UML XMI

JMI / Fujaba

Rational Rose

ImportImport

Codegenerator

Export

Codegenerator

Behavior
MOF 2.0
Structure

Figure 3: Scheme of the realized bootstrap scenario

The actual version of the plug-in at the time of writing this
paper consists of a generated JMI compliant MOF 2.0 meta-
model with a graphical editor for instantiating the most im-
portant elements except packages and their dependencies.
The limitations are caused by the capabilities of the graph-
ical editor which is based on the current editor for class
diagrams in Fujaba. In general the metamodel is fully us-
able. The MOmo compiler has been modified to generate a
metamodel with an implementation compatible with Fujaba.
The code generator has been integrated into the plug-in and
operates on the plug-in’s metamodel. So the plug-in is able
to generate its own metamodel. The further improvement
of the metamodel will be done with the plug-in itself as soon
as the graphical editor’s degree of usability permits it.

The first versions of the generated metamodel consisted of
an implementation that did not consider any cooperation
with the graph transformation subsystem of Fujaba. It con-
sisted just of an independent metamodel with all necessary
actions and unparse modules that were essential as desig-
nated by Fujaba’s plug-in mechanism. The metamodel im-
plemented all interfaces demanded by JMI as described in
section 4. But even such a rudimentary integration of a
different metamodel caused a problem with the currently
available plug-in mechanism. In the special case of a JMI
compliant metamodel the instantiation is done by a factory
method and not by a constructor as supposed by Fujaba’s
loading mechanism. So we had to modify Fujaba in a sep-
arate branch as described in [9] even in such an early state
of integration.

Parts of our research activities also require the specifica-
tion of behaviour in combination with the new features of
MOF 2.0. Thus we had to enhance the metamodel’s imple-
mentation with the intent to adopt Fujaba’s graph transfor-
mation engine. The implementation has to apply a mech-
anism for cooperating with the graph transformation code
generator. Such a mechanism is described by the adapter
pattern [5]. The used adapter is depicted in figure 4. The
former implementation OperationImpl of the JMI interface
Operation as exemplarily used in figure 4 is replaced by a
subclass OperationAdapter which implements all functions
as demanded by JMI as well as all function demanded by
Fujaba’s graph transformation. There is an inheritance be-
tween Fujaba’s graph transformation classes and the imple-
mentation of the metamodel. The instance of the related
proxy class (OperationClassImpl) instantiates the adapter in-
stead of the class OperationImpl. This is no violation of the
JMI specification because the adapter still implements the
JMI interfaces. For further details see [9].

RefBaseObj
<<interface>>

Operation
<<interface>>

OperationImpl

OperationClassImpl

instantiates

delegates

... Fujaba

SDM.....

ASGElement

JMI

OperationAdapter

Figure 4: JMI Fujaba Adapter

6. CONCLUSIONS
The first version of our MOF 2.0 plug-in uses a rudimentary,
but JMI compatible MOF 2.0 metamodel. Basically, the
editor is able to generate its own metamodel. So further
iterations of the metamodel will be done by using the plug-in
itself. It is our demand to satisfy the MOF 2.0 specification
including packages and their relations in detail although not
in the first iteration. The primary concepts of MOF 2.0
have already been taken into account. All other features
will follow in further iterations.

The plug-in is able to import UML XMI. There was no need
for an import of MOF XMI yet. But the enhancement to
MOF XMI is already planned for the future, when the plug-
in will be able to write MOF XMI. It offers a code generation
mechanism that is very easily expandable for the needs of
other target frameworks just by maintaining several sets of
templates. In this respect the integration of the Fujaba code
generation is still an open issue.

Furthermore it is our intention to integrate an OCL compiler
to enhance modeling capabilities as well as to improve the
bootstrap process by considering the constraints of the MOF
2.0 specification. Additionally we will concentrate on the
improvement of the generated metamodels.

Fujaba Days 2004 46

Finally, there are three major advantages the Fujaba com-
munity will benefit from. First of all our new MOF plug-in
offers the new features of MOF 2.0 and might act as a ba-
sis for upgrading Fujaba class diagrams to UML 2.0. One
fundamental disadvantage of the current Fujaba version is
the missing package concept which complicates the use of
Fujaba in large projects. The package concept implemented
by the MOF plug-in solves this problem and offers an easy
way to organize large projects. Last but not least the com-
pliance to standards like MOF and JMI opens up new ap-
plication domains and therefore might expand the Fujaba
community.

7. REFERENCES
[1] Adaptive Ltd, Ceira Technologies Inc., Compuware

Corporation, Data Access Technologies Inc., DSTC,
Gentleware, Hewlett-Packard, International Business
Machines, IONA Technologies, MetaMatrix, Rational
Software, Softeam, Sun Microssystems, Telelogic AB,
Unisys, and WebGain. Meta Object Facility (MOF) 2.0
Core Proposal, April 2003. ad/2003-04-07.

[2] C. Amelunxen, L. Bichler, and A. Schürr.
Codegenerierung für Assoziationen in MOF 2.0. In
Proceedings of the Modellierung 2004, volume P-45 of
Lecture Notes in Informatics, pages 149–168.
Gesellschaft für Informatik, March 2004.

[3] L. Bichler. Tool Support for Generating
Implementations of MOF-based Modeling Languages.
In J. Gray, J.-P. Tolvanen, and M. Rossi, editors,
Proceedings of The Third OOPSLA Workshop on
Domain-Specific Modeling, Anaheim, USA, October
2003.

[4] R. Dirckze. JavaTMMetadata Interface (JMI)
Specification, Version 1.0. Unisys, 1.0 edition, June
2002.

[5] Erich Gamma AND Richard Helm AND Ralph
Johnson AND John Vlissides. Entwurfsmuster.
Addison-Wesley, 1996.

[6] Object Management Group. Unified Modeling
Language: Infrastructure, Version 2.0, September 2003.
ptc/03-09-15.

[7] Object Management Group. Unified Modeling
Language: Superstructure, Version 2.0, April 2003.
ad/2003-04-01.

[8] Object Management Group. XML Metadata
Interchange (XMI) Specification, Version 2.0, May
2003. formal/2003-05-03.

[9] T. Rötschke. Adding pluggable meta models to
FUJABA. In Proc. Fujaba Days 2004, 2004. To appear.

47 Fujaba Days 2004

Fujaba Days 2004 48

The TopModL Initiative

Pierre-Alain Muller
pa.muller@uha.fr
INRIA/Irisa Université de Rennes France

Cédric Dumoulin
cedric.dumoulin@lifl.fr
LIFL Université de Lille France

Frédéric Fondement
frederic.fondement@epfl.ch
EPFL/IC/LGL Lausanne Switzerland

Michel Hassenforder
m.hassenforder@uha.fr
MIPS/LSI Université de Haute-Alsace France

Abstract

We believe that there is a very strong need for an environment to support research and
experiments on model-driven engineering. Therefore we have started the TopModL project,
an open-source initiative, with the goal of building a development community to provide:

 an executable environment for quick and easy experimentation,
 a set of source files and production line,
 a web portal to share artefacts developed by the community.

The aim of TopModL is to help the model-engineering research community by providing the
quickest path between a research idea and a running prototype. In addition, we also want to
identify all the possible contributions, understand how to make it easy to integrate existing
components, while maintaining architectural integrity. At the time of writing we have almost
completed the bootstrap phase (known as Blackhole), which means that we can model
TopModL and generate TopModL with TopModL.

Beyond this first phase, it is now of paramount importance to gather the best possible
description of the requirements of the community involved in model-driven engineering to
further develop TopModL, and also to make sure that we are able to reuse or federate existing
efforts or goodwill.

This paper is more intended to set up a basis for a constructive discussion than to offer
definitive answers and closed solutions.

49 Fujaba Days 2004

Introduction About model-driven engineering

At the end of the year 2000, the OMG proposed a radical move from object composition to
model transformation1, and started to promote MDA2 (Model-Driven Architecture) a model-
driven engineering framework to manipulate both PIMs (Platform Independent Models) and
PSMs (Platform Specific Models). The OMG also defined a four level meta-modeling
architecture, and UML was elected to play a key role in this architecture, being both a general
purpose modeling language, and (for its core part) a language to define metamodels. As MDA
will become mainstream, more and more specific metamodels will have to be defined, to
address domain specific modeling requirements. Examples of such metamodels are CWM
(Common Warehouse Metamodel) and SPEM (Software Process Engineering Metamodel). It
is likely that MDA will be applied to a wide range of different domains.

While preeminent in the current days, MDA is only a specific case, and we suggest
considering model-driven engineering as a wider research field, which includes the study of
the following issues:

 What are the essential entities for model-driven engineering?
 How to classify these entities?
 How to translate models into executable code?
 What are the essential operations of model-driven engineering?
 How to classify these operations?
 How to separate and merge the business and platform aspects?
 How to build transformation systems?
 How to maintain a model-driven application?
 How to migrate a legacy application to a model-driven application?
 How to integrate conventional application with model-driven applications?
 Which abstractions and notations should be used to support the previous points?
 What kind of supporting environment should be defined?

Obviously the scope of model-driven engineering is wide and a lot of work is still ahead of us.
We believe that a common research platform which would provide the fundamentals services
required by model-driven engineering would significantly contribute to the advance of
research in this field.

Basic principles of model-driven engineering

The point is to identify the fundamental characteristics upon which to build model-driven
engineering. In our specific case, this means identify the requirements for a supporting
environment dedicated to model-driven experiments.

