
Fujaba Days 2009
Proceedings of

 the 7th International Fujaba Days

Eindhoven University of Technology, The Netherlands
November 16­17, 2009

Editor: Pieter Van Gorp

1 Introduction

Fujaba is an Open Source UML CASE tool project started at the software engineering group of
Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite
with a plug-in architecture allowing developers to add functionality easily while retaining full control
over their contributions.

Multiple Application Domains Fujaba followed the model-driven development philosophy right
from its beginning in 1997. At the early days, Fujaba had a special focus on code generation
from UML diagrams resulting in a visual programming language with a special emphasis on
object structure manipulating rules. Today, at least six rather independent tool versions are
under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2)
embedded real-time systems, (3) education, (4) specification of distributed control systems,
(5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-)
engineering tools.

International Community According to our knowledge, quite a number of research groups have
also chosen Fujaba as a platform for UML and MDA related research activities. In addition,
quite a number of Fujaba users send requests for more functionality and extensions.

Therefore, the 7th International Fujaba Days aimed at bringing together Fujaba developers and Fujaba
users from all over the world to present their ideas and projects and to discuss them with each other
and with the Fujaba core development team.

1.1 Organizing Committee

• Organization: Pieter Van Gorp, Eindhoven University of Technology (TU/e)

• Support: Jochem Vonk (Technical Administration) and Annemarie van der Aa (Secretary)

1.2 Program Committee

• Jendrik Johannes (Technische Universität Dresden, Germany)

• Jürgen Börstler (University of Umea, Sweden)

• Holger Giese (Hasso-Plattner-Institut Potsdam, Germany)

• Pieter van Gorp (University of Antwerp, Belgium)

• Jens Jahnke (University of Victoria, Canada)

• Mark Minas (University of the Federal Armed Forces, Germany)

• Manfred Nagl (RWTH Aachen, Germany)

• Arend Rensink (University of Twente, Netherlands)

• Andy Schürr (TU Darmstadt, Germany)

• Wilhelm Schäfer (University of Paderborn, Germany)

• Bernhard Westfechtel (University of Bayreuth, Germany)

• Albert Zündorf (University of Kassel, Germany)

2 Program and Table of Contents

Repository Integration / Middleware (day 1)

1. Research Papers:

• Jendrik Johannes. Developing a Model Composition Framework with Fujaba An Ex-
perience Report p. 1

• Holger Giese, Stephan Hildebrandt and Andreas Seibel. Feature Report: Modeling and
Interpreting EMF-based Story Diagrams p. 5

2. Tool Demonstration:

• Nina Geiger, Christoph Eickhoff, Marcel Hahn, Ingo Witzky and Albert Zündorf. Fu-
ture Web Application Development with Fujaba p. 51

Pattern Matching and Rewriting (day 1)

1. Research Papers:

• Mirko Seifert and Christian Werner. Specification of Triple Graph Grammar Rules
using Textual Concrete Syntax p. 10

• Markus von Detten and Marie Christin Platenius. Improving Dynamic Design Pattern
Detection in Reclipse with Set Objects p. 15

2. Tool Demonstration

• Jörn Dreyer and Albert Zündorf. NT2OD - From natural text to object diagram p. 56

Modeling Languages (day 1)

1. Research Papers:

• Thomas Buchmann and Alexander Dotor. Mapping Features to Domain Models in
Fujaba p. 20

• Ruben Jubeh and Albert Zündorf. PropertyChange Events meet Fujaba Statecharts
p. 25

• Bart Meyers and Hans Vangheluwe. Evolution of Modelling Languages p. 29

2. Tool Demonstration

• Alexander Dotor, Thomas Buchmann and Martin Klinke. Supporting Modeling in the
Large in Fujaba p. 59

Real-Time (day 2)

1. Research Papers:

• Pieter Van Gorp, Ruben Jubeh, Bernhard Grusie and Anne Keller. Fujaba hits the
Wall(-e) p. 34

• Tobias Eckardt and Stefan Henkler. Synthesis of Component Behavior p. 40
• Claudia Priesterjahn and Matthias Tichy. Modeling Safe Reconfiguration with the Fu-

jaba Real-Time Tool Suite p. 45

2. Tool Demonstrations:

• Stefan Henkler, Moritz Breit, Christopher Brink, Markus Bger, Christian Brenner,
Kathrin Brker, Uwe Pohlmann, Manuel Richtermeier, Julian Suck, Oleg Travkin and
Claudia Priesterjahn. FRiTSCab: Fujaba Re-Engineering Tool Suite for Mechatronic
Systems p. 64

• Chrisitan Heinzemann, Stefan Henkler and Albert Zündorf. Specification and Refine-
ment Checking of Dynamic Systems p. 69

3 Research Papers

This section contains all the research papers that were accepted for presentation by the program
committee. The acceptance ratio for Fujaba Days 2009 is 2/3.

Developing a Model Composition Framework with Fujaba –
An Experience Report

Jendrik Johannes
∗

Technische Universität Dresden
Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

ABSTRACT
Reuseware is an open-source model composition framework
for composing models defined in arbitrary Ecore-based lan-
guages. In its four years of development, Reuseware has
experienced many extensions and refactorings due to the
integration of new research results and requirements. One
year ago, a redevelopment of Reuseware’s core was started.
Thanks to its EMF code generation, Fujaba was introduced
as a new development tool into Reuseware’s development
toolchain to replace major parts of Java coding through
story driven modelling. With this we solved problems with
behavior modelling and code generation we faced in the de-
velopment so far. This paper summarizes our experiences
in developing with Fujaba and suggests improvements for
Fujaba and its EMF code generation based on that.

1. INTRODUCTION
The Reuseware project1 was started at the Software Tech-
nology Group of TU Dresden in 2005 as successor of the
COMPOsition SysTem (COMPOST) framework2. COM-
POST implemented the concepts of Invasive Software Com-
position (ISC) [1] for Java and XML. ISC is a static software
composition approach that can act as a basis to implement
a variety of composition techniques for arbitrary languages.
While COMPOST showed the applicability of the approach
for Java and later for XML, it was completely hand-written.
Adapting it for XML for instance, took considerable effort.

The aim of the Reuseware project is to build a framework for
ISC where new languages can be plugged in without man-
ual coding only by providing a grammar or a metamodel of
the language. It was clear from the beginning that Reuse-
ware should be developed as an Eclipse extension to profit
from the features already provided in the open IDE. The
second thing required was a meta language to describe lan-
guages that can be plugged in. After several experiments,
Ecore—an implementation of the OMG’s EMOF standard
[8]—of the Eclipse Modelling Framework (EMF) [10], was
chosen. We decided for Ecore because of its standard con-
formance and code generation facilities that integrate nicely
into Eclipse. Furthermore, since we initially focused on tex-
tual languages, we needed some grammar processing tooling
on top of Ecore. Thus, we developed EMFText [5] that was
initially part of Reuseware.

∗This research has been co-funded by the European Com-
mission in the 6th Framework Programme project Mod-
elplex contract no. 034081 (www.modelplex.org).

Eventually, Reuseware itself was developed using Ecore for
its metamodels, EMFText for textual and GMF [3] for graph-
ical specification languages. What proved to be most prob-
lematic was the metamodelling in Ecore. Since it does not
support behavior modelling, we had to add operation bodies
manually to the generated code. As a consequence of that,
we ended up with muddled generated and hand-written code
and an unnatural separation of methods into utility classes.
After several iterations and experiments, it became clear in
the end of 2008 that Reuseware needed a major redesign.

At that point, we saw the main problems of the implementa-
tions in 1) the too tight integration of generated and hand-
written code 2) the implementation of model (i.e., graph)
transformations in Java, which was unnatural, buggy and
hard to maintain. For both issues we desired a genera-
tive solution. Fujaba with its story diagram paradigm—to
model graph transformations—and its EMF code genera-
tion [2]—to generate operation bodies of Ecore models from
story diagrams—was the ideal candidate for that. This pa-
per summarizes our experience in redeveloping huge parts of
Reuseware with Fujaba. Furthermore, it explains extensions
we made to Fujaba’s EMF code generation.

2. DEVELOPING REUSEWARE
WITH FUJABA

Describing Reuseware in detail is out of scope of this paper
(please refer to [4, 6, 7] and the Reuseware website1). Never-
theless, we present the architecture of Reuseware in Sect. 2.1
to clarify which modelling technologies are used and where
Fujaba fits in. We explain how Fujaba was integrated into
our development toolchain and how it was customized for
our purposes in Sect. 2.2. Our experiences in modelling with
Fujaba are then described in Sections 2.3–2.5.

2.1 Reuseware Architecture
In Reuseware, we distinguish two user roles: composition
system developers and composition system users. A com-
position system implements a certain component and com-
position methodology. Module systems or aspect systems
are examples of composition systems. Composition systems
can usually only handle components (e.g., modules or as-
pects) written in a specific programming or modelling lan-
guage. Integrating new languages or new types of compo-
nents usually takes considerable effort. Reuseware however,
1
http://www.reuseware.org

2
http://www.the-compost-system.org

1











 






 







 

















Figure 1: Reuseware architecture overview

is a framework which can be easily instantiated by composi-
tion system developers to support new composition systems
for existing or newly developed languages. The such instan-
tiated framework may then be used by composition system
users to define components and composition programs (i.e.,
instantiations and compositions of components).

Reuseware is built around five metamodels shown in Fig. 1
(middle). Each metamodel is modelled as a class diagram in
Fujaba. Each of these class diagrams is then translated to an
Ecore model by Fujaba’s EMF code generation. Instances
of the metamodel are either derived by Reuseware or have a
concrete syntax that can be used by a composition system
developer or a composition system user directly.

The core metamodel is the Repository that models a pack-
age structure into which different types of elements can be
placed. The repository metamodel is instantiated by the
running Reuseware based on actual files in the workspace.
It provides a component oriented viewpoint on these files for
composition system users and developers alike.

A composition system developer may utilise two dedicated
languages for composition system development—one lan-
guage to define the concepts of a CompositionSystem and
one language to specify where these concepts are found in
a language defined as an Ecore metamodel. We call such a
specification a ReuseExtension for a given language. Both,
CompositionSystem and ReuseExtension language, have a
textual syntax defined with EMFText. The ReuseExtension
language embeds OCL [9] as expression language. These two
metamodels are only used for specification and do not have
operations that modify models. They therefore make use of
story diagrams only to simplify access to elements (e.g., to
find one item with a given name in a list).