The fundamental principles identified so far by the TopModL initiative are:

 The fact that everything is a model. For TopModL, models are first-class entities;
everything is expressed explicitly in terms of models, including business models,
platform models, executable models, debugging models, trace models, transformation
models, process models

Fujaba Days 2004 50

 The notions of languages, models and roles. A model is expressed in a language; this

language is a model which plays the role of meta-model for the models expressed in
that language.

 The fact that TopModL itself is a model. We want TopModL to be model-driven; we

want everything in TopModL to be explicit and customizable.

 The fact that everything is explicit, including the meta-modeling framework. For
instance TopModL does not require the M3 to be MOF, it does not even require a 4
layer meta-modelling architecture.

 The independence versus the model repository. We want to have a uniform access to

several repositories including EMF3, MDR4, or XDE.

These principles shape the requirements for the services to be provided by TopModL.

Toward a research platform for Model-Driven Engineering

The goal of TopModL is to provide an infrastructure for model-driven engineering, including
a reference implementation of MDA as promoted by the OMG. TopModL wants to act as a
facilitator for researchers in model-driven engineering in connection with other fields
including generative programming, graph transformations, domain specific languages (DSLs),
or aspects.

The basic services offered by TopModL are:

 Model (meta-model) persistence
 Model (meta-model) serialization in XMI (XML Meta-data Interface)
 JMI (Java Meta-Data) interfaces generation for model (meta-model) manipulation
 Visual edition of models (meta-models)
 Model-Driven parameterization of TopModL
 Model-Driven textual editor generation
 Model-Driven visual editor generation
 OCL evaluation during meta-model and model edition
 Code (Java, SQL) generation
 Model transformation

The TopModL artefacts include:

 A set of source files (Java, XML, text) and model-driven production line to
bootstrap TopModL.

 An executable environment. The first release (known as Blakhole) allows the visual

edition of meta-model which conforms to the UML Infrastructure (TopModL by
default uses the UML Infrastructure as M3).

51 Fujaba Days 2004

 A model-driven web portal to share artefacts developed by the community (libraries of
meta-models, profiles, models and transformations).

The first release ot TopModL (Blackhole) and contains all the artefacts required to bootstrap
TopModL. Bootstrapping means being able to use TopModL to model and generate
TopModL itself.

Blackhole - Technical architecture of the bootstrap

The technical infrastructure of TopModL has been a recurring concern since the inception of
the TopModL initiative (November 2003). The basic question is: What should be the existing
technology (if any) onto which to layer the new developments to be done in the initiative?

The initial partners acknowledged that the answer to that question would not be obvious, and
considered that trying to determine upfront the best technology would be counterproductive,
and would significantly delay the timeliness delivery of the TopModL artefacts.

The decision was then taken to use the technology that the partners felt the most comfortable
with at the time of the launch of the project, and not to wait for the next wonderful technology
yet to come. The direct advantage of this approach was to accumulate practical experience
and then to be able to make decisions based on explicit knowledge - rather than informal
feelings - if a new technical element had to be incorporated.

The technologies and standards that were chosen for the bootstrap phase include:

 Java for the programming language
 JMI for the metadata API
 MDR for the model repository
 SWT for the graphical interface
 The Eclipse framework and plugging mechanism
 Eclipse for the IDE
 The UML Infrastructure as M3

It is the intent of the TopModL partners to take any appropriate action to simplify the
potential transition from one technology to another one. Technology independence is
achieved as much as possible by:

 Sticking to established standards when these standards are available (JMI, XMI, MOF,
UML)

 Defining neutral pivot on top of alternative technical solutions, for instance to be
independent of the repositories.

The following picture describes the bootstrap process of TopModL.

Fujaba Days 2004 52

Figure 1 : Bootstrapping TopModL

We start by modelling our M3 layer (currently UML Infrastructure, but could be MOF or
other) with the community edition of Poseidon5. We use UML 1.4 and a MOF 1.4 profile, and
then promote the UML model of the Infrastructure to a MOF model using the MDR utilities
UML2MOF. We were not completely able to express the Infrastructure with MOF this way
(because of features like the package merge) and so we had to workaround by modifying the
XMI files by hand (which in essence means that we are encoding the Infrastructure into some
temporary extension of MOF that we name MOF1.4++). Then, we use a model transformation
(transf 1) to translate the Infrastructure into a MOF 1.4 model which can be fed into the
JMI/MDR generation process, and get a repository for Infrastructure based models (plus XMI
serialization). We have developed a visual editor which connects to this repository, and we
can this way edit metamodels (which conforms to UML Infrastructure). This editor is
currently hand-coded, but it is our intent to generate it from models, in a similar way of what
is doing Netsilon6.

Another bi-directional model transformation (Transf 2) makes it possible to upload the
Infrastructure model which was created with Poseidon. This transformation is then also used
to Bootstrap TopModL, as it is now possible to edit the Infrastructure model with the
TopModL visual editor, and then feed the generation process previously used to generate the
repository.

The second part of the picture shows how the approach can then be used to generate a tool for
the UML superstructure. The following paragraph further motivates such UML CASE tool
generation.

53 Fujaba Days 2004

Toward a model-driven CASE tool for the UML

TopModL is a meta-environment which can be used to realize model-driven CASE tools. The
TopModL development community has considered that realizing a model-driven UML CASE
tool would be an excellent use case for TopModL, and would also allow bypassing the current
limitations of the available tools, most notably:

 The fact that no commercial tool fully implements the OMG standards, mainly
because the first generation of UML CASE tools do not rely on an explicit description
of the meta-models, but on hand-coded implementations, often themselves derived
from earlier modelling tools (designed before the advent of the UML). Our experience
also shows that CASE tools vendors do not have the resources to realize quick update
of their tools, or to satisfy specific demands (to validate a research advance or to
support a specific extension, or even simply to implement a standard).

 The lack of model-driven open-source tools, mainly because all the open-source

efforts are based on programming and not modelling. TopModL is an open-model
project before being an open-source project.

 The hard-wired nature of existing tools which embed a lot of decisions in their code

and are therefore very difficult to customize. When buried in the code, decisions are
implicit, as opposed to explicit when they are expressed in models and meta-models

In this context, TopModL will develop a new kind of UML CASE tool, entirely model-driven,
with all the decisions made explicit by means of models. It is more accurate to talk about a
product line, as the resulting CASE tool will always be conforming to a user-defined set of
meta-models which will define its context. These capacities of customization will concern:

 The internal repository, generated in conformance to the meta-models referenced by
the context.

 The model serialization (import-export via XMI)

 The visual editors, derived from a generic graph editor by explicit customization (this

feature will be of special interest to realize domain specific languages).

 The textual editors (with syntaxic and semantic completion) generated from meta-
models (the abstract syntax) and mapped on a concrete syntax (also expressed via
models).

 The overall behaviour of the tool which will be described in a process model

conforming to SPEM (Software Process Engineering Model).

Fujaba Days 2004 54

Related works

There are many related works, which share a common vision with the TopModL initiative.
We summarize some of these approaches below:

 Meta CASE tools including Metaedit+7, Dome8 or GME9, provide customizable
CASE tools, however they are fairly closed in the sense that they are neither open-
source, nor themselves model-driven.

 Dedicated model-driven tools, which generate specific applications, like Netsilon6 for

Web information systems, Accord/UML10 for embedded distributed real-time systems.

 OCL based tools, including KMF11 which generates modelling tools from the
definition of modelling languages expressed as meta-models, or Octopus12 an Eclipse
plug-in OCLE13 or the Dresden OCL toolkit14, which are able to check the syntax of
OCL expressions, as well as the types and correct use of model elements like
association roles and attributes.

 Meta-modelling frameworks like Eclipse EMF3, Netbeans MDR4 or Coral15 which

offer model persistence, model serialization and programmatic access to models via an
API, , or integration technologies like ModelBus16. These frameworks provide part of
the functionalities required by TopModL.

 Open-source modelling tools, including ArgoUML17 of Fujuba18 which offer

significant feature at the M1 level, but lack customization at the M2 level.

One of the goals of TopModL is to understand how to reuse or leverage these related works,
and to find how to integrate them as much as possible in a research platform for model-driven
engineering.

Conclusion

The TopModL open-source initiative has been launched with the goal of providing tool
support to the model-driven engineering research community.

The TopModL initiative groups a development community, a web portal to share the artefacts
developed by the community, a set of source files and an executable program for meta-
modeling.

TopModL is itself a model-driven application, and a first phase known as Blackhole delivers
the bootstrap of TopModL, which means that TopModL is modelled and generated with
TopModL.

55 Fujaba Days 2004

References

1 J. Bézivin, From Object Composition to Model Transformation with the MDA , in
proceedings of TOOLS 2001. IEEE Press Tools#39, pp. 350-354 . (August 2001).
2 Object Management Group, Inc., MDA Guide 1.0.1 , omg/2003-06-01, June 2003.
3 Eclipse EMF, web site http://www.eclipse.org/emf/
4 Netbeans MDR, web site http://mdr.netbeans.org/
5 Poseidon web site http://www.gentleware.de
6 P.-A. Muller, P. Studer, and J. Bezivin, Platform Independent Web Application Modeling ,
in P. Stevens et al. (Eds): UML 2003, LNCS 2863, pp. 220-233, 2003.
7 R. Pohjonen, Boosting Embedded Systems Development with Domain-Specific Modeling ,
in RTC Magazine, April, pp. 57-61, 2003
8 Honeywell, 1992, DOME Guide , available from "www.htc.honeywell.com/dome/"
9 A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, The Generic Modeling Environment ,
Proceedings of the IEEE International Workshop on Intelligent Signal Processing,
WISP'2001, Budapest, Hungary, may 24-25, 2001
10 S. Gérard, N. S. Voros, C. Koulamas, and F. Terrier, Efficient System Modeling of
Complex Real-Time Industrial Networks Using the ACCORD UML Methodology ,
DIPES 2000,Paderborn, Germany, 2000.
11 Kent Metamodeling Framework, web site http://www.cs.kent.ac.uk/projects/kmf/index.html
12 Octopus web site http://www.klasse.nl/ocl/octopus-intro.html
13 OCLE web site http://lci.cs.ubbcluj.ro/ocle/
14 Dresden OCL toolkit web site http://dresden-ocl.sourceforge.net/
15 Coral, web site http://mde.abo.fi/tools/Coral/
16 X. Blanc, M.-P. Gervais, P. Sriplakich, Model Bus : Towards the interoperability of
modelling tools , MDAFA 04, Linköping, June 10-11, 2004
17 ArgoUML web site http://argouml.tigris.org/
18 Fujaba web site http://wwwcs.upb.de/cs/fujaba/index.html

Fujaba Days 2004 56

Adding Pluggable Meta Models to FUJABA

Tobias Rötschke
Fachgebiet Echtzeitsysteme

Institut für Datentechnik (FB18)
Technische Universität Darmstadt

Darmstadt, Germany

tobias.roetschke@es.tu-darmstadt.de

ABSTRACT
In this paper we propose to split the structural part of the
Fujaba meta model in an internal, tool-specific and and ex-
ternal, standardized metamodel. External metamodels and
adequate editors (and code generators) should be provided
by plugins. By this means, Fujaba would gain flexibility with
respect to evolving meta model standards and allow the Fu-
jaba community to reuse the Fujaba graph rewriting engine
for different schema definition languages. In our opinion, this
proposal is a major contribution to strengthen the Fujaba
community and keep the various development streams to-
gether.

1. INTRODUCTION
One of the most prominent features of Fujaba[21] is the abili-
ty to visually specify behaviour by means of graph trans-
formations written in the Story Driven Modelling (SDM)[6]
language. Unlike its predecessor PROGRES [19], Fujaba ai-
med for adopting standard modelling languages which are
well-known to a large community of software engineers. Con-
sequently, Fujaba uses a fixed UML-like meta model, which
is referred to throughout the system. Graph schemata are
defined by UML 1.x class diagrams, transformation are spe-
cified with slightly modified UML activity diagrams, colla-
boration diagrams, and state charts.

However, as new languages like MOF 2.0 [14] and UML 2.0
[16] come up, Fujaba should be able to evolve with these
languages to stay competitive and hence avoiding one of the
major drawbacks of PROGRES. The basic idea would be
to separate the internal SDM meta model required for the
graph rewriting engine from an external meta model to allow
the user to specify in the modelling language of his choice.
While the internal model belongs to the FUJABA core, the
external meta model would be added using the FUJABA
plugin mechanism.

During our ongoing effort to add a MOF 2.0 schema edi-
tor with JMI[5]-compliant code generation while still using
SDM for behavioural specifications [1], we found it necessa-
ry to perform this separation and successfully managed to
implement some critical parts of it. Our current FUJABA
implementation allows the user to choose between the origi-
nal UML 1.x meta model and a new MOF 2.0 meta model,
edit class diagrams and generate appropriate code.

However, adopting our version would require plugin devel-
opers to adapt their plugins. As we try to stay as close to

the original implementation as possible, the effort will be
basically reduced to renaming meta model related type re-
ferences. In our opinion the benefits of the proposed modifi-
cation will clearly outweigh this inconvenience. So we hope
that the meta model separation will be re-integrated in the
main branch after the Fujaba Days.

Figure 1: Our Fujaba vision

Figure 1 scetches our Fujaba vision. The Fujaba core con-
tains all generic packages like ASG, FSA, CodeGen, and fi-
nally the internal SDM meta model. External meta models
like UML 2.0 or MOF 2.0, standardized code generators li-
ke JMI and – as before – various tools based on the Fujaba
platform can be plugged into the system.

Section 2 describes the shortcomings of the current meta
model. In section 3, we propose how FUJABA should be
reengineered to be able to support pluggable meta models
and code generators.

2. ABOUT THE FUJABA META MODEL
As discussed in section 1, Fujaba has a fixed meta model
and code generator, which cannot be replaced easily. Be-
sided, Fujaba lacks support for a standard application in-
terface for (meta) modelling tools, for instance JMI. This
has also been criticized in [18], where accordingly a new
refactoring tool called JMI Conform Model Transformator
Generator (JCMTG) is derived from Fujaba using a MOF
1.4 meta model [13] and the AndroMDA [3] pluggable code
generator. In [1], another project is described, where Fujaba
is adapted to a MOF 2.0 meta model and the MomoC co-
de generator [2] is used. However, creating and maintaining
a new tool for every meta model would not be wise, since
there is a significant overlap between meta models and little
variety with respect to SDM requirements. Instead it would
be better to allow pluggable external meta models and code
generators which are plugged into the Fujaba core using its
own internal meta model.

57 Fujaba Days 2004

In an ideal world, these features would have been part of
the plugin mechanism introduced with version 4.0. Fujaba’s
key competence lies graph transformation engine, which di-
stinguishes it from most other tool platforms. The current
plugin mechanism allows only to build graphical editors ba-
sed on the Fujaba meta model and code generator. But the
true added value lies in application of the graph transforma-
tion engine to arbitrary meta models and code generators.

Apart from the above, presentation-related concepts of the
Fujaba meta model like “project”, “diagram” and “file” can-
not be found in standard modelling languages like UML 1.x,
UML 2.0 or MOF 2.0. In the UML 2.0 Diagram Interchange
Specification [15] however, a meta model extension to UML
is proposed, which allows to model presentation information.
Unfortunately, it does not yet provide full support for UML
2.0 or MOF 2.0 and the document appears to be rather unfi-
nished, although marked as “Final Adopted Specification”.
With respect to Fujaba, there should be a clear separati-
on between standardized meta model elements and not yet
standardized presentation elements. This would make it ea-
sier to adopt a designated standard early.

Looking into Fujaba in more depth, one finds that some
classes are real god classes [17]. UMLProject for instance
has almost 3000 lines of code and performs many tasks:
Static methods for accessing administrative classes and per-
forming string operations, complex algorithms for loading
projects and finally, it acts as part of the Fujaba meta mo-
del. Accordingly, UMLProject is referred to throughout the
whole system. Changing the meta model would hence result
in countless modifications of the code.

Another drawback of UML Project is, that it only allows for
one project instance. Especially when using Fujaba for mo-
del integration [7] or tool integration [4] purposes, it would
make sense to work with multiple projects of different kinds.
There would be one project for each integrated model or
tool, which would manage its specific meta model, imple-
ments a specific algorithm to load or store model and so on.
The integration part with its integration model should be
an additional project depending on the model / tool specific
projects.

Besides, the Fujaba meta model has some extensions for pro-
ject definition and Java language artifacts, especially modi-
fiers. Static classes [10], package visibility, final, native or
synchronized methods are just a few examples. Apart from
programming language specific visibilities [12], these arti-
facts are neither found in one of the official UML-meta mo-
dels nor in the MOF meta models.

The conclusion is that the existing Fujaba meta model mer-
ges modelling language, programming language and project
concepts into a single meta model. Assuming for the time
being, that programming language and project concepts are
fixed within the Fujaba context, it should still be possible
to use different meta models for the modelling language,
because evaluating and improving evolving modelling lan-
guages is one of the major research challenges that should
be addressed by the Fujaba community.

Many features like behavioural diagram editors and the code

generator are related to the existing all-in-one meta model.
Our idea is to separate between an internal so-called SDM
meta model and an external meta model, which could be
UML 1.x, UML 2.0, MOF 2.0 or similar. As we want to
replace parts of the meta model rather than extend it, the
Fujaba plugin mechanism alone is not sufficient. On the one
hand we would have to duplicate much of the Fujaba code
to reuse the existing Fujaba platform when adding an extra
meta model, and just writing another editor plugin for it.
This would hamper Fujaba’s maintainability. Extending the
Fujaba meta model by means of inheritance on the other
hand, would also not solve the problem, as most meta models
obviously are not a superset of UML 1.4. Apart from the
threat of name collisions, this would result in overly large
classes and needlessly increase the runtime-overhead.

3. PROPOSED SOLUTION
This section describes, how we propose to reengineer the Fu-
jaba core, so that different meta model plugins could be used
with the Fujaba platform. First we describe, how UMLPro-
ject has to be refactored to allow for multiple, meta model-
specific projects in a Fujaba session. Next, we present the
designated internal Fujaba meta model before we explain,
how an external meta model is linked to the internal meta
model. Finally, we describe how plugin developers have to
adjust their code to make the plugins work with the new
Fujaba core.

3.1 Breaking up UMLProject
In our implementation, UMLProject is replaced by four new
classes: ProjectManager, ProjectLoader, SDMMetaModel,
and SDMProject. Figure 2 shows the interaction of these
classes.

Figure 2: Refactored UMLProject

The ProjectManager takes over the static part of the for-
mer UMLProject. It is responsible for managing instances
of projects, meta models, and loaders. The ProjectLoader
is responsible for loading and storing Fujaba models. Each
external meta model will usually have its own loader, but
even different loaders could be combined with a meta model

Fujaba Days 2004 58

(e.g. XMI, GXL, FPR, or native tool specific loaders) follo-
wing the Strategy [8] pattern. SDMMetaModel is responsible
for creation of and access to model element instances. Most
methods are abstract, as the concrete meta model plugin de-
cides, how instances are managed. Concrete methods usually
implement query algorithms or map model elements to Java
entities, which is considered being part of the internal meta
model. Finally SDMProject contains the purely project rela-
ted stuff concerning diagrams, import/export and filesystem
entities, which is not covered by an external meta model.