A composition system user works with two kinds of arti-
facts: Fragments (the components in Reuseware) and Com-
positionPrograms (specifications for compositions of frag-
ments). A fragment has a composition interface through
which model elements are accessed (or modified) during a

composition. Concepts for composition interfaces are mod-
elled in the Fragment metamodel. Instances of that meta-
model are created by interpreting ReuseExtension specifica-
tions on arbitrary EMF models. For this, story diagrams are
used in combination with the OCL expressions embedded as
strings in ReuseExtension models.

Composition programs can again be created by interpreting
ReuseExtension models but also manually by a composition
system user. It depends on whether the composition system
developer specified a dedicated composition language for the
composition system or decided to use the generic composi-
tion language of Reuseware. This composition language is
defined in the CompositionProgram metamodel and has a
graphical syntax defined with GMF. In any case, parts of a
composition program can be derived and updated automat-
ically. This is specified with story diagrams.

2.2 Setup and Customization
The development was performed with the SVN versions of
Fujaba and the CodeGen2 plugin of Sept. 22nd 2008. To al-
low rapid development and testing, an ANT build script was
written that deletes the previous generated code, distributes
Ecore models and Java code generated by Fujaba correctly
over several Eclipse plugin projects and triggers EMF’s own
code generation. Consequently, two clicks are needed to gen-
erate the code: Code generation in Fujaba and running the
ANT script in Eclipse. The metamodelling was from now
on performed in Fujaba. We continued to use Eclipse for
EMFText modelling, GMF modelling and Java coding.

Some modifications of the code generation templates of Fu-
jaba were needed to add features not yet supported by Fu-
jaba’s EMF code generation. In the following we summarize
these modifications.

1. Splitting the metamodel The layered metamodel archi-
tecture depicted in Fig. 1 is realized by providing one
Ecore file and one Eclipse plugin per metamodel. The
dependencies between the plugins correspond to the
dependencies between the metamodels. To support
this splitting while preserving references between the
metamodels, the code generation was adjusted.

2. Referencing existing Ecore models As one can see in
Fig. 1 (left), some of the Reuseware metamodels de-
pend on the Ecore metamodel (i.e., the Ecore.ecore
file found in EMF) that is modelled in Ecore itself.
We made this metamodel available inside Fujaba by
importing the org.eclipse.emf.ecore.jar that contains
the code generated from Ecore.ecore. This allows us
at least to reference classes from that model in class
diagrams. The templates, however, did not support
referenced classes at all. We modified the templates to
create references to Ecore.ecore, which exists in every
EMF installation, when appropriate.

3. List return types In Ecore, return types of operations
can be multiple (upper bound > 1). This is not sup-
ported by Fujaba and its EMF code generation. Since
we needed this feature, we integrated it by introducing
the stereotype multiple in Fujaba. The extended code
generation sets the upper bound of an operation with

2

that stereotype to *. EMF expects the code of such
operations to return an org.eclipse.emf.util.EList<T>
where T is bound to the return type of the operation.
Consequently, the developer of the story pattern of a
multiple operation has to instantiate, fill and return
such an EList manually using Java statements.

4. String arrays In the case of strings (and other primitive
types) the above situation is better, because Fujaba of-
fers explicit primitive array types (e.g., StringArray) in
its standard library. We extended the code generation
to translate Fujaba’s StringArray into EList<String>.
Similar conversion could be done for the other primi-
tive types but are not needed in our case.

5. Navigating operations as links In story diagrams, we
sometimes needed to navigate a virtual path rather
than a direct reference in a model. Fujaba supports
this through path expressions. The drawback of these
expressions is that they are translated into an inter-
preter call which is only checked at runtime and always
requires a path expression interpreter. We needed path
expressions not for complex expressions, but to use the
result of an operation as path or to access references
of the Ecore metamodel, which are not known by Fu-
jaba (because Ecore.ecore was imported as jar file as
described above). This limited use of path expressions
enabled us to modify the templates to translate a path
expression into an operation call instead of calling the
expression interpreter. Additional code ensures that
the result of the operation is wrapped into an iterator
as expected by the rest of the template.

6. Support for eKeys To improve the serialization of ref-
erences between elements in XMI files, Ecore offers
the eKeys concept. An eKey is essentially a primary
key that identifies a model element (e.g., a name at-
tribute is a good candidate for an eKey). The serial-
ization then uses the eKey to identify cross-referenced
elements—instead of using the positions of the element
which is the default. Using positions can lead to prob-
lems when two XMI files reference each other and one
is changed independent of the other. This is the case
for the composition program GMF editor, where the
layout information (e.g., position of boxes) is saved in
a different file than the model elements. To support
eKeys, we introduced the stereotype ID in Fujaba. If
an attribute is stereotyped with ID, the extended tem-
plates define an eKey based on that attribute.

7. Generate code with bound list parameters A not vital
but nice extension is the binding of type parameters
in lists and iterators. Since Reuseware is developed
in Java5, the generated code produced compiler warn-
ings concerning unbound type parameters. When we
cleaned up the code, we addressed all compiler warn-
ings. One of this was to generate the type parameter
binding, which was not difficult because all required
type information is available during code generation.

To summarize, modifications 1 and 5 seem to be very spe-
cific for the development of Reuseware. All other extensions
however, could be beneficial for other projects as well. It
should be investigated, if and how these modifications can
be integrated into the current Fujaba trunk templates.

2.3 General Development Experience
Despite the use of two different development environments,
the development felt quite integrated. With the help of the
above mentioned build script, changes in the Fujaba models
are quickly updated in the Eclipse workspace. The overall
generation process takes less than 10sec (on 2.33 GHz Intel
Core 2 Duo) and requires only two clicks which is acceptable.

The adjustment of the templates themselves was manage-
able. It was done in a normal text editor. We have to
admit that we did not bother to acquire a proper velocity
template editor which could have eased the template modifi-
cation. Very positive was however that the CodeGen2 tem-
plates could be updated in a running Fujaba, which made
the debugging of changed templates easy.

Template customization was mainly a concern in the first
development phase. Here frequent updates had to be done
to support the desired behavior. Such adjustments however,
became less frequent and no adjustment were required in the
last six month—despite of ongoing development.

2.4 Working with Class Diagrams
Before we used Fujaba, the metamodels of Fig. 1 where de-
veloped directly in Eclipse. For this an open-source Ecore
diagram editor provided by the TOPCASED project3 was
utilised. We compare our experiences using this editor with
using the Fujaba class diagram editor.

The user experience of the Ecore diagram editor was in
general not very good. 1) Often the editor feels unstable
and sometimes a diagram looks different after we saved and
opened it again. Most annoying was the weak support for
automatic layouting such that drawing a straight line always
was a challenging task. 2) Copy and paste was not supported
very well. To perform such task, we used the graphical editor
in combination with the tree Ecore editor that comes with
Ecore itself (and supports copy and paste very well). How-
ever, keeping the such modified model synchronised with the
diagram representation was also not a strength of the dia-
gram editor. At some point, the diagram file could not be
opened anymore and the whole layout was lost. 3) Another
difficulty was the specification of bi-directional associations,
which are modelled as two uni-directional references that
are connected via an opposite relationship in Ecore. The
editor did not provide a facility to specify or represent those
reference together. Thus, specifying a bi-directional asso-
ciation was cumbersome and ugly in the diagram—it was
represented by two lines.

Although the class diagram editing was not the reason to
switch to Fujaba, we were very pleased that the class dia-
gram editor of Fujaba overcame the weaknesses of the Ecore
diagram editor. 1) Using the editor feels very smooth and
stable. Lines between classes are drawn straight automat-
ically when possible. 2) Copy and paste is supported to a
high degree and we were always able to perform a desired
restructuring without having to re-model anything. 3) Bi-
directional associations can be defined in Fujaba naturally.
The EMF code generation translates these associations into
two references in the Ecore model just as we expected.

3
http://www.topcased.org

3

2.5 Working with Story Diagrams
As mentioned, the main motivation to use Fujaba was to
define metamodel operations as story diagrams. As in class
diagrams, the combination of manual and automatic lay-
out gives the user a smooth editing experience and even the
(re)structuring of large diagrams was easy. Although we
tried to model as much as possible, the openness toward
calling Java code directly was vital to continue the work
at places were it was not obvious how to model the func-
tionality best. It was necessary to achieve the integration
with existing code—mainly with the EMF and an OCL in-
terpreter (cf. next section). The cut and paste functionality
was also very useful in particular to refactor story diagrams.

We can make the following improvement suggestions for
story diagrams based on our experience.

1. Calling story diagrams To call one story diagram from
another one is currently only possible by calling the
Java method that is generated from that story dia-
gram. This feels unnatural, since one calls the gener-
ated code (i.e., the Java method) and not the story dia-
gram (i.e., the UML operation) on the modelling level.
Because we wanted to stay on the modelling level, we
avoided to split story diagrams in the beginning and
the diagrams grew unnecessarily large. Having an ex-
plicit mechanism to call story diagrams would improve
the modelling experience here.

2. List return types Fujaba does not support a mechanism
to declare a return type of an operation as multiple.
One can set the return type to FHashSet, but this
does not say anything about the type of the values
that may be contained in the set and thus can not be
properly processed by the EMF code generation. It
is fine to work with the multiple stereotype extension
we presented in Sect. 2.2, but having the capability
directly integrated into Fujaba would be even nicer.

3. Import of existing Ecore models The Reuseware meta-
models depend on the Ecore metamodel (cf. Fig. 1,
left). The metamodel is modelled in Ecore itself (in
an ecore file). As mentioned, we imported this meta-
model by importing the jar file that contains the code
generated from the metamodel. This gave us access
to the metamodel types which was sufficient to model
class diagrams. In story diagrams however, we could
not model edges between instances of classes from the
Ecore metamodel since associations were not extracted
from the jar file. This information is however contained
in the ecore file. Providing an import for ecore files
into Fujaba (the inverse of the EMF code generation)
would greatly enhance the integration of Fujaba and
EMF and would allow people to define story diagrams
for their existing Ecore models.

Recently, we refactored our story diagrams and split them
into smaller diagrams such that each diagram fills one A4
page at maximum when printed. All Reuseware metamodels
together now contain 61 story diagrams (and 73 classes).

4
http://www.eclipse.org/modeling/mdt/?project=ocl

2.6 Tool Interoperability
Through Fujaba’s EMF code generation, the tool integration
worked very smooth. The Ecore models produced by the
code generation could be handled by any other EMF based
tool. As illustrated in Fig. 1, we used EMFText and GMF
to build editors for three of our five metamodels.

In one metamodel (ReuseExtension) we allow the specifica-
tion of OCL expressions as strings. To interpret these ex-
pressions, we use the MDT OCL interpreter4, which works
with Ecore models. We implemented a small Evaluator util-
ity class with static methods that initialize the OCL environ-
ment and use it to evaluate the embedded expressions. We
then use Fujaba’s ability to refer to arbitrary Java classes
and methods inside of story diagrams to call methods on the
Evaluator. In particular, it is used in to evaluate boolean
guard expressions of transitions and to derive values for at-
tribute assignments of an object in a story activity.