3.2 The internal meta model
Fujaba’s meta model is geared to UML 1.5, but contains
several Java-specific and project-related extensions as dis-
cussed in section 2. To be able to replace the standardized
part of the meta model by a newer variant, we distinguish
between an internal and an external meta model. The ex-
ternal meta model is a standardized UML or MOF model
without any tool specific extensions. This could be UML 1.5
to stay backwards compatible with existing Fujaba plugins,
but also UML 2.0 or MOF 2.0. Apart from some renaming
operations, the new Fujaba core together with the UML 1.5
meta model plugin will provide full backward compatibility
for tool plugins.

The internal meta model contains abstract methods for all
features that Fujaba expects from the external meta model.
All project or Java-related features are already implemented
in the internal meta model as they are out of the scope of
the external meta model. Figure 3 illustrates the new design,
using a slightly simplified definition of SDMClass.

Figure 3: Example element of the SDM meta model

All presented attributes and concrete methods are conside-
red being part of the internal Fujaba model. Each attribute
represents not only the attribute declaration, but also the
usual access methods generated by the Fujaba code genera-
tor1. All presented associations and abstract methods have

1e. g. addToX, removeFromX, iteratorOfX, elementsOfX,
sizeOfX, hasInX, removeAllFromX for a set valued associa-
tion end ’x’

to be realized by the external meta model implementation.

We call the internal meta model SDM rather than Abstract
or Common metamodel, as it does not only contain the
structural but also the behavioural part of the Fujaba meta-
model. But only the structural part is refined by the external
meta model.

3.3 Integration of meta model plugins
To implement a plugin for an external meta model, the mo-
del element implementations must be subtypes of the corre-
sponding SDM element. In case of the UML 1.5 meta mo-
del this is trivial. The new element UMLClass for instance,
would just specialize SDMClass and implement all abstract
methods as before. Only the minor changes for plugin deve-
lopment described in section 3.4 do apply.

For other meta model implementations, like our JMI-im-
plementation of the MOF 2.0 metamodel, the meta model-
specific interface must be adapted to the SDM metamodel.
Two aspects are important to be able to reuse the Fujaba
platform: Every model element has to be a subtype of AS-
GElement, or its corresponding SDM element to be more
precise. Besides, every modification to the model must pro-
bably invoke firePropertyChange with adequate parameters
to perform incremental updates of the presentation.

Method calls to the SDM interface must be delegated to
the corresponding meta-model specific method calls. This
situation has been described in [8] as Adapter design pat-
tern. Using the class adapter2 variant of this pattern, only
one runtime instance exists per model element instance, and
attributes need not to be duplicated. This keeps the over-
head low. Figure 4 demonstrates the adapter pattern for the
plugin class MOFClass conceptually.

MOFClass is the JMI-interface of the MOF 2.0 class con-
cept. It correspondes to the internal SDMClass concept. The
MomoC[2] code generator provides a JMI-compliant default
implementation MOFClassImpl, which is conceptually inde-
pendant from the tool. The class FujabaMOFClassAdapter
is a hand-written class, which adapts the MOF implementa-
tion to the Fujaba tool platform. However, as Java does not
provide multiple inheritance, the generalization relationship
FujabaMOFClassAdapter to SDMClass has to be moved up
to MOFClassImpl. This is easily done by adjusting the Mo-
moC templates.

Both MOFClass and SDMClass provide an attribute ab-
stract, which is accessed by identically named access me-
thods called setAbstract. In MOFClassImpl, this method
is implemented without being aware of the Fujaba platform.
In FujabaMOFClassAdapter, this implementation is overrid-
den by the following code:

void setAbstract (boolean value) {

boolean changed = false;

if (super.isAbstract() != value) {

super.setAbstract(value);

2as opposed to the object adapter pattern which is used for
FSA, where every FSA object creates an additional Swing
object

59 Fujaba Days 2004

Figure 4: Applying the class adapter pattern

changed = true;

firePropertyChange ("abstract", !value, value);

}

// return changed;

}

This example demonstrates, how generated and handwrit-
ten code can be combined nicely. But there is also a naming
conflict as the return types of the setAbstract method in
SDMClass and MOFClass do not match, while the signa-
ture is identical. We are currently working on systematic
prefix conventions for the internal meta model to allow ex-
ternal meta models to be as close to the standard as possible.
Covariant returns[9] as proposed for the next Java version,
would provide a clean solution to this problem.

The following code fragment shows, how external and inter-
nal meta model can be connected, even if there are minor
conceptual differences. However, attention must be paid to
the correct usage of Fujaba properties as reflection occurs
at many occasions. So when implementing the unparse mo-
dule for MOFClass, the ClassCompartmentVisibilityUpdater
for MOF operations must be initialized with the property
“methods”, because the invocation of iteratorOfMethods

is triggered by this name via reflection.

Iterator iteratorOfMethods {

return super.getOwnedOperation().iterator();

}

Apart from the above, the internal and the external meta
model do not always fit perfectly together. Some thought has
to be put on the mapping of MOFAssociation to SDMAs-
soc as MOF associations are far more powerful than former
UML associations. But as most of the MOF-specific functio-
nality is hidden in the code generated by the MomoC tool,
adaption should be possible. Somewhat more inconvenient is
the fact that an instance of MOFProperty corresponds to in-
stances of SDMAttr, SDMRole and SDMCardinality. In this
case, we use the Object Adapter pattern [8] rather than the
Class Adapter pattern, which results in slightly more run-
time objects. MOFElementImport, which is used to create
references to elements from foreign MOFPackage instances,
acts as SDMClass or SDMAssoc from the Fujaba point of
view and can be realized as object adapter as well.

3.4 Impact on other plugins
The increased flexibility of our proposal comes at the cost
of some refactoring effort for plugin developers. Fortunately,
the modifications are rather trivial.

As the Fujaba core does not contain a concrete meta mo-
del implementation anymore, most plugins will depend on a
meta model plugin like the UML- or MOF-plugin. As UML-
Project has been redesigned, calls of UMLProject.get() have
to be replaced by ProjectManager.getProject(...). Alt-
hough not yet implemented, it would be easily possible to
allow the ProjectManager to handle multiple projects, each
depending on a different meta model plugin. References to
the internal Fujaba meta model using UML... have to be
renamed into SDM.... The prefix “UML” would refer to an
external meta model imported by the UML-Plugin. When
creating a new instance of a model element inside the core,
it is no longer allowed to directly call the constructor of this
element. Instead of calling for instance

clazz = new UMLClass(name);

one would have to call

SDMProject project = ProjectManager.getProject();

SDMMetaModel model = project.getMetaModel();

clazz = model.createClass();

clazz.setName (name);

This might look more complicated initially, but SDMProject
and SDMMetaModel are referred to very often throughout
the code and hence readily available. In practice, only a
few extra lines have to be added. For the sake of backward
compatibility, the UML meta model plugin will still provide
the old constructors, so that existing tool plugins are easily
adapted.

4. CONCLUSION
In this paper we have proposed, how to split the Fujaba me-
ta model into an internal SDM meta model and standard-
compliant external meta models that can be provided by
plugins. We actually consider this a logical and necessary
step, which should already have been implemented by the
plugin mechanism introduced quite recently. We have poin-
ted out that the Fujaba community will benefit from keeping
up with evolving meta model specifications, without the ne-
cessity to modify the core. Considering our current needs,
external meta models have been restricted to structural dia-
grams, while behavioural diagrams are reused based on the
internal meta model.

We are currently implementing the proposed changes in the
“Refactoring” branch of the Fujaba CVS repository and pre-
pare a demo of the modified Fujaba core together with a
UML and a MOF plugin. Our effort is driven by the desire
to use Fujaba as MOF 2.0 editor and JMI code generator.
Based on the original Fujaba core, our goal could not be
reached, as the Fujaba code generator which has been used
to bootstrap Fujaba violates JMI guidelines beyond repair.
Similar problems have already forced the JCMTG project

Fujaba Days 2004 60

to separate from the Fujaba development stream. We are
convinced that our proposed changes are necessary to keep
the Fujaba community together and improve the maintaina-
bility of the code base.

From our experiences with transforming the Fujaba core and
adapting the MOF plugin, we estimate the migration ef-
fort for plugin developers to be approximately one or two
days. Some additional effort would be required to integra-
te all modifications to the main branch since the refactoring
branch has been created. The sooner both branches are mer-
ged the better. Together with the UML-Plugin, the refacto-
ring branch should provide the same features as the main
branch.

Currently, their are only two major concerns: On the one
hand, Java lacks multiple inheritance between classes, re-
sulting in either more runtime objects or code duplication.
On the other, Fujaba and MOF/JMI use different approa-
ches for association implementation, which are not easily
coupled.

The ideas presented here would allow to use the Fujaba code
generator for different meta models. Consequently, we will
investigate how pluggable code generators (e.g. JMI compli-
ant) can be realized based on the proposed modifications.
As the existing code generation concepts are already rather
flexible, we are confident that pluggable code generators can
be realized with reasonable effort.

5. REFERENCES
[1] C. Amelunxen. MOF 2.0 Editor Plugin for Fujaba. In

Schürr and Zündorf [20]. To appear.

[2] L. Bichler. Tool Support for Generating
Implementations of MOF-based Modeling Languages.
In J. Gray, J.-P. Tolvanen, and M. Rossi, editors,
Proceedings of the 3rd OOPSLA Workshop on
Domain-Specific Modeling, Anaheim, California, USA,
October 2003.