3. CONCLUSION
In this paper we reported on the development of Reuseware
with Fujaba. We conclude that using Fujaba significantly
improved the development experience and the quality of the
developed tooling. Thus using Fujaba was the correct deci-
sion. With story driven modelling we were able to increase
the amount of modelling and to improve separation of gen-
erated and hand-written code. We hope that the extensions
of the EMF code generation discussed in Sect. 2.2 and the
story diagram improvements suggested in Sect. 2.5 can help
to improve Fujaba in the future. This paper showed that
Fujaba’s EMF code generation is usable in practice to de-
velop EMF-based tools with Fujaba and to profit from story
driven modelling in EMF.

4. REFERENCES
[1] U. Aßmann. Invasive Software Composition. Springer,

Secaucus, NJ, USA, 2003.

[2] L. Geige, T. Buchmann, and A. Dotor. EMF Code
Generation with Fujaba. In Proc. of the 5th International
Fujaba Days. University of Kassel, 2007.

[3] R. C. Gronback. Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. Pearson
Education, 2009.

[4] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler.
On Language-Independent Model Modularisation. In
Transactions on Aspect-Oriented Software Development
VI, volume 5560 of LNCS. Springer, 2009.

[5] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and Refinement of Textual Syntax
for Models. In Proc. of ECMDA-FA ’09, volume 5562 of
LNCS. Springer, 2009.

[6] J. Johannes. Controlling Model-Driven Software
Development through Composition Systems. In Proc. of
NW-MODE ’09. Tampereen teknillinen yliopisto, 2009.

[7] J. Johannes, S. Zschaler, M. A. Fernández, A. Castillo,
D. S. Kolovos, and R. F. Paige. Abstracting Complex
Languages through Transformation and Composition. In
Proc. of MoDELS’09, volume 5795 of LNCS. Springer,
2009.

[8] Object Management Group. MOF 2.0 core specification.
OMG Document, Jan. 2006. www.omg.org/spec/MOF/2.0.

[9] Object Management Group. Object Constraint Language,
Version 2.0, May 2006. www.omg.org/spec/OCL/2.0.

[10] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
Eclipse Modeling Framework, 2nd Edition. Pearson
Education, 2008.

4

Feature Report: Modeling and Interpreting EMF-based
Story Diagrams

Holger Giese
Hasso-Plattner-Institute at the

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482, Potsdam, Germany
holger.giese@

hpi.uni-potsdam.de

Stephan Hildebrandt
Hasso-Plattner-Institute at the

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482, Potsdam, Germany
stephan.hildebrandt@

hpi.uni-potsdam.de

Andreas Seibel
Hasso-Plattner-Institute at the

University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3

14482, Potsdam, Germany
andreas.seibel@

hpi.uni-potsdam.de

ABSTRACT
In this paper, we report on the current state of develop-
ment of our Eclipse Story-Driven Modeling tools. These
tools are a graphical editor and an interpreter for Story Di-
agrams. The graphical editor provides useful features like
model validation for Story Diagrams, and advanced editing
features like syntax highlighting and code completion for
OCL expressions. The interpreter was initially presented in
[5]. There, we showed that the interpreter enables new ar-
eas of application for Story-Driven Modeling, improves the
flexibility of applying Story Diagrams, but can also improve
the performance of executing Story Diagrams. In the mean-
time, the interpreter evolved. Beside its basic features, a
dynamic pattern matching strategy and compatibility to dy-
namic EMF, we introduced new features like support for
map-typed references, containment links and further opti-
mizations of Story Patterns at runtime.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous; H.1.m [Models
and Principles]: Miscellaneous

Keywords
Story Diagram, Interpreter

1. INTRODUCTION
Story Diagrams were introduced in [2]. They combine UML
Activity Diagrams with graph transformation rules to graph-
ically describe the search for patterns in an object graph and
the creation and deletion of objects and links. They were ini-
tially implemented in the Fujaba CASE tool [8], which can
be used to model Story Diagrams and generate executable
code from Story Diagrams.

In the past years, the Eclipse Modeling Framework (EMF)1

has become the industry standard in the area of model-
driven software engineering based on the Eclipse platform.
There are many tools supporting model-driven software de-
velopment (e.g., openArchitectureWare2), model transfor-
mations (e.g., ATL3) or other activities regarding models
that are based on EMF. This has lead to the situation that
we need to support EMF in our current research projects
in order to be compatible to existing tools. However, we
still needed Fujaba to model Story Diagrams and generate
executable code for further application. Although there are
attempts to minimize this technology gap, e.g., an EMF-
compatible code generator [3] or an EMF adapter for Fujaba
models [7], it still poses an obstacle as we already outlined
in [1] in more detail.

Another central drawback of Story Diagrams in Fujaba is
the static pattern matching strategy, which can be a seri-
ous performance bottleneck. This strategy is determined at
generation time based solely on the information available in
the meta models only. The strategy prefers to-one links over
to-many links to match objects. However, it does not dis-
tinguish between to-many links concerning their exact size.
This information is only available at runtime. Therefore, the
static pattern matching strategy is the same for all possible
instance models.

To overcome these obstacles, we developed an interpreter for
Story Diagrams [5] based on Eclipse and EMF.4 Its main im-
provement is a dynamic pattern matching strategy. This
dynamic pattern matching strategy leverages information
available in the instance models and distinguishes between
to-many links depending on their exact size. The perfor-
mance can vary tremendously between dynamic and static
pattern matching strategies. In [5] the results of a bench-
mark are presented, which showed the effect of different pat-
tern matching strategies concerning the performance of the
pattern matching process. The benchmarks showed that

1http://www.eclipse.org/modeling/emf/
2http://www.openarchitectureware.org
3http://www.eclipse.org/m2m/atl/
4The interpreter and graphical editor for Story Di-
agrams can be downloaded from our update site:
http://www.hpi.uni-potsdam.de/giese/gforge/sam-update-
site/site.xml. Prerequisites are Eclipse 3.5, EMF 2.5, GMF
2.2, Xtend 0.7 and OCL 1.3.

5

Fujaba-generated Story Diagrams with non-optimal pattern
matching strategies can be much slower than the interpreter
with dynamic pattern matching strategy.

Another promising feature of the interpreter is the compat-
ibility to dynamic EMF. Dynamic EMF omits generated
code. Instead, dynamic EMF objects are instances of a com-
mon class, DynamicEObjectImpl. These instances can be
populated with data from, e.g., an XMI file or a database.
Accessing this data is only possible via the reflective EMF
API, which is also implemented by generated code. While
the interpreter uses only this API, it is completely trans-
parent whether dynamic objects or generated code is used.
Because no code generation of the meta models is required,
meta models can be exchanged or modified easily and the
code that uses it does not need to be adapted. This is even
possible at runtime. An interesting observation of the per-
formance evaluation is, that there is virtually no difference
in execution times if the interpreter works on dynamic EMF
objects compared to using generated code.

The interpreter is already used in several projects at our
research group. Among them is a model transformation
system based on Triple Graph Grammars [4] and a model-
driven configuration management system [6]. The model-
driven configuration management system uses the interpreter
extensively, e.g., Story Diagrams are used to generate Story
Diagrams. Thus, we are able to configure Story Diagrams
at runtime, generate the configured Story Diagrams and in-
stantaneously execute the configured Story Diagrams with
the interpreter.

In this paper, we report on additional improvements and
features that come with the new version of the Eclipse SDM
tools. The Story Diagram interpreter and the graphical ed-
itor now provide an extension mechanism, that can be used
to integrate interpreters and editing features for arbitrary
textual expression languages. These can be used to express
constraints or actions. At the moment, OCL is the only sup-
ported expression language. Furthermore, the interpreter
natively supports EMF’s map-typed references. These are
comparable to qualified associations known from Fujaba and
allow to define mappings between key and value objects. Na-
tive support for this feature improves performance because
map-specific access operations are exploited. So-called Con-
tainment Links can now be used to model navigation paths
between a container object and its direct and indirect el-
ements. Here it is not necessary to know in advance how
many levels of indirection lie between the container and the
element. Of course, both kinds of links can also be used in
the graphical editor. In addition to that, existing features
like the pattern matching algorithm and the validation fea-
ture of the graphical editor were improved and extended.
In the sequel of this paper, we briefly introduce our Eclipse
SDM tools in Section 2. In Section 3, the improvements and
new features of the interpreter and the graphical editor are
described. The paper closes with an outlook on future work
in Section 4, especially on the features that are currently
missing.

2. ECLIPSE SDM TOOLS
Core of our Eclipse SDM tools is the Story Diagram inter-
preter for EMF-based Story Diagrams. It consists of several

components: The interpreter itself, which is responsible for
traversing the overall Story Diagram starting from the initial
node and invoking the other components; the variables man-
ager, which is the central store of variables and their values;
additional interpreters for expression languages, that can be
plugged into the Story Diagram interpreter via an exten-
sion mechanism to allow execution of expressions written in
that language; and the Story Pattern Matcher, that executes
a single Story Action Node. The pattern matcher tries to
find matches for the Story Pattern using a dynamic pattern
matching strategy, and creates and deletes objects if a match
was found. The matching process is explained in detail in
[5].

The interpreter provides a notification mechanism, which is
based on EMF’s notification mechanism. By attaching a
notification listener to the interpreter and setting a debug
flag, notifications about all relevant execution steps can be
received. This allows for example to implement a visual
debugger for Story Diagrams. In the context of a model-
driven configuration management system [6], notifications
were leveraged for incremental Story Diagram application.
The notification mechanism is used to profile instances that
were traversed during the Story Diagram application. If
a Story Diagram is matched successfully, the traversed in-
stances are stored together with the Story Diagram. When-
ever these instances change, we know that the Story Dia-
gram has to be applied again.

The interpreter is complemented by a graphical editor for
Story Diagrams based on the Graphical Modeling Frame-
work (GMF)5. Using GMF, graphical editors for EMF-based
models can be created with comparably little effort. These
editors already include basic features like Copy&Paste, print-
ing or layouting.

Furthermore, the graphical editor allows to check a model for
correctness and indicate modeling errors to the user. EMF
provides an extensible validation mechanism for that pur-
pose. Plug-ins can be integrated into this validation mecha-
nism by realizing some extension points. They can register
a validator for a specific meta model. If an instance of that
meta model is validated, the validator is invoked. The val-
idation can be triggered in the graphical editor (but also
in the tree editor generated by EMF) or from Java code.
Unfortunately, the validator has to be implemented in Java,
which makes specifying simple validation rules rather cum-
bersome.