[3] M. Bohlen. AndroMDA: From UML to deployable
components, 2004. http://www.andromda.org.

[4] S. Burmester, H. Giese, J. Niere, M. Tichy,
J. Wadsack, R. Wagner, L. Wendehals, and
A. Zündorf. Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proc. Workshop on
Tool Integration in System Development, Helsinki,
Finland, September 2003.

[5] R. Dirckze. Java Metadata Interface (JMI)
Specification, v1.0. Unisys Corporation, Sun
Microsystems, Inc., June 2002.
http://java.sun.com/products/jmi/.

[6] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Grammar Language
based on the Unified Modelling Language and Java. In
Workshop on Theory and Application of Graph
Transformation (TAGT’98). University-GH
Paderborn, Nov. 1998.

[7] R. Freude and A. Königs. Tool Integration with
Consistency Relations and their Visualization. In

Proc. Workshop on Tool Integration in System
Development, Helsinki, Finland, September 2003.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java
Language Specification, 3rd edition draft, 2004.

[10] JavaWorld. Static class declarations, 1999.
http://www.javaworld.com/javaqa/1999-08/01-qa-
static2.html.

[11] M. Nagl, editor. Building Tightly Integrated Software
Development Environments: The IPSEN Approach,
volume 1170 of Lecture Notes on Computer Science.
Springer, 1996.

[12] Object Management Group, Inc. OMG Unified
Modeling Language Specification Version 1.4, Sept.
2001. http://www.omg.org/docs/formal/01-09-67.pdf.

[13] Object Management Group, Inc. Meta-Object Facility
(MOF) Specification Version 1.4, Apr. 2002.
http://www.omg.org/docs/formal/02-04-03.pdf.

[14] Object Management Group, Inc. Meta Object Facility
(MOF) 2.0 Core Specification, Oct. 2003.
http://www.omg.org/docs/ptc/03-10-04.pdf.

[15] Object Management Group, Inc. UML 2.0 Diagram
Interchange Specification, Sept. 2003.
http://www.omg.org/docs/ptc/03-09-01.pdf.

[16] Object Management Group, Inc. Unified Modeling
Language (UML) Specification: Infrastructure Version
2.0, Sept. 2003.
http://www.omg.org/docs/ptc/03-09-15.pdf.

[17] A. J. Riel. Object-Oriented Design Heuristics. Addison
Wesley, 1996.

[18] H. Schippers. JMI Conforme
Modeltransformator-Generator. Master’s thesis,
Universiteit Antwerpen, 2004. In Flemish.

[19] A. Schürr, A. J. Winter, and A. Zündorf. Developing
Tools with the PROGRES Environment. In Nagl [11],
pages 356–369.

[20] A. Schürr and A. Zündorf, editors. Fujaba Days 2004.
TU Darmstadt, 2004. Technical Report. To appear.

[21] A. Zündorf. Rigorous Object Oriented Software
Development. Universität Paderborn, 2001.
Habilitation Thesis.

61 Fujaba Days 2004

Fujaba Days 2004 62

FASEL: Scripted Backtracking for Fujaba

Erhard Schultchen

erhard@i3.informatik.rwth-
aachen.de

Department of Computer Science III, RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

Boris Böhlen

boehlen@cs.rwth-
aachen.de

Ulrike Ranger

ranger@i3.informatik.rwth-
aachen.de

ABSTRACT
We implemented a new scripting language for Java, which is espe-
cially useful for applications based on code generated by Fujaba.
Besides simple control structures also found in other scripting lan-
guages, this new approach allows nondeterministic execution us-
ing backtracking. This is demonstrated by means of the Ferry-
man Problem, which is a well known example for nondeterministic
graph rewriting systems.

1. INTRODUCTION
In an earlier work, we developed a graph-based tool called “eHome-
Configurator” that is based on a data model generated with the help
of Fujaba [4]. The term “eHome” denotes a home which offers its
inhabitants advanced benefits through the combination of its elec-
tronical equipment.

The eHomeConfigurator was designed to operate on the created
data model and thus enabling the user to apply a given “eHome
scenario” onto an environment (a house or an apartment). Here,
scenarios are modeled and displayed as a tree of functional require-
ments. It is possible to model a “light-control scenario” by adding
requirements for a controller device to switch lights in every room
on and off. Furthermore, a movement detection has to be added, so
the eHome can determine where the customer currently resides. An
environment is modeled by means of locations (like rooms) con-
nected and interconnected by location elements (doors, windows ,
...) as well as all installed devices.

The user’s task is to match already installed devices in the cus-
tomer’s household to requirements demanded by the chosen sce-
nario. Requirements that cannot be fulfilled by installed devices
require the installation of new devices. In our realization, the user
calls graph rewriting rules, which are specified using Fujaba and are
called “Activities” or “Story Diagrams”. These rules imply certain
constraints. For example, devices may only be connected to other
devices with a compatible interface. Furthermore, rules determine
whether all specified requirements are fulfilled.

During the development of the eHomeConfigurator, the idea arose

to specify scenarios not only in an interactive way by using the tool
itself, but also to create scenarios by a “script” which uses graph
rewriting rules. As these rules are transformed to Java methods, a
script has to be able to call arbitrary Java methods, pass appropriate
parameters and interpret the return value. This approach separates
the specification of a scenario from its application to a given envi-
ronment. In addition, scenarios can be loaded dynamically into the
tool, just by running the created script.

We developed a simple scripting language named “Fasel” which is
short for “Fujaba Activity Scripting Environment Language”. It is
designed for the use in applications that are built upon code gener-
ated with the help of Fujaba. Fasel can be used for arbitrary Java
applications as well.

Furthermore, we modified the eHomeConfigurator mentioned above
to solve the Ferryman Problem. Therefore, a new Fujaba model had
to be specified, formalizing the elements and rules for this problem.
Finally, Java code was generated for the new model and was inte-
grated into the eHomeConfigurator. Also the eHomeConfigurator
had to be adapted to the new data model, but this only required few
efforts as the eHomeConfigurator was designed in an abstract and
generic way. The modified tool is called “Ferryman Configurator”.
In section 2 we use the Ferryman Configurator to demonstrate the
power of our scripting language. Section 3 contains a more elab-
orated introduction to Fasel’s syntactical elements. We conclude
in section 4 with an overview on current development and further
possibilities

2. USAGE EXAMPLE
To emphasize the usefulness of the presented scripting language,
we implemented the Ferryman Problem in terms of a graph model
using Fujaba. To solve this problem, three things have to be taken
across a river: A wolf, a sheep, and a cabbage. The ferry available
may only take one cargo besides the ferryman, who has to row the
ferry. Leaving either wolf and sheep or sheep and cabbage alone on
one riverside is not allowed, as the first would eat up the second.

Our goal is to solve this problem automatically. We built an appli-
cation that uses the Java code generated for this problem, in order
to load, unload, and move the ferry from one riverside to the other
(figure 1). There are methods to check whether the current situation
is allowed or the problem has already been solved. What is missing
is some kind of a solving algorithm, which could be formalized as
follows:

At each step, choose a cargo from the current riverside and take it
to the other side. The ferryman may also choose to go empty. The

63 Fujaba Days 2004

Figure 1: Ferryman Application

situation has to be allowed with regard to cargos left together on a
riverside. Continue until the problem is solved.

In this section, we present the script to solve the Ferryman Problem.
A more detailed introduction to Fasel’s syntax follows in section 3.

2.1 Nondeterminism and Backtracking
A severe problem about Fujaba is its way to find correct nodes for
a certain activity: Once a story pattern is executed, changes made
to the graph are persistent. This means it is not possible to revoke
prior state whithout human intervention (runtime systems like Dobs
[1] offer undo/redo functionality triggered by the user). The Fer-
ryman problem requires such an undo facility: If a situation is not
allowed, the last transformation has to be undone. Furthermore, the
cargo chosen that lead to the disallowed situation has to be remem-
bered for choosing a different cargo next time. If no alternative
choice is left, then a prior step has to be revoked.

2.2 Implementation
The solving algorithm suggested above was implemented in Fasel
(see figure 2 for line numbers). The main program (lines 28 to
38) first performs some initialization and sets variables for the pro-
grammer’s conveinance (we can use $F instead of $WORLDROOT.
getFerry()). Then, the solve procedure is called which will solve
the problem recursivly (line 34).

The solve procedure first checks whether the ferry did too much
turns - we introduced a maximum turn count of 7 in order to avoid
endless loops (line 3). If more than 7 turns were already made,
backtracking is initialized by returning false. Otherwise, if the
problem has already been solved, execution is canceled and true

is returned, causing all recursivly called procedures to return (line
6). Otherwise, solve tries to find a solution by transfering a cargo
from the ferry’s riverside to the other side.

The procedure tryCargo is used to transfer the cargo (lines 16 to 20)
and to test whether the new situation is allowed (line 21). Moving
the ferry and transfering the cargo is revoked in case of a prohibited
state. The procedure quits and returns false in this case, causing
the caller to try another cargo if available or to return false to
its own caller. If this should run down to the main program, no
solution for the problem could be found. Otherwise, if tryCargo
conciders a given situation as safe, it will call solve recursivly to
continue solving the problem from the new state (line 24). If this
call returns false, another way has to be found and so the latest

1 proc solve()

local $CARGO, $RES;

if $F.getTurns() > $MAXTURNS then

return false;

5 endif;

if $W.finished() then

return true;

endif;

return forany ($C in

10 [NONE | $F.getRiverside().iteratorOfCargo()];

) try :tryCargo($C);

endproc;

proc atomic tryCargo($C)

15 local $RES;

if $C != NONE then

$F.loadFerry($C);

endif;

$F.ferryOver();

20 $F.unloadFerry();

if not $W.safeSituation() then

revoke false;

else

decide :solve();

25 endif;

endproc;

package

["ggraph.model", "java.lang", "java.util"];

30 $FARS.iteratorType(SAFE);

$MAXTURNS := num 7;

$W := $WORLDROOT;

$F := $W.getFerry();

if :solve() then

35 write "Solved the ferryman problem";

else

write "No solution avaiable";

endif;

Figure 2: Fasel Listing for Ferryman problem

turn done by tryCargo is revoked. The calling solve procedure has
to find another cargo in this case.

If the recursivly called solve procedure returns true, the problem
has been solved and tryCargo procedure returns true to its caller,
causing it to do the same until the main program is reached.

3. FUJABA SCRIPTING LANGUAGE
In order to realize the basic idea to invoke Java methods by a script
language, close interaction with the Java Virtual Machine is re-
quired. Fasel scripts are first transformed to a list of simple op-
erations without nesting, using a compiler written in Java. This list
may be stored as a “compiled” or “binary” form of the script, and
recompiling a script on each run can be avoided. Operations are
executed by the Fasel Runtime System called “FaRS”. FaRS also
manages the script’s variable table and provides access to the data
model.

FaRS itself is implemented in Java and runs in the host applica-
tion’s virtual machine (in our case, the Ferryman Configurator).

Fujaba Days 2004 64

FaRS holds at least one root node to access the application’s data
model. For the Ferryman application presented in the previous sec-
tion, FaRS holds the variable $WORLDROOT which denotes the sin-
gle World node of this graph (see figure 1). From this node, all
other nodes of the problem can be reached. For example, the world
node is used to retrieve the ferry node in line 33, figure 2.

3.1 Syntax
Fasel’s syntax is based on well-known imperative programming
languages, such as Pascal. All variable names have to be preceeded
by a “$” sign, statements are terminated by “;”. Words not start-
ing with a “$” are usually treated as a keyword if they match one,
or as a constant string. Characters enclosed in quotation marks are
treated as strings too.

“:=” is used for assignments, following Pascal’s syntax instead of
C. Assignment statements require a variable on their left side and
an arbitrary expression on their right side. It is possible to assign a
“null” value which does not refer to any specific value at all. Fasel’s
null has the same meaning as Java’s null.

Equality test is done by “==”. The expression “a == b” is mapped
to the Java expression a.equals(b). Thus, “==” tests for equality
of two objects instead of identity [2]. If the expressions on both
sides of “==” yield a null value, the result is true. If only one
expression is null, this test returns false.

Fasel offers common statements known to most imperative pro-
gramming languages. Besides the if . . . then . . . else . . .

endif; statement, a while . . . do . . . done; loop is avail-
able. Fasel also contains a for-each loop: for $V in . . . do . . .

done; For-each loops may iterate over generic collections
(java.util.Collection) or use a given Iterator
(java.util.Iterator). Also, Fasel supplies a direct list-expres-
sion to construct a list: [a, b, c, . . .]. List expression are
also used to concatenate lists by using the “|” character. The ex-
pression [a, b | $list] constructs a new list [a,b] and ap-
pends $list, assuming that $list contains a list.

To modify a list, Fasel provides the “ head $list” and “ tail

$list” expressions. The first one provides the first element of
the given list whereas the second returns a copy of the list with
its first element removed. Both expressions are not applicable to
empty lists or variables that do not contain a list. head and tail

expressions are useful for recursive procedure calls often used in
functional programming.

3.2 Activity Invokation
Activities, or arbitrary Java methods are called using the “.” oper-
ator. An object on the left side of the dot is used as the object to
call the method from. If the left side is a constant string, a variable
containing a string or a variable containing a java.lang.Class

object, the method is called as static class method. The right side
of the dot is taken as the method name. This may be given in form
of a static string or as a variable containing a string.

Parameters are enclosed in paranthesis, like a regular java method.
The method call may be part of an assignment statement, assign-
ing the call’s return value. If invoked methods throw an exception,
an appropriate message is sent to the console, but execution of the
script is continued. This behaviour is meant for simple batch pro-
cessing where actitivities do not depend on each other and partially
unsuccessful runs of a script are acceptable. However, if the script

depends on the failed method’s return value, a subsequent statement
may find an unexpected null value and fail to continue.

Method call operators have left precedence, meaning if several me-
thod calls are placed in a single statement, the left-most call is per-
formed first and its return value is used as the call object for the next
one. This coincides with the Java syntax. For example, the follow-
ing statement is handled just like in Java:
$obj.toString().substring(1).trim();.

To invoke a method on a class rather than an object, usually the
fully qualified classname has to be used. As Fasel currently does
not distinguish between package- and class names, any expression
containing a dot would be interpreted as a method call. Hence, fully
qualified classnames have to be enclosed in quotation marks.

It is also possible to set a list of packages as the “package search
list”. The Fasel Runtime System browses this list whenever an
unqualified classname is given. For example, calling Integer.

toString(int) in Fasel would have to be written as ‘‘java.lang.
Integer’’.toString(. . .). Setting the package search list us-
ing package [‘‘java.lang.Integer’’]; allows to drop
quotation marks and package qualifier and simplifies the call to
Integer.toString(. . .).

3.3 Subroutines
Fasel allows the declaration of subroutines, which are declared at
the beginning of the file. No declaration before usage in terms of
their order in the input file is required, in contrast to C. Subroutines
are defined using the proc keyword (see figure 3). The optional
“atomic” modifier introduces procedures with backtracking capa-
bilities. “atomic” means that this procedure may be executed in
total, or it may be canceled and all changes made by this procedure
are revoked.

By default, all variables are defined in a global scope. Every sub-
routine can see and modify all variables used in the main program.
Also, it may set new variables that have not been used in the main
routine so far, and these variables will persist after the procedure
has returned. A procedure might also accidently overwrite vari-
ables used in the main program if the programmer is not fully aware
which variables are in use in the main program at the time the pro-
cedure is called. To circumvent this problem, and also to save some
memory, “local variables” may be declared. These variables are
only visible inside the current subrountine, and are discarded once
the procedure returns. The use of local variables is mandatory for
recursivly called procedures. Otherwise, consecutive calls would
interfere with each other due to globally used variables.

Execution of a procedure ceases if its end is reached (implicit re-
turn) or due to an explicit return statement. Return statements may
optionally pass a return value. If not, a null value is returned in-
stead.

Procedure calls are initiated by a colon, followed by the proce-
dure name and the declared amount of parameter: :tryCargo

($cargo);.

3.4 Enhanced for-each
A common application for a for-each loop is to try some statements
with any combination of multiple variables denoted by list expres-
sions. The goal is to find any suitable combination of variable con-
figurations. Fasel supports this idea by means of an forany . . .

65 Fujaba Days 2004

proc atomic tryCargo ($C)

local $RES ;

. . .

endproc;

Figure 3: Procedure declaration

try and forall . . . try statement. Both forany and forall

statements take a list of variables and list expressions, just like a
regular for-each loop. As a loop body, only a single call to a Fasel
procedure is allowed. If the procedure returns true, this causes a
forany loop to exit. A forall loop will continue until the proce-
dure returns false or no other variable configuration is available.

The ferryman algorithm uses a forany loop to find any valid cargo
to transfer: return forany ($C in $Cargolist ;) try

:tryCargo($C); . This searches for a configuration of $C in
$Cargolist such that tryCargo($C) returns true. The loop is
part of the solve procedure’s return statement.

As mentioned above, it is possible to include several variables in
a forany or forall loop. The example in figure 4 tests whether
a pack of cards is complete. All combinations of color and card
are passed to findCard to check if the card is present. If it is not
found, the loop will exit and return false. In this case, $Color
and $Card hold the latest configuration findCard was called with
and hence denote the missing card. Currently, it is not possible to
continue a search in order to find other missing cards. If the pack
of cards is complete, the loop returns true.

$complete := forall (

$Color in [Diamd,Heart,Spade,Club];

$Card in [7,8,9, . . .];

) try :findCard ($Color, $Card);

Figure 4: ForAll loop with multiple variables

3.5 Backtracking
Fasel allows to revoke changes made to the graph by means of
“atomic” procedures. In contrast to a regular, non-atomic proce-
dure, these may also be exited using the revoke statement. In this
case, all changes made to any Fasel variable or to the data model
itself by the procedure are revoked and the state prior to the proce-
dure call is restored. The revoke statement may also pass a return
value.

Currently, revoking a procedure is done by serializing and storing
the complete data model when an atomic procedure is entered. A
revoke statement loads the stored model and replaces the current
one, whilst a regular return statement discards the remembered
information and hence makes all changes persistent. Obviously,
this approach is not well-suited for large graphs or a large amount
of backtracking information to be remembered. Memory demand
scales linearly with the backtracking depth which correlates to the
amount of recursive calls to atomic procedures. Our example is
restricted by the fixed ceiling of seven steps before backtracking
is enforced. Also, the graph is limited to a fixed amount of seven
nodes which allows solving the problem in less than half a second
on a modern PC. More complex tasks clearly demand a more ef-
ficient and less memory consuming approach. We will discuss an
alternative in section 4.

Often, graph changes have to be backtracked if a certain test is
evaluated to false, while changes have to be made persistent if it
is evaluated to true. This is done by the “ decide expr;” state-
ment. If the given expression is true, this statement is equivalent to
return true;, otherwise it is equivalent to revoke false;.