To ease the definition of validation rules, we use Xtend’s
Check6 language which is a constraint language similar to
OCL. Xtend provides a generic validator that can be used to
execute Check constraints, which are declared in a text file.
This allows to define the constraints, that should hold on
a valid Story Diagram in a concise and easily maintainable
way. An exception is the validation of textual expressions
because this requires a more thorough analysis of the Story
Diagram. For example, in order to check an OCL expres-
sion, the names and types of all available variables must be
acquired first. This is very difficult to express in Check.

5http://www.eclipse.org/gmf/
6Xtend is part of Xpand:
http://www.eclipse.org/modeling/m2t/?project=xpand

6

2.1 Expressions
find match

[teacher.teaches->size() <= 100]

student

:Student

teacher

:Teacher

[self.profession = 'Physics']

<<create>>

subject

:Subject

title := teacher.profession

student

:Student

teacher

:Teacher

[self.profession = 'Physics']

<<create>>

subject

:Subject

title := teacher.profession

teaches<<create>>
passedSubjects

<<create>>
passedSubjects

teaches

constraint of an object

constraint of the story pattern

attribute assignment

Figure 1: Expressions are used in many places to
express constraints, queries and actions.

Story Patterns are a powerful mechanism to express graph
patterns and graph transformations. However, some kind of
constraints or actions can be expressed easier with a textual
language. The interpreter and the Story Diagram editor pro-
vide an extension mechanism that allows other plug-ins to
integrate textual expression languages. These plug-ins must
provide at least an interpreter for their expression language.
This interpreter is invoked by the Story Diagram interpreter.
In addition, they can provide a custom Source Viewer im-
plementation, that includes features like syntax highlighting
and code completion (see Section 3.5 for more information).
For OCL such an additional interpreter is already included.
This is a new feature. Formerly, the evaluation of OCL ex-
pressions was directly integrated into the interpreter.

Fig. 1 shows several examples where constraints can be used.
If they are used on a Story Pattern object (e.g., the teacher),
the constraint is evaluated as soon as a possible match was
found. This implies that other Story Pattern objects might
not be matched at this time. Therefore, references to them
should not be used in such constraints. Instead, these con-
straints should be attached to the overall Story Pattern, so
they are evaluated after a match for the whole pattern was
found. If used as constraints, expressions have to return a
boolean value. However, they can also be used as queries to
return an arbitrary value. This is the case with the attribute
assignment of the subject. The expression is evaluated and
its value is assigned to the title attribute. Within an expres-
sion, all created variables of the Story Diagram are available,
e.g. the teacher in the attribute assignment of subject.

print literal

de.hpi.sam.helpers.Helpers.println("a")

(a)

(b)
Figure 2: An Expression Activity node that calls
an external helper operation, in concrete (a) and
abstract (b) syntax.

Another place are Expression Activity Nodes (see Fig. 2(a)),
which are comparable to Fujaba’s Statement Activities. They
contain an expression, that is executed but whose return

value is ignored. It is intended to use expressions with side
effects here to perform arbitrary actions.

While OCL is free of side effects and the integration of exist-
ing scripting languages, like Lua, PERL, Python, etc. poses
some difficulties, we decided to integrate another kind of ex-
pression language where the expressions are directly mod-
eled as trees instead of a text string. Fig. 2(b) shows an
example. These Call Action Expressions provide basic func-
tionality to declare literals and variables, reference variables,
create new objects and, most importantly, invoke arbitrary
Java methods via reflection. Call Action Expressions can
be nested and mixed with string expressions. In Fig. 2(b)
a Method Call Action is used to invoke the method. The
parameter ”a” is provided by a Literal Declaration Action.
A major advantage of Call Action Expressions is, that they
can be evaluated very quickly. It is not necessary to parse
a string. In contrast, using OCL expressions has a notable
impact on the performance because they have to be parsed
first.

3. NEW FEATURES OF THE ECLIPSE SDM
TOOLS

In this section, the new features and improvements of the
Story Diagram interpreter and graphical editor are presented.

3.1 Improved Matching Algorithm
The Story Pattern Matcher maintains lists of the bound
and unbound Story Pattern objects, checked and unchecked
links, and bound instance objects of a Story Pattern. When
objects are bound or links are checked, objects are moved
between these lists. Each time, after finding a match for a
single Story Pattern object, these lists are copied and put on
a stack. If later on a match turns out to be wrong, the stack
is reduced. These copy operations are quite time consuming.
Therefore, the algorithm was improved. Instead of copying
the lists, transactions are created and put on a stack. Each
time a match was found or a link was checked, the appro-
priate object is moved between the lists and a transaction
is created. If the stack is reduced the transactions are sim-
ply rolled back. Furthermore, the lists were replaced by
hash sets, which offer a higher performance especially for
the contains operation. In a simple benchmark, these two
improvements led to an increase of the pattern matching
performance of about 100%.

3.2 Enhanced Story Patterns
A special feature of the Story Pattern Matcher is the analysis
phase preceding the execution. Its purpose is to sort the
links and objects and introduce new links into the Story
Pattern to make the pattern matching process more efficient.

The introduction of new links is shown in Fig. 3. The student
is a bound object (indicated by the grayed out type of the
object). The pattern matching starts here to find matches
for the other object. The teaches link leads from the teacher
to the student but the reference in the meta model is a bidi-
rectional reference. The interpreter notices that and creates
an opposite link.7 The same is done for containment refer-
ences. EMF provides the eContainer() operation to get the

7Of course, the user can explicitly model both directions but
the analysis phase makes this unnecessary.

7

teacher

:Teacher

student

:Student

find teacher

student

:Student

teacher

:Teacher

teachesteaches

taughtBy

Figure 3: Another link is inserted that represents
the opposite link of a bidirectional reference.

container object of an object. Suppose, the teaches reference
is a unidirectional containment reference. The teacher can
be easily matched by calling eContainer() on the student.
Note, that these additional links are inserted at runtime and,
therefore, are not visible in the graphical editor and thus to
the user.

3.3 Map-Typed References

Figure 4: A meta model containing a map entry.

Sometimes, mappings from keys to values are required to
model qualified associations, for example. EMF provides
so-called Map-Typed References, references to map entries,
which are parameterized with key and value types. These
references allow mapping keys to values. This is shown in
Fig. 4. The class Container has a map, that maps KeyEle-
ments to ValueElements. To realize this, a helper class with
instance type name java.util.Map$Entry must be created. It
has a key and a value attribute and generic type parameters.
The elements reference of the container is a to-many con-
tainment reference to the MapEntry, which is parameterized
with the KeyElement and ValueElement types. EMF’s code
generator recognizes this pattern and creates a map instead
of a list.

This can be modeled in the same way in a Story Pattern,
which is shown in Fig. 5. The map entry is a distinct ob-
ject in the Story Pattern. The value object can be easily
obtained by querying the map because the key object is al-
ready bound, here. However, now the interpreter does not
exploit the fact that this is a map. The interpreter rather
treats it as a list of map entries, i.e. it examines all map
entries and checks for each entry whether its key is the key
object. Furthermore, the MapEntry object is not relevant to
the user of the Story Diagram. It rather makes the diagram
more complicated. Therefore, we introduced a special kind
of link, a Map Entry Story Pattern Link.

key

:KeyElement

mapEntry

:MapEntry

this

:Container

match key and value

this

:Container

key

:KeyElement

value

:ValueElement

mapEntry

:MapEntry

value

:ValueElement
value

key

elementselements

key

value

Figure 5: Modeling a map entry as a distinct object
in the Story Pattern.

key

:KeyElement

match key and value

this

:Container

key

:KeyElement

value

:ValueElement

value

:ValueElement

this

:Container

elementselements

Figure 6: Modeling a map entry as a Map Entry
Story Pattern Link.

Fig. 6 shows the same case like Fig. 5 but this time the
map entry is hidden by a Map Entry Story Pattern Link.
When this type of link is used, the interpreter will exploit
the fact, that there is a map and simply query it for the
value belonging to the key object. Of course, this is not the
best possible solution because it is a work around. A better
way would be if EMF would provide a more elegant way to
model maps.

3.4 Containment Links

match element

container

:Container

element

:Element

element

:Element

container

:Container

Figure 7: A Containment Link indicates that the
Element should be contained directly or indirectly
in the Container.

Ordinary Story Pattern links specify which reference from
the meta model they are representing. So the interpreter
only needs to follow the corresponding instance links to find
matches for unbound objects. However, sometimes it is not
known how the unbound objects are connected to a bound
root object. It may be unknown, via which reference they
are connected or how many levels of indirection are in be-
tween. If it is at least known that objects are connected via
containment associations, Containment Links (see Fig. 7 can
be used to model this case. The Containment Link indicates
that the Element is directly or indirectly contained in the
Container. This feature can be implemented very easily by

8

using the eAllContents() operation of EMF’s reflective API.
This operation returns a tree iterator, that returns all direct
and indirect children. The opposite direction is also possi-
ble, i.e. the element is bound and a match for the container
is sought. In this case, the interpreter climbs the contain-
ment hierarchy upwards by calling eContainer() repeatedly
until a match was found or the top container was reached.

3.5 Story Diagram Editor Improvements
A major improvement of the graphical Story Diagram editor
is the support for code completion and syntax highlighting
for textual expression languages. This is useful for users
that are unfamiliar with the syntax of a certain language.
Technically, this feature is realized by providing custom im-
plementations of org.eclipse.jface.text.source.ISourceViewer
and implementing a small interface that allows the graphi-
cal editor to access this custom ISourceViewer and get and
set the text of the viewer. A custom implementation allows
to provide syntax highlighting and other visual annotations,
code completion and content assist features. For OCL, we
provide basic syntax highlighting and code completion. If a
plug-in does not provide an own implementation, a default
source viewer is used. Of course, advanced editing features
are not available in this case.

Apart from that, the graphical editor now supports all the
new types of links presented in the preceding sections. Fur-
thermore, the validation rules were largely extended to de-
tect a lot more modeling errors. These extensions stem
mostly from experience gathered while using the graphical
editor. Also a simple launch dialog was added, so the user
can directly execute a Story Diagram. Only a meta model,
an instance model (in form of an XMI file), and the Story
Diagram are required.

4. OUTLOOK
The interpreter solves our two most urgent problems. The
dynamic pattern matching strategy leads to a better aver-
age and worst-case performance. The interpreter offers a
tight integration with EMF and is compatible to dynamic
EMF, which improves the flexibility of Story Diagrams and
their application. The additional features of the interpreter
in combination with the graphical editor and its features
improve the usability of Story Diagrams within Eclipse, es-
pecially for people unfamiliar with Story Diagrams.