3.6 Restrictions
Fasel does not consider any Programming-in-the-large aspects like
modularization. Also, no type concepts were considerated and
there is no need to declare a variable, except for local use in sub-
routines. Fasel was designed for small scripts that do not require
a more sophisticated structure. Fasel scripts should be used to im-
plement algorithms in a recursive or iterative form where Fujaba
Story Diagrams are not very well suited. More complex operations
like tests for graph patterns should be realized using Fujaba Story
Diagrams.

4. CONCLUSION
We demonstrated the usefulness of a new scripting language for
Java code named Fasel. Other languages are commonly used for
running scripts on Java code and often supported by a large com-
munity (e.g. Python for Java, [3]). However, Fasel includes a back-
tracking mechanism that may be used to revoke prior statements.
As Fujaba is lacking an automated backtracking mechanism, we
implemented the Ferryman Problem which depends on backtrack-
ing as a Fasel script.

We are currently working on integrating CoObRA [5] into Fasel
and the Ferryman application. CoObRA is an architecture to keep
track of changes made to an object. Revoking changes made to the
graph model can simply be done by discarding the latest changes,
instead of remembering the complete graph in a serialized from.
We expect the CoObRA approach to be a lot less memory consum-
ing and better suited for large graphs.

Furthermore, backtracking is a desireable extension for Fujaba. For
example, it is useful to be able to revoke a story pattern if a post-
condition of some kind fails. Without backtracking, all changes
made to the graph model are persistant and cannot be taken back
without user interaction. The concept of “atomic” procedures could
be extended to “atomic” activities that are able to revoke their chang-
es if an assertion fails. The algorithm presented in section 2 could
then be realized as an activity in the Fujaba model. We are investi-
gating how this extension can be implemented as a Fujaba Plugin.

5. REFERENCES
[1] L. Geiger and A. Zündorf. Graph based debugging with

Fujaba. Technical report, AG Softwaretechnik Technische
Universität Braunschweig, 2002.

[2] Java documentation.
http://java.sun.com/j2se/1.4.2/docs/index.html.

[3] Jython. http://www.jython.org/.

[4] U. Norbisrath, P. Salumaa, and E. Schultchen. Fujaba based
tool development and generic activity mapping. Technical
report, Department of Computer Science III, RWTH Aachen
University, 2004. to appear.

[5] C. Schneider. CASE tool Unterstützung für die delta-basierte
Replikation und Versionierung komplexer Objektstrukturen.
Master’s thesis, Carolo Wilhelmina zu Braunschweig, 2003.

Fujaba Days 2004 66

Yet Another Association

Implementation

Thomas Maier, Albert Zündorf

Software Engineering Group, University of Kassel,

Wilhelmshöher Allee 73, 34121 Kassel, Germany

Thomas.Maier@uni-kassel.de, Albert.Zuendorf@uni-kassel.de

http://www.se.eecs.uni-kassel.de

Abstract

Fujaba already provides sophisticated code gen-
eration concepts for UML associations. How-
ever, recent bug fixing work on associations has
revealed that the Fujaba code generation mecha-
nisms for associations have a maintenance prob-
lem. In addition, the excessive number of ac-
cess methods generated for to-many association
roles consume not only large amounts of mem-
ory space in the Fujaba tool but they also clutter
the generated code. Thus, this paper revisits the
code generation concepts for associations.

Key Words: UML, Associations

1 Introduction

Code generation for UML class diagrams is well
studied and provided by most modern CASE
tools. However, code generation for associa-
tions still lacks mature implementation strate-
gies in many current tools. This paper revis-
its Fujaba’s code generation strategy for asso-
ciations and proposes a new approach trading
runtime space and time requirements for better
tool maintenance and better readability of the
generated code.

In principle, UML associations specify bi-
directional relationships between objects of two
classes. Each association end, a so-called role,
may carry its own name and cardinality. Adorn-
ments like aggregation, composition or qualifi-
cation may be used. In addition, to-many as-
sociations may be constrained to be ordered or
sorted. This variety of association properties is
responsible for the complexity of proper associ-
ation implementations. Figure 1 shows a simple

class diagram used as running example for this
paper. It represents parts of the board game
Mississippi Queen, where players move steamers
down the Mississippi river. The river is divided
into hex fields.

Figure 1: Class diagram Mississippi Queen

In addition we have a number of requirements
on a sophisticated association implementation
strategy:

• Generally, we expect bi-directional naviga-
bility for associations.

• We require automatic integrity between
forward and backward navigation. This
means, at any time object a refers to object
b , object b must have a reverse reference to
object a. On creation and deletion of links
between objects, both directions have to be
maintained, automatically.

• The usage of the association for the appli-
cation programmer should be comfortable.

1

67 Fujaba Days 2004

mtt
Rectangle

• The generation of the associations should
be comfortable for the tool developer to
ease maintenance.

2 Related work

Most CASE tools provide code generation for
class diagrams and associations, these days.
However, Together [Bor04] still does not sup-
port bi-directional associations and thus does
not care about forward backward consistency.
Rational [IBM04] allows bidirectional associa-
tions but the optional access methods do not
guarantee mutual update of forward and back-
ward references. Rhapsody [ILo04] and Fujaba
[U+04] provide access methods that update for-
ward and backward references mutually. How-
ever, for to-many associations a large number
of accessor methods is generated which is not
handy, neither for the application nor for the
tool developer.

The Meta Object Facility (MOF) approach
proposes to use explicit association classes,
cf. e.g. [ASB04]. For example an associa-
tion class Hexes might provide operations like
Hexes.addToHexes (map1, newHex). A read
access might look like Hexes.iteratorOfHexes

(map1). This approach allows to guarantee mu-
tual consistency of forward and backward ref-
erences. In addition, the explicit association
classes facilitate to deal with more complex as-
sociation features like e.g. the redefines or sub-
set/union relations between different associa-
tions as introduced in UML 2.0. However, still a
lot of specific code has to be generated for each
association.

In contrast, we use a fixed set of predefined
classes. Instances thereof are directly accessible
from the linked objects.

Neither approach is arguably “better”. It
seems to boil down to the developer’s mental
model whether associations should be first class
citizens or not – in other words, it is probably a
matter of taste.

3 Associations with Role

Objects

The association facilities that Fujaba provides
are quite pleasing. Especially the “bidirectional
consistency”, i. e. the automatic creation and
deletion of both links between two objects is

crucial. However, Fujaba generates two meth-
ods for each to-one-role and several methods for
each to-many-role a class participates in. This is
tedious and error prone for the CASE tool devel-
oper and these automatically generated meth-
ods clutter the code, unacceptably.

To avoid this, this paper introduces an im-
plementation with explicit runtime role objects
to implement bidirectional associations. There
is one role attribute for each role (i. e. associ-
ation end). The role attributes encapsulate all
the methods for managing the links between two
objects.

3.1 Example Class Diagram

The augmented Mississippi Queen class dia-
gram including our role attributes (still ignoring
methods and attributes for the “real” function-
ality) looks like Figure 2. Note that the role
attributes are shown as attributes and not as
references to improve legibility.

Figure 2: Class diagram with role objects

Basically, ToOneRole attributes are used for
to-one roles, ToManyRole attributes for to-
many-roles and so on.

In the following a closer look is taken at the
one-to-many association between Map and Hex.
This association models that a map contains
many hex fields and each hex field belongs to
a map.

3.2 Example Object Diagram

For each association end (role) a correspond-
ing role attribute is used. This role attribute
is named like the role name. At runtime, each

2

Fujaba Days 2004 68

mtt
Rectangle

Hex object hex has a ToOneRole object named
map to reference the hex’s map. Likewise, each
Map object map has a ToManyRole object named
hexes to reference the map’s hexes.

A sample (“logical”) object structure is shown
in Figure 3 as a UML object diagram. The dia-
gram shows the map object aMap containing the
two hex objects hex1 and hex2. Each (bidirec-
tional) link between two objects represents two
references, one back and one forth, plus the role
objects.

Figure 3: Object structure without role objects

Figure 4 shows the (“implementation”) object
structure including the role objects that are used
for linking the objects. The diagram shows that
the objects do not reference each other directly
(e. g. aMap does not reference hex1 directly). In-
stead, linking the objects is done by the role ob-
jects. The map object aMap references both hex
objects hex1 and hex2 in its ToManyRole object
aMap.hexes(), or hexesRole (actually the role
object uses the collection objectsSet to store and
thus to reference the objects). Correspondingly,
hex1 and hex2 reference their map object aMap

in their ToOneRole objects hex1.map() (or map-

Role1) and hex2.map() (or mapRole2), respec-
tively. So the links are actually bidirectional,
although this is harder to see than in Figure 3.

Figure 4: Object structure with role objects

3.3 Usage

Links between objects are modified and queried
by invoking operations on the corresponding

role objects. Setting the role objects to another
value does not make any sense, usually. So only
“getter” methods are used for role objects. Set-
ter methods are not used. This is in quotes
because those methods are named like the role
name, without prepending get (altough, of
course, it is up to the developer to pick suit-
able names). Even for a to-one-role roleName

the usual getter/setter pair getRoleName() and
setRoleName(args) is not provided. Instead
there is only the method roleName(). This
leads to the uniform interface for to-one and to-
many roles:

object.roleName().operation(args);

In Figure 5 an example usage with promises
written as JUnit [GB04] assertions is shown.
The first lines set up an object structure like
the one shown in Figure 4, the remaining lines
remove the hex objects from the map.

Map aMap = new Map();

Hex hex1 = new Hex();

aMap.hexes().add(hex1);

Hex hex2 = new Hex();

hex2.map().set(aMap);

assertSame(aMap, hex1.map().get());

assertSame(aMap, hex2.map().get());

assert(aMap.hexes().contains(hex1));

assert(aMap.hexes().contains(hex2));

assertEquals(2, aMap.hexes().size();

aMap.hexes().remove(hex2);

assert(hex2.map().get() == null);

assert(!aMap().hexes().contains(hex2));

hex1.map().unlink();

assert(hex1.map().get() == null);

assert(!aMap.hexes().contains(hex1));

assertEquals(0, aMap.hexes().size();

Figure 5: Example usage

When hex1 is added to aMap by saying
aMap.hexes().add(hex1), the link from aMap

to hex1 is established. hex1 is not only
stored in the role object hexesRole’s collec-
tion hexesSet. hexesRole also (automatically)
calls hex1.map().set(aMap) to establish the

3

69 Fujaba Days 2004

mtt
Rectangle

so-called backlink from hex1 to aMap. The back-
link is the link that is automatically created (or
removed) to ensure proper bidirectionality.

It works just the other way round when saying
hex2.map().set(aMap). This sets the link from
hex2 to aMap. The backlink from aMap to hex2

is automatically set by the role object mapRole2.

Deleting a link also automatically deletes the
backlink.

To have the role objects do this job, they have
to be provided with enough information.

3.4 Role Definitions

The classes participating in an association have
to correctly define the role objects implementing
the association. Each role object has to know
the role name for the backlink and the object
that the backlink should reference.

So class Map could implement its end of the
Map–Hex association as shown in Figure 6.

class Map {

private ToManyRole hexes;

public ToManyRole hexes() {

if (hexes==null) {

hexes =

new ToManyRole("map", this);

}

return hexes;

}

}

Figure 6: Definition of class Map

Each Hex object hex that gets inserted into
a Map’s set of hexes by a statement like
aMap.hexes().add(hex) will automatically get
its map object (first constructor argument
"map") set to the map object it gets added to
(second constructor argument this, which is
aMap here). The automatic call that occurs to
set the backlink is hex.map().set(aMap).

Of course, the getters might lazily create role
objects like shown above or the role objects
might be initialized statically or in the construc-
tor. Lazily creating a role object role has the
benefit of saving memory space when an ob-
ject is not linked to any other object in that
role (e. g. imagine leaf nodes in a tree struc-
ture). It comes at the cost of an additional if
(role==null) for every access to role. Initial-
izing a role object statically or in the constructor

is the reverse: a slightly faster access at the cost
of guaranteed creation of every role object. It
is up to the application developer to make the
right choice depending on the specific applica-
tion needs.

The definition of Hex could look like in Fig-
ure 7.

class Hex {

private ToOneRole map;

public ToOneRole map() {

if (map==null) {

map =

new ToOneRole("hexes", this);

}

return map;

}

}

Figure 7: Definition of class Hex

Here, each Map object aMap that gets
set as a Hex’s map by a statement like
hex.map().set(aMap) will automatically insert
the hex object this is called on (second construc-
tor argument this, which is hex here) into its set
of hexes (first constructor argument "hexes").
The automatic call that occurs to set the back-
link is aMap.hexes().add(hex).

3.5 Implementation

All the role classes ToOneRole, ToManyRole, Or-

deredToManyRole etc. have methods to set and
delete bidirectional links. They expect their cor-
responding counterparts (the role objects of the
class at the other end of the association) to be
properly set up as demonstrated in section 3.4.
For ToOneRoles, there is the interface

• Object get();

• void link(Object object);

• void unlink();

• void set(Object object);

to get the linked object and to link and unlink
(remove the links between) two objects, respec-
tively. set() and link() are the same methods.

For ToManyRoles the standard Java Collection

interface [J2S] is implemented to maximize us-
age flexibility and to be familiar to programmers
from the start. This means there are methods
like

4

Fujaba Days 2004 70

mtt
Rectangle

• Iterator iterator();

• boolean add(Object object);

• boolean link(Object object);

• boolean remove(Object object);

• boolean contains(Object object);

• int size();

• etc.

Here, add() and link() have the same mean-
ing.

The basic implementation pattern for the
methods setting and deleting links is:

• Set or delete the forward link.

• Use Java Reflection to get the role object
at the other side of the association.

• Set or delete the backward link.

• Fire property change events if the object
structure has changed.

Of course there are checks to prevent endless re-
cursion and to only set the necessary links once.

Figure 8 shows simplified pseudo code that
illustrates that pattern for the add() method
in ToManyRole. Linking null is not allowed
and is always checked first. The next line sets
the forward link by storing obj in objects or
does nothing at all if obj is already contained in
objects. If obj was really added to objects,
add() needs to also set the backlink and fire
property change events. getBackLinkRole()

uses Java Reflection to get the role object at
the other side of the association (its name was
given as a constructor argument, cf. section 3.4).
setBackLink() also uses Java Reflection to in-
voke the link() operation on that role object
to set the backlink.

3.6 Advanced Usage

The plain to-many roles have “set semantics”.
When creating a ToManyRole object the way
that is shown in section 3.4, they use a default
Set object (currently HashSet).

Ordered to-many roles have “list seman-
tics”. When creating an OrderedToManyRole ob-
ject, they use a default List object (currently
LinkedList).

public boolean add(Object o) {

if(o == null) {

throw

new IllegalArgumentException();

}

boolean changed = objects.add(o);

if (changed) {

setBackLink(getBackLinkRole(o));

firePropertyChange(/* added o */);

}

return changed;

}

Figure 8: Simplified implementation of ToMany-

Role’s add() method

There are no seperate role classes for the
sorted role attribute. Instead, sorting the ele-
ments is delegated to the collection. When cre-
ating the role object there are two possibilities.
Either a default sorted role may be created. A
default sorted collection is used, then (e. g. Sort-

edSet for ToManyRoles). Or, alternatively, a
specific collection object to use might be passed
as an argument. This can be useful when using
a custom set of collections, e. g. to work around
the severe limitations of the standard Java Col-
lection iterators (although this has been partly
addressed by the new J2SE version 5). It is also
useful for setting up a SortedSet with a custom
Comparator.

4 Conclusion and Future

Work

The association implementation introduced here
implements bidirectional consistency. They ful-
fil our functional needs. The interface is de-
signed to be as uniform and as familiar as pos-
sible. After using it for a couple of months the
authors think it is very handy and easy to use
for the programmer. The same should apply for
the tool developer. Both will be tested while
developing the Janus Plugin [M+04].

Currently, we perform performance tests in
order to compare time and space efficiency of the
new approach with Fujaba’s conventional asso-
ciation implementation.

In future versions of the package the long
awaited generic type feature that will be avail-
able with Java version 5 will be used. A package
being close to collections like this one is predes-

5

71 Fujaba Days 2004

mtt
Rectangle

tined to exploit the improved type safety and
convenience. The interface has actually been
designed with generics in mind.

In our experience it is not really important to
have specific cardinalities like 7..42. The major
difference seems to be to have either one object
or many objects at the other end of the associ-
ation. Other people probably think differently
about this and so this feature might be incorpo-
rated in the future. It could also be useful when
designing software for embedded systems. Usu-
ally, those systems lack dynamic memory man-
agement. So using arrays as the collections to
store objects is natural there. However, arrays
always have at least an upper bound so being
able to specify an upper cardinality is a feature
that is likely to be implemented in the future.

Qualified associations are hard to get “right”.
It is difficult to meet everybody’s needs here.
There is basic support for qualified associations
(qualifying by an external key and qualifying by
an object’s attribute). Extending this function-
ality is planned.

UML 2.0 introduces the attributes redefine,
subset and union for roles. [ASB04] is able to
deal with these extensions due to the explicit
association classes. We believe that the same
holds for our explicit role classes. During a
brain storming session, we developed some sim-
ple mechanisms how this may be achieved. How-
ever, these mechanisms still need to be evalu-
ated.

Currently, implementations for most of the re-
quired role classes are available at [Mai04]. We
have used these mechanism within the Janus
project successfully, although the Janus project
did not yet use a code generator at all. Current
work is the adaption of Fujaba’s code genera-
tion mechanisms to generate our implementa-
tion of associations. However, this also requires
an adaption of the code generation for story di-
agrams and an adaption of the dynamic object
browser Dobs.

References

[ASB04] Amelunxen, Carsten, Andy Schürr
und Lutz Bichler: Codegenerierung für
Assoziationen in MOF 2.0. In: Pro-
ceedings zur Modellierung 2004, Seiten
149–168, Marburg, März 2004.

[Bor04] Borland: Together CASE Tool, 2004.
http://www.borland.com/together.

[GB04] Gamma, Erich and Kent Beck: JUnit,
2004. http://www.junit.org.

[IBM04] IBM: Rational Rose CASE Tool, 2004.
http://www.ibm.com/rational.

[ILo04] ILogix: Rhapsody CASE Tool , 2004.
http://www.ilogix.com.

[J2S] Java 2 Platform, Standard Edition
(J2SE). Sun Microsystems, Inc. http:
//java.sun.com/j2se.

[M+04] Maier, Thomas et al.: Janus Plu-
gin – Java’n’UML Simultanously,
2004. http://janus-plugin.

sourceforge.net.

[Mai04] Maier, Thomas: Associations,
2004. http://associations.

sourceforge.net.

[U+04] Universities of Paderborn, Kassel,
Darmstadt et al.: Fujaba – From UML
to Java and Back Again, 2004. http:

//www.fujaba.org.

6

Fujaba Days 2004 72

mtt
Rectangle