However, there are still limitations and space for improve-
ments. A major disadvantage of the interpreter, compared
to Fujaba, is the lack of integrating arbitrary Java code di-
rectly into Story Diagrams, because no interpreter is avail-
able. Currently, we employ expression languages to over-
come this drawback. These are either textual languages or
basic tree based models (Call Action Expressions, see Sec-
tion 2.1), that can be used to express conditions and queries,
and perform actions. However, OCL is the only supported
textual language, yet. Another limitation is that Story Di-
agrams need to be linked into an operation definition of a
class of a meta model. This limits the dynamic capabilities
because the operation signatures must be defined a-priori
and are thus fixed. Therefore, we plan a less restricted con-
cept. The idea is to hand over a dynamic start-graph, which
does not need to fit into the signature of the related method.

In addition, we plan to extend the interpreter with basic fea-
tures known from Fujaba. For example, negative application
conditions are not supported, yet. Instead, OCL constraints
have to be used for this purpose. Other missing features
are path expressions, optional objects, sets of objects and
syntax checks of OCL expressions. Another problem is the
mentioned impact of evaluating OCL expressions on the per-
formance. A possible solution could be to parse the expres-
sion beforehand and store the expression’s abstract syntax
tree in the Story Diagram.

Acknowledgements
We like to thank all students that helped implementing and
improving the Story Diagram interpreter and the graphical
editor. These are in particular Mark Liebetrau, Sebastian
Wätzoldt and Christian Lück.

5. REFERENCES
[1] B. Becker, H. Giese, S. Hildebrandt, and A. Seibel.

Fujaba’s Future in the MDA Jungle - Fully Integrating
Fujaba and the Eclipse Modeling Framework? In
Proceedings of the 6th International Fujaba Days, 2008.

[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A new Graph Rewrite Language based on
the Unified Modeling Language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764, pages 296–309. Springer Verlag, 1998.

[3] L. Geiger, T. Buchmann, and A. Dotor. EMF Code
Generation with Fujaba. In 5th International Fujaba
Days, Kassel, Germany, October 2007.

[4] H. Giese and S. Hildebrandt. Efficient Model
Synchronization of Large-Scale Models. Technical
Report 28, Hasso Plattner Institute at the University of
Potsdam, 2009.

[5] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In T. Magaria, J. Padberg, and G. Taentzer,
editors, Proceedings of the Eighth International
Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2009), 2009.

[6] H. Giese, A. Seibel, and T. Vogel. A Model-Driven
Configuration Management System for Advanced IT
Service Management. In Proceedings of the 4th
International Workshop on Models@run.time at the
12th IEEE/ACM International Conference on Model
Driven Engineering Languages and Systems (MODELS
2009), Denver, Colorado, USA, October 2009. accepted.

[7] J. Johannes. Letting EMF Tools Talk to Fujaba
through Adapters. In Proceedings of the 6th
International Fujaba Days 2008, 2008.

[8] T. Klein, U. A. Nickel, J. Niere, and A. Zündorf. From
UML to Java And Back Again. Technical Report
tr-ri-00-216, University of Paderborn, Paderborn,
Germany, 1999.

9

Specification of Triple Graph Grammar Rules
using Textual Concrete Syntax

Mirko Seifert
Lehrstuhl Softwaretechnologie

Fakultät Informatik
Technische Universität Dresden

Dresden, Germany
mirko.seifert@tu-dresden.de

Christian Werner
Lehrstuhl Softwaretechnologie

Fakultät Informatik
Technische Universität Dresden

Dresden, Germany
s7436532@inf.tu-dresden.de

ABSTRACT
Triple Graph Grammars provide a powerful mechanism to
specify bidirectional model transformations. Complex trans-
formations or synchronisation scenarios can be described us-
ing declarative rules. However, the specification of these
rules is often hard, because rules are specified at the ab-
stract syntax level of the involved models. Furthermore,
rules are mostly visualised and edited graphically. This is
very feasible for modelling languages that have a graphical
syntax, but for textual modelling languages a gap between
the languages and the rules is introduced. In addition, large
rules written in graphical syntax can easily become confus-
ing and hard to read.
To tackle these problems, we propose to automatically ex-
tend the textual syntax for the involved models and use it
to specify rules. We explore the benefits and drawbacks of
rules that are based on concrete textual syntax.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Design

Keywords
triple graph grammars, model transformation, textual syn-
tax

1. INTRODUCTION
Triple Graph Grammars (TGGs) [14] have been first in-
troduced by Andy Schürr in 1994 as an extension to pair
grammars. Various research papers have shown their ap-
plicability in different domains. For example, TGGs have
been employed to perform model transformations [11], tool
integration [12], and incremental model synchronisation [4].
TGGs were not only successful from an academic perspec-
tive, but have also started to gain more widespread use in the
industry. This is mainly reflected by the Query View Trans-
formations (QVT) [13] standard which shares concepts with
TGGs (see [5] for a detailed comparison).

Current implementations (e.g., Fujaba1 or MOFLON2) pro-
vide facilities to specify TGG rules and execute them. Be-
sides debugging, the specification of these rules is the most

1http://www.fujaba.de
2http://www.moflon.org

complicated part when setting up a new TGG transforma-
tion. Given that a rule designer is familiar with the concepts
of TGGs and in particular the semantics of the different el-
ements of a rule (e.g., required and create nodes and links),
the specification is still not straight forward.

From our perspective, one of the main issues is, that rules
are defined at the level of abstract syntax. Instead of using
the concrete syntax of the models that are transformed or
synchronised, rule designers must refer to the abstract ele-
ments of the models (i.e., the meta classes). While this may
not sound so complicated at first glance it can turn out to
be quite cumbersome. Tiny bits of concrete syntax do often
correspond to a large graph if represented in abstract syntax.
A lively example are abstract representations of expressions,
where simple terms turn into large expression trees.

In addition, rules are usually expressed using graphical syn-
tax. While this has clear advantages in some cases it can
imply problems in others. If TGGs are used to transform
models that have a textual syntax on their own (e.g., tex-
tual Domain-Specific Languages (DSLs)), the graphical rule
syntax creates a gap between the subject and the specifi-
cation of the transformation. Transformation designers are
intrinsically familiar with the concrete syntax of their lan-
guages. Thus, rule specification gets easier the closer it is to
the subject languages.

Being at the heart of TGG-based model transformation and
synchronisation, the rule specification is an important issue
to pursue the adoption of the TGG formalism. In this paper,
we will therefore present how the concrete textual syntax of
modelling languages can be used to automatically obtain
a TGG rule specification language having a syntax that is
close to the original one. The approach will be presented
based on a running example (Sect. 2). After explaining the
syntax extension (Sect. 3) an explanation of the rule extrac-
tion follows (Sect. 4). We compare our work with related
publications in Sect. 5 and draw conclusions in Sect. 6.

2. RUNNING EXAMPLE
Within this paper we will use an example from [10] to illus-
trate our ideas. The example involves a transformation be-
tween petri nets and toy train models. The petri nets consist
of nodes, arcs and tokens. Nodes can be either transitions or
places. Tokens are assigned to a place. The corresponding
meta model is shown in Fig. 1.

10

Figure 1: Meta Model for Petri Nets

The toy train models (cf. Fig. 2) are called projects and
contain components. Components can be either switches
or tracks. Connections can be drawn between ports, where
each component can have multiple in and out ports. Trains
are assigned to a component denoting that the train is cur-
rently located on this track or switch.

Even though the graphical notation of petri nets is used
more widely, we will express instances in textual syntax.
For the toy train models, being a typical example for DSLs,
the textual syntax may be a good choice, because it is easy
to define and tool support can be generated automatically.
Other transformations that involve textual languages (e.g.,
programming languages such as Java) are most suitable for
the textual rule specification. Nonetheless, we will use the
simple transformation between petri nets and toy trains to
sketch our general ideas.

Note that textual syntax should not be considered as a con-
tradiction to graphical syntax here. Rather, it is an alter-
native one. Both types can be used in combination, for
example to version control or exchange models in textual
form (compare [1]) and edit them in graphical syntax.

Figure 3 shows two example models. To define these syn-
taxes and to generate tool support we used EMFText [8],
but any other textual concrete syntax mapping tool would
suffice too. The two example languages are available from
the EMFText Syntax Zoo3.

The transformation between these two models will map the

3http://www.emftext.org/zoo

Figure 2: Meta Model for Toy Trains

Figure 3: Example Toy Train Project and Petri Net
in Concrete Syntax

toy train models to their respective dynamic semantics ex-
pressed in terms of a petri net. The rules that specify this
transformation have been taken from [10]. Before we show
what the textual variants of these rules look like, we shortly
sketch how the textual syntaxes of the involved languages
can be automatically extended to obtain the rule syntaxes.

3. LANGUAGE EXTENSION
One of the problems mentioned before is that TGG rules are
usually specified at the level of abstract syntax. To allow for
a more intuitive specification, we want to use the concrete
textual syntax of the languages involved in the transforma-
tion. More specifically, we want to extend the involved lan-
guages with annotation facilities to enable the specification
of rules. The general approach used to achieve this is shown
in Fig. 4.

Basically the meta models of both languages involved in a
transformation are extended with annotation concepts de-
fined in an annotation meta model. Instances of the enriched
meta models can contain annotations, which are evaluated
by a rule derivation algorithm. Then, a TGG rule is created
from each pair of models. As the model instances shall be
written in concrete textual syntax, the syntax for both lan-
guages must be also extended (not shown in Fig. 4). One
may also consider to use annotation mechanisms that are
already available in the involved languages. However, this
restricts the rule specification to languages, which do have
such mechanisms, whereas our approach is applicable for
every language.

MM of L2MM of L1

MM of L1 with
Annotation Concepts

MM of L2 with
Annotation Concepts

Annotation MM

Annotated
Model

TGG Rule

Rule
Derivator

Annotated
Model

instance-of instance-of

Figure 4: Rule Specification based on Language Ex-
tension

11

PetriNet Arcarcs

0..*

PetriNet

Arc

RefArcsarcs

0..*

a)

b) c)

PetriNet

Arc

RefArcs

AnnotableArc

IAnnotation
(from rule_derivation)

arcs

0..*

arc

1

Figure 5: Excepts from the original (a), the extensi-
ble (b) and extended Meta Model (c) for Petri Nets

The annotations added to the meta models, are specific to
rule specification. For example, annotations tag elements
that correspond to each other. Elements must also be typed
as being required or created. Furthermore, constraints that
control the rule application need to be expressed.

3.1 Meta Model Extension
To extend a meta model it needs to be either designed for
extensibility or, if this is not the case, refactorings can be
applied. In [9] details about the requirements for extensible
meta models and the respective refactorings can be found.
The paper refers to Ecore models, but the principles can be
applied to other metamodelling languages as well.

Briefly said, the extensibility is established by using dedi-
cated abstract classes to type each reference. By doing so,
new types can be attached to the reference by extension
of these abstract classes. In addition, all attributes having
primitive types are replaced by type wrappers. This wrap-
ping is needed to raise primitive types to the level of complex
types. Thus, the same mechanism (references with abstract
type) can be used to allow for arbitrary extensions.

As an example, consider the (non-extensible) meta model
shown in Fig. 1. Here, the extensibility can be established
by replacing the reference arcs between PetriNet and Arc

with a reference to a new abstract class RefArcs, being a
superclass of Arc. By doing so, new subclasses of RefArcs

can be added, which allows arbitrary extensions.

Figure 5 shows an excerpt from the meta model before and
after this refactoring (Note: attributes were omitted). In the
original meta model (a) the reference arcs directly refers to
class Arc, whereas in the extensible version (b) the reference
refers the the abstract class RefArcs. In (c) an new subclass
AnnotableArc is introduced, which contains an ordinary arc
and inherits from the annotation concept IAnnotation. This
class is imported from our TGG annotation meta model.

We will use these annotations to add information to mod-
els that allow the derivation of rules. Annotations do have
identifiers and a type, which is shown in Fig. 6.

When specifying rules, every meta class of the involved lan-
guages can potentially be annotated. Thus, all meta classes
need to be extended to support our rule annotations. There-
fore, for each existing meta class the extension sketched in
Fig. 5 is performed. A new subclass is created that inher-
its both from the reference type and IAnnotation. Having
done this for both meta models, we obtain support for anno-
tations. Note that this extension can easily be automated.

Figure 6: Meta Model for Annotations

3.2 Syntax Extension
After extending the meta models to capture rule annota-
tions, the concrete syntax must be extended along the same
path. For each new meta class appropriate syntax must
be defined. As most other textual syntax tools, EMFText
allows to define syntax per meta class. Thus, to obtain a
syntax definition for the meta model with annotation sup-
port, the original syntax is imported and new rules, one for
each new meta class, are added. The new syntax rules ba-
sically prefixes the original syntax (e.g., the one defined for
class Arc) with syntax elements for the attributes of class
IAnnotation as shown in Listing 1.

Arc ::= "arc" (name[IDENT])?
source[IDENT] "->" target[IDENT];

AnnotableArc ::= (identifier[IDENT])+
(type[TYPE])? arc;

Listing 1: Syntax Rules for Arc and AnnotableArc

The syntax extension is identical for all new meta classes and
can thus be also performed automatically. Equipped with
two extended meta models and two matching syntax defini-
tion, EMFText can be used to generated tool support (e.g.,
parsers and editors) for the two new languages. To sum-
marise, we can automatically extend both the meta model
and the syntax of the languages involved in a transformation
and generate tool support. Thus, one can start specifying
rules in concrete textual syntax without any manual effort.

4. RULE DERIVATION
Up to now, we have shown how to automatically derive lan-
guages with annotation support. We have also sketched,
what these annotations look like, but the more interesting
issue is how to derive TGG rules from annotated models.
Before giving details of the rule derivation lets shortly reca-
pitulate the elements of TGG rules.

TGG rules have a left-hand and a right-hand side. Both
sides are graphs and therefore consist of nodes and links.
Nodes can be either correspondence nodes or model element
nodes (i.e., they refer to a meta class of one of the involved
languages). Links connect nodes within rules. Since TGG
rules are usually non-deleting, the two sides are often merged
into one graph by tagging the new nodes (i.e., the ones that
are present at the right-hand side only) as create nodes,
which is often denoted by ++. All other nodes are marked
as required nodes. In addition TGG rules can contain con-
straints, assignments or forbidden nodes. However, for the
scope of this paper, we will not deal with these concepts.

We derive one rule from each pair of annotated models. One
could also consider, the rule derivation as abstraction, be-
cause some parts of the pair are not included in the rule. To
perform rule derivation, we execute the following steps:

12

• For each annotated model element, create a rule node

• For each set of model elements that are annotated with the
same identifier, create a correspondence node and create
links connecting the new correspondence node with the
respective rule nodes

• Mark all rule nodes as create where the corresponding
model element is annotated as create element

• For each pair of model elements that is connected by ex-
actly one reference create a link between the respective
rule nodes

• For each pair of model elements that is connected by mul-
tiple references use the references specified in the annota-
tion and create links between the respective rule nodes

To give an example for the rule derivation process, consider
Fig. 7 (taken from [10]). The rule specifies how to map
tracks to petri net components. Each track is mapped to an
arc, its in port is mapped to a place, while its out port is
mapped to a transition in the petri net. The prerequisite for
applying this mapping is an existing correspondence between
the project and the petri net.

The very same rule can be specified in textual syntax using
the pair of models shown in Fig. 8. The correspondence
nodes are highlighted in bold font face. Black font indicates
required correspondence node, whereas create nodes a shown
in green font and followed by ++.

By looking at Fig. 8 it is easy to see, how the nodes in
the textual syntax and the nodes in the graphical repre-
sentation relate to each other. Basically each box (in the
graphical syntax) can be found as an annotated element (in
the textual syntax). For example, @Pr2PN project is the
annotated node that triggers the creation of the :Project

node in the upper left corner of the TGG rule in Fig. 7. The
same applies to @Pr2PN net, which causes the creation of
the :PetriNet node. The annotation Pr2PN itself is trans-
formed to the correspondence node :Pr2PN and the two links
connecting :Pr2PN with :Project and :PetriNet.

This part of the rule derivation is performed by steps 1 and 2.
Applying both steps to all other annotated elements (i.e., the
ones tagged with Cp2PN, IP2Pl, and OP2Tr) yields all boxes
contained in the rule shown in Fig. 7. In addition, links
between the correspondence nodes and the domain nodes
have been created. However, the nodes are not yet typed

:Pr2PN:Project :PetriNet

:IP2Pl

:Cp2PN

:OP2Tr

:Track

:In

:Out

:Place

:Arc

:Transition

domain: toy train domain: petri netcorrespondence

++++

++

++

++ ++
++

++

++

++++

++

++ ++

++

++

Figure 7: Visual Rule for Mapping Tracks

Figure 8: Textual Rule for Mapping Tracks

as required or create. This is done in step 3 of the rule
derivation procedure using the type of the annotation.

Now, step 4 takes care of the links that connect elements in
a single domain. For example, the link between :Project

and :Track has not yet been established. To obtain these
links, the rule derivation must analyse the relations between
the elements in each textual model. If model elements are
connected by references, links need to be created in the TGG
rule. If elements are connected by a single reference only,
one rule link is obtained. If elements are connected by mul-
tiple references the rule must be refined to specify which
references are important for rule derivation. This may be
either all references or only selected ones (step 5).

As mentioned in the introduction, we do not handle con-
straints on attributes yet. Possibly, one could automati-
cally create equality constraints if attribute values (e.g., the
names) of elements match. However, this not feasible for all
types of attributes. For string-typed attributes many pos-
sible values exist, which makes it easy to choose two equals
values (e.g., names). For boolean attributes the case is dif-
ferent, because there are only two possible values. Thus,
wrong constraints may be derived, because values match
even though this is not meant to express equality. Evaluat-
ing this is subject to future work.

5. RELATED WORK
Visual rules were already used to specify transformations in
the early papers that introduced TGGs [14]. Later, different
notations based on object-diagrams were presented that in-
tegrated more smoothly with UML modelling [6]. However,
the specification was still based on abstract syntax. While
applying TGGs to more and more problems, the difficulty
of specifying TGG rules (complexity, readability, reuse) has
been discovered and studied. In [2], Triple Patterns a com-
pact and visual notation has been proposed. The authors
share the idea of a more compact representation of TGG
rules, but use a visual specification which is still based on
abstract syntax. This is in contrast to our work, which fo-
cuses on textual concrete syntax.

Other works, that are based on concrete syntax [15, 3] target
specification by example. Here, the syntax of the involved
languages can be used to specify pairs of models. Based on
these pairs, the goal is to derive TGG rules that match the
transformation semantics stated by the two models. In other
words, rules are derived, which produce one of the models
if using the other one as input. This approach is similar to
ours regarding the use of concrete syntax, but differs in the
way rules are defined. While we explicitly state the corre-
spondence part of the rules using annotations, specification

13

by example approaches try to derive this part automatically.
While this may in principle yield the same result, more ex-
ample pairs may be needed in the latter case. In addition,
transformation designers need to check the derived rules to
make sure their expectations are met, while our approach
allows to state the expected correspondences beforehand.

6. CONCLUSIONS
In this paper we have shown how to use textual syntax to
specify TGG rules. Based on the concrete syntax of the in-
volved languages, we derived extended languages providing
annotation support. This extension can be performed fully
automatic, which enables the application of our approach
to arbitrary textual modelling languages. The gathered an-
notation support was then employed to add additional in-
formation to textual models. Namely, the correspondence
between two models was expressed. In contrast to specifi-
cation by example, which does also use pairs of models to
derive rules, we do explicitly state how models correspond
instead of deriving this relation.

In the course of this work we came to the conclusion that
rule specification based on annotations should be applied to
graphical syntaxes as well. By doing so, one could annotate
the models in their natural syntax. For example, rules that
involve both a graphical language and a textual one (e.g.,
UML to Java transformations) could be specified using an-
notations in the graphical syntax (on the UML side) and in
the textual syntax (on the Java side). This would allow to
use the concrete syntax of the involved languages instead of
operating at the abstract syntax level. However, the speci-
fication and extension of graphical syntax is not understood
as well as its textual counterpart.

The work presented here, yields different open questions.
First, the completeness of the rule derivation has to be
shown. It is not yet clear, whether all meaningful TGG
rules can be specified using the presented annotations. We
managed to specify all the basic rules given in [10], but there
may be other rules, that can not be specified yet. However,
the example rules indicate that the annotation-based speci-
fication can be very compact and easy to read if textual lan-
guages are subject to TGG transformations. Second, more
transformation scenarios need to be conducted to evaluate
the practical applicability of our approach. In particular the
integration into one of the tools supporting TGGs could give
more insights about annotation-based rule derivation.

Acknowledgments
This research has been co-funded by the European Commis-
sion within the FP6 project MODELPLEX #034081 and by
the German Ministry of Education and Research within the
project SuReal. We are also very grateful to Jendrik Jo-
hannes who encouraged this work and contributed a lot of
ideas in our discussions.

7. REFERENCES
[1] J. Billington, S. Christensen, K. van Hee, E. Kindler,

O. Kummer, L. Petrucci, R. Post, C. Stehno, and
M. Weber. The Petri Net Markup Language:
Concepts, Technology, and Tools. In Applications and
Theory of Petri Nets 2003: 24th International

Conference, pages 1023–1024, Eindhoven, The
Netherlands, June 2003.

[2] J. de Lara, E. Guerra, and P. Bottoni. Triple Patterns:
Compact Specification for the Generation of
Operational Triple Graph Grammar Rules. In K. Ehrig
and H. Giese, editors, GTVMT’07, volume 6, 2007.

[3] I. Garćıa-Magariño, J. J. Gómez-Sanz, and
R. Fuentes-Fernández. Model Transformation
By-Example: An Algorithm for Generating
Many-to-Many Transformation Rules in Several Model
Transformation Languages. In R. F. Paige, editor,
ICMT, volume 5563 of LNCS, pages 52–66, 2009.

[4] H. Giese and R. Wagner. Incremental Model
Synchronization with Triple Graph Grammars. In
Hartman and Kreische [7], pages 543–557.

[5] J. Greenyer and E. Kindler. Reconciling TGGs with
QVT. In G. Engels, B. Opdyke, D. C. Schmidt, and
F. Weil, editors, MoDELS, volume 4735 of LNCS,
pages 16–30. Springer, 2007.

[6] L. Grunske, L. Geiger, and M. Lawley. A Graphical
Specification of Model Transformations with Triple
Graph Grammars. In Hartman and Kreische [7].

[7] A. Hartman and D. Kreische, editors. Model Driven
Architecture - Foundations and Applications, First
European Conference, ECMDA-FA 2005, Nuremberg,
Germany, November 7-10, 2005, Proceedings, volume
3748 of LNCS. Springer, 2005.

[8] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and Refinement of Textual
Syntax for Models. In Proceedings of the 5th
European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA), 2009.

[9] F. Heidenreich, J. Johannes, M. Seifert, C. Wende,
and M. Böhme. Generating Safe Template Languages.
In Proceedings of the 8th International Conference on
Generative Programming and Component Engineering
(GPCE’09), 2009.

[10] E. Kindler and R. Wagner. Triple Graph Grammars:
Concepts, Extensions, Implementations, and
Application Scenarios. Technical Report tr-ri-07-284,
University of Paderborn, D-33098 Paderborn,
Germany, June 2007.

[11] A. Königs. Model Transformation with Triple Graph
Grammars. In Model Transformations in Practice
Satellite Workshop of MODELS 2005, Montego Bay,
Jamaica, 2005.

[12] A. Königs and A. Schürr. Tool Integration with Triple
Graph Grammars - A Survey. Electronic Notes in
Theoretical Computer Science, 148(1):113–150, 2006.

[13] OMG. MOF Query/View/Transformation
Specification Version 1.0. Technical report, Object
Management Group (OMG), 2008.

[14] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In E. W. Mayr, G. Schmidt,
and G. Tinhofer, editors, Proceedings of 20th
International Workshop on Graph-Theoretic Concepts
in Computer Science, Herrsching, Germany, volume
903 of LNCS. Springer Verlag, 1994.

[15] D. Varró. Model Transformation by Example. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
editors, MoDELS, volume 4199 of LNCS, pages
410–424. Springer, 2006.

14

Improving Dynamic Design Pattern Detection in Reclipse
with Set Objects

Markus von Detten, Marie Christin Platenius
Software Engineering Group, Department of Computer Science,

University of Paderborn, Paderborn, Germany
[mvdetten|mcp]@mail.uni-paderborn.de

ABSTRACT
Design pattern detection is a reverse engineering methodolo-
gy that helps software engineers to analyze and understand
legacy software by recovering design decisions and thereby
providing deeper insight into software. Recent research has
shown that a combination of static and dynamic source code
analysis can produce better results than purely static ap-
proaches. In this paper we present an extension of the pat-
tern detection approach proposed by Wendehals [22]. In par-
ticular, we extend the specification language for behavioral
patterns to increase its expressiveness and the approach’s
recall by introducing the concept of set objects.

1. INTRODUCTION
Due to requests for new features and the discovery of de-
fects, software has to be continuously adapted and main-
tained during its life cycle. Incomplete documentation or
the unavailability of the original developers often complicate
this task and are among the reasons that software engineers
often spend more time to maintain a complex software sys-
tem than to actually develop it. According to Sommerville
50% to 75% of the total programming effort spent on a sys-
tem are devoted to maintenance [17].

The tedious and error-prone task of understanding a large
system can be supported and simplified by reverse engineer-
ing tools that recover the design of the software and try to
locate the application of design patterns. Identifying these
pattern instances can help the reverse engineer to quickly un-
derstand a software system and thereby speed up the main-
tenance process. Design patterns were first introduced by
Gamma et al. and represent good solutions to frequently
occurring problems in object-oriented software design [6].
Since then design patterns have been thoroughly researched
and their detection for reverse engineering purposes has been
the subject of many scientific publications (e.g. [1, 2, 7, 8,
9, 11, 12, 15, 16, 18]).

One of the main challenges in design pattern detection lies
in achieving a high precision and recall, i.e. in finding the ac-
tual pattern implementations in the software while avoiding
false positives. Especially the existence of many implemen-
tation variants for the various patterns leads to incorrect or
incomplete detection results.

Lothar Wendehals presented an approach that combines sta-
tic and dynamic analysis to reduce the number of false posi-
tives by taking the runtime behavior of the analyzed software

into account [19, 22]. In this paper we present an extension
of his approach that aims at increasing its recall by making
the pattern specification language more expressive. For this
we introduce set objects and each fragments into the specifi-
cation language and adapt the analysis process accordingly.

The remainder of this paper is organized as follows: First,
we give a general overview of the pattern detection process
by Wendehals. In Section 2 we present an example and use it
to demonstrate the shortcomings of the pattern specification
language. A suitable extension of the language is proposed
in Section 3. Section 4 deals with the realization of the
approach that is then evaluated on a real software system
in Section 5. In the subsequent Sections we discuss related
work, draw conclusions and sketch ideas for future work.

2. STATIC AND DYNAMIC DESIGN
PATTERN DETECTION

Source

Code

Structural

Patterns

Behavioral

Patterns

Traces

Design

Pattern

Candidates

Analysis

Results

Static

Analysis

Dynamic

Analysis

Document

Process Step

Data Flow

Program

Execution

Traces

Figure 1: Static and dynamic analysis [22]

There are many examples in literature that use only a static
source code analysis to recover design patterns (e.g. [1, 9, 15,
16, 18]). Although a static analysis is not limited to con-
sidering structural properties of the software under analysis
certain object-oriented concepts like polymorphism and dy-
namic method binding make a precise static behavior anal-
ysis impossible. Hence, a common drawback of these ap-
proaches is that they generate false positives when design
patterns have a similar structure. The State and Strategy
patterns [6] are good examples for this: Their static struc-
ture is identical and they differ only in their runtime be-
havior. Common static pattern detection approaches often
recognize implementations of the State pattern also as Strat-
egy pattern implementations and vice versa. Obviously one
of those results is always a false positive.

15

observerClass : Class subjectClass : Class

update : Method p : Parameter register : Method

notify : Method

:Observer

d:Delegation

r:MultiReference

o1:OverridingMethod
o1:OverridingMethod

o1:OverridingMethod
o2:OverridingMethod

methods ▼

callee ▼

methods ▼

observer ▼ subject ▼

overridden ▲

methods ▲

overridden ▲

paramType ▼

params ◄

referencingClassreferences

caller

◄ ►

►

sp Observer

<<create>>
<<create>>

<<create>>

Figure 2: Observer structural pattern

Figure 1 shows the pattern detection process as proposed
by Wendehals [22]. It uses the source code of the software
system and a library of structural patterns to carry out a
static analysis. In his approach, that builds on the work in
[10] and [11], graph grammar rules are used for the spec-
ification of structural patterns (cf. Section 4). The result
of the static analysis is a set of possible implementations of
design patterns, the so-called pattern candidates. Pattern
candidates are sections in the source code whose structure
corresponds to the structural patterns used in the analysis.
Due to structurally similar patterns, the result set may con-
tain many false positives. At this point a dynamic analysis
is used to confirm or reject the candidates.

After detecting the pattern candidates, the software system
under analysis is executed manually and the candidates’ be-
havior is traced. Depending on how often a candidate’s
classes are instantiated during execution time, a number of
traces is generated for each candidate. The candidates’ ex-
pected behavior is described with behavioral patterns based
on UML 2.0 sequence diagrams [13]. During dynamic anal-
ysis the traces are compared with the corresponding behav-
ioral patterns. If the majority of a candidate’s traces match
the behavioral pattern, it is likely that the candidate is an
actual design pattern implementation and the candidate is
confirmed. If most of the traces for a candidate do not match
the behavioral pattern, it probably is a false positive and
thus rejected.

2.1 Example
Throughout this paper we use the Observer pattern to ex-
plain the pattern detection approach devised by Wendehals
and our extension. Gamma et al. describe the Observer pat-
tern’s intent as follows:

”Define a one-to-many dependency between ob-
jects so that when one object changes state, all
its dependents are notified and updated automat-
ically.” [6]

Figure 2 shows the structural description of the Observer
pattern in the notation introduced in [11] and [12]. There
are two classes subjectClass and observerClass. The sub-
ject class has the methods register, which takes an observer
object as parameter, and notify1. The observer class has
1The object names in the pattern are only variables that are
matched to real names during the pattern detection process.

a:ObserverClasss:SubjectClass

update()

register()

notify()

Loop(1,*)

bp Observer

b:ObserverClass

register()

update()

Figure 3: Observer behavioral pattern

an update method. The ellipses are so-called Annotations
and refer to subpatterns which are specified in other dia-
grams. Annotations represent instances of required subpat-
terns. In this case the annotations indicate that the subject
class’ notify method must implement a delegation to the ob-
server class’ update method. The methods update and reg-
ister should be overidden. (The shown observer and subject
classes are intended to be subclassed by concrete observers
and subjects that implement their own specific behavior.)
The dashed lines of the OverriddingMethod annotations in-
dicate that these subpatterns are not mandatory for the de-
tection of the Observer pattern. The MultiReference anno-
tation expresses that a subject references arbitrarily many
observers. Finally, the Observer annotation that is marked
with create is created when the depicted structure is found
in the software system under analysis. It tags the structure
as candidate for the Observer pattern.

Figure 3 illustrates the expected behavior of the Observer
pattern in the syntax defined in [22]. It shows one object
s of the type subjectClass and two observer objects a and
b of the type observerClass. The types refer to object
names from the structural pattern (cf. Figure 2). a and b

both call the register method of the subject class to regis-
ter themselves for the subject’s updates. The following loop
fragment indicates that the enclosed message sequence must
occur at least once but can occur arbitrarily many times. It
states that whenever the subject class calls its notify method
each observer’s update method has to be called. If an ob-
server candidate fails to show this behavior it probably is a
false positive (or a variation of the design proposed in [6]).

For details on the specification of behavioral patterns with
sequence diagrams we refer to [20]. More on the dynamic
pattern detection algorithm can be found in [23].

2.2 Shortcomings of the Approach
One problem of the described approach lies in the use of ab-
solute quantities of objects where in reality arbitrarily large
sets of objects can participate in the pattern. The behav-
ioral pattern in Figure 3 uses an exemplary situation with
two observer objects to specify the desired behavior of an im-
plementation of the Observer pattern. In reality any number
of observer objects could communicate with the subject as
long as the messages occur in the correct order. The behav-
ioral analysis algorithm is currently limited to only recog-

16

nize traces with exactly the specified number of objects as
correct. In the example only candidate instances with two
observer objects would be deemed accurate. Traces that
represent the same situation with any other number of ob-
jects and otherwise conform to the behavioral pattern are
rejected. This increases the probability that a candidate is
incorrectly labeled as a false positive.

The same problem arises for all other patterns that involve
a possibly arbitrarily large set of objects. Examples are the
State pattern (an object can be in one of arbitrarily many
states) and the Chain of Responsibility pattern (a request
is passed down an arbitrarily long chain of handler objects
until one handler consumes it) [6].

3. EXTENDING BEHAVIORAL PATTERNS
WITH SET OBJECTS

Our approach solves the mentioned shortcomings by intro-
ducing a new element to the behavioral pattern specification
language: the Set Object. A set object represents an arbi-
trarily large set of objects of the same type. With this new
construct the Observer pattern can be specified without the
need to predefine the exact number of observer objects in-
volved at execution time.

oSet:ObserverClass
oSet:ObserverClasss:SubjectClass

Each update()

Loop(1,*)
register()

notify()

Loop(1,*)

bp Observer

Figure 4: Observer behavioral pattern with set ob-
ject

Figure 4 shows the Observer behavioral pattern with the
new element. The set object is depicted by the double border
and replaces the two separate observerClass objects from
Figure 3.

The introduction of the set object necessitates proper se-
mantics for messages between set objects and regular ob-
jects. A message from a set object to a regular object repre-
sents a method call from one of the objects in the set to the
regular object. An example for this is the register message
in Figure 4. Analogously, a message in the opposite direc-
tion represents a call to one object that is of the same type
as the set object.

Additionally, we need to model the case that a method is
called on each object in a set. For this we introduced a new
combined fragment, the Each Fragment, which has seman-
tics similar to the loop fragment. An each fragment can only
be used for messages from regular objects to set objects (or

vice versa) and means that the contained messages are sent
to each object in the set (or from each object in the set to the
regular object). Note that the semantics for message passing
from one set object to another in conjuction with an each
fragment remains undefined here. If such a construct was
allowed, it would have to be specified if a message should
be passed from each object in set 1 to each object in set
2 or if other combinations would be appropriate. However,
in our investigations we have not found a case where such
a construct would be needed. The exploration of this topic
remains future work.

In Figure 4 the each fragment is used to express that after
the subject has called its own notify method, it must call
the update method of each of its observers.

4. REALIZATION
The Reclipse tool suite [21] has been implemented as a
collection of plug-ins for Fujaba4Eclipse, which is an in-
tegration of Fujaba [4] into the Eclipse framework.

Structural patterns are specified as special graph grammar
rules. They describe the object structure that constitutes
a given pattern in abstract syntax. These graph grammar
rules are then translated to Story Diagrams [3] from which
code is generated. The generated code realizes search al-
gorithms for every structural pattern. The software under
analysis is parsed into an abstract syntax graph representa-
tion. The search algorithms try to match the patterns in the
abstract syntax tree and create annotations when a match-
ing object structure is found (cf. Section 2). The annotations
mark objects that represent relevant roles of a given pattern,
e.g. for the Observer pattern the subject and the observer
objects. Details on the structural pattern detection process
can be found in [10].

In order to analyze the runtime behavior of a software sys-
tem it is executed and the method calls that occur during
execution are traced. To reduce the amount of data that has
to be analyzed, not the complete behavior of the software
is traced but only the instance behavior of previously an-
notated classes and methods, i.e. of pattern candidates that
were identified during structural analysis. The behavior of
objects of other types and other method calls is omitted.
All pattern candidates are traced individually and, depend-
ing on the concrete program execution, a number of traces
is generated for each of them.

The behavioral analysis algorithm assesses if each candi-
date’s traces conform to the corresponding behavioral pat-
tern. A trace conforms to the behavioral pattern when its
method calls all conform to the pattern and when the trace
represents a complete pass through the pattern. In this case
the trace is accepted. If the trace contains method calls
that violate the behavioral pattern, it is rejected. If the
trace does not contain prohibited method calls but does not
contain all mandatory method calls that are specified in the
pattern, the software system may not have been executed
long enough to collect sufficient data. In this case the trace
is neither rejected nor accepted. Technically the analysis
is performed by mapping the behavioral patterns to finite
automata and using the traces as input for the automata.
The traces can be accepted, not accepted or rejected by an

17

automaton. For further information on the analysis process
we refer to [23]. The ratio between accepted, not accepted
and rejected traces enables the reverse engineer to judge if a
given pattern candidate really is a pattern implementation.

5. EVALUATION
The dynamic design pattern detection approach in Reclipse
[21] has been extended by the concepts presented in Sec-
tion 3.

Wendehals evaluated his approach by analyzing parts of
the Eclipse IDE in the version 2.1 [22]. That particu-
lar software was chosen because Gamma and Beck docu-
mented some of the design patterns employed in the de-
sign of the software [5]. Wendehals found that Observer im-
plementations that were documented by Gamma and Beck
were detected by the static analysis but rejected in the dy-
namic analysis step because of the problems described in
Section 2.2.

We repeated the analysis using our extension of the approach
and found that the dynamic analysis now was able to con-
firm the Observer candidates discovered in the static anal-
ysis. We also were able to detect implementations of the
State, Strategy and Chain of Responsibility patterns. It was
possible to tell State and Strategy implementations apart
even though their static structure is identical.

6. RELATED WORK
Several approaches exist that use a combination of static
and dynamic analysis to detect design patterns.

Brown [2] uses static and dynamic analysis to detect four
of the patterns described in [6] in Smalltalk source code.
The source code is transformed into two different models,
one describing the static structure and the other describing
method calls between objects at runtime. However, due to
this separation of models, it is not possible to combine the
analysis techniques. Three of the chosen patterns (Compos-
ite, Decorator, Template Method) are detected by analyzing
the static model while the Chain of Responsibility pattern
is detected in the dynamic model. The pattern detection al-
gorithms are implemented manually and hence are not easy
to extend or maintain.

Guéhéneuc and Ziadi [7] propose to extract UML 2.0 dy-
namic models such as sequence diagrams and statecharts
from Java source code and carry out high level analyses,
like conformance checking and pattern detection, on these
models. Further results have however not been published to
date.

Similar to our approach, Heuzeroth, Holl and Löwe use a
dynamic analysis in order to improve results from a static
one [8]. They define the pattern structure as relations on
the elements of an abstract syntax graph. The static anal-
ysis finds tuples that satisfy these relations which are then
used for the dynamic analysis. The behavior of the pat-
terns is specified with pre- and postconditions in Prolog.
The authors state that their pattern specifications tend to
get lengthy and complicated which reduces maintainability.
An extension of their specification language, SanD-Prolog,
makes pattern specifications easier at the expense of their

expressiveness. Conditions like ”a class may not have any
methods” cannot be expressed in SanD-Prolog.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented an extension of the pattern detec-
tion approach described by Wendehals [22]. We introduced
a new element to the pattern specification language to be
able to deal with arbitrarily large sets of objects in behav-
ioral pattern specifications. The extension was implemented
for the Reclipse tool suite and evaluated for several pat-
terns. It is now possible to correctly detect patterns that
caused problems in Wendehals’ original approach [14].

The approach still leaves open questions for future research.
We intend to analyze larger software projects and try to de-
tect more patterns to get a feeling for the scalability and
expressiveness of our approach. Furthermore it would be
interesting to quantitatively analyze the precision and re-
call of the extended Reclipse tool suite and compare it to
similar reverse engineering tools. In the future we want to
build upon the current reverse engineering techniques and
use reverse engineered behavioral models to carry out fur-
ther analyses like conformance checking.

8. REFERENCES
[1] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and

N. Jussien. Instantiating and Detecting Design
Patterns: Putting Bits and Pieces Together. In
D. Richardson, M. Feather, and M. Goedicke, editors,
Proc. of ASE-2001: The 16th IEEE Conference on
Automated Software Engineering, pages 166–173,
Coronado, CA, USA, November 2001. IEEE
Computer Society Press.

[2] K. Brown. Design Reverse-Engineering and
Automated Design Pattern Detection in Smalltalk.
Master’s thesis, North Carolina State University, June
1996.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph rewrite language based
on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764, pages 296–309. Springer Verlag, November 1998.

[4] Fujaba Tool Suite. University of Paderborn, Germany.
http://www.fujaba.de, last visit: September 2009.

[5] E. Gamma and K. Beck. Contributing to Eclipse -
Principles, Patterns, and Plug-Ins. The Eclipse Series.
Addison-Wesley, Boston, MA, USA, 2004.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[7] Y.-G. Guéhéneuc and T. Ziadi. Automated
Reverse-Engineering of UML v2.0 Dynamic Models. In
S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse,
editors, Proc. of the 6th ECOOP Workshop on
Object-Oriented Reengineering, pages 1–5, Glasgow,
Scotland, UK, July 2005. Springer-Verlag.

[8] D. Heuzeroth, T. Holl, and W. Löwe. Combining
Static and Dynamic Analyses to Detect Interaction
Patterns. In Proc. of the 6th International Conference

18

on Integrated Design and Process Technology, pages
1–7, Pasadena, Ca, USA, June 2002.

[9] C. Krämer and L. Prechelt. Design Recovery by
Automated Search for Structural Design Patterns in
Object-Oriented Software. In Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE), pages
208–215, Monterey, CA, USA, November 1996. IEEE
Computer Society Press.

[10] J. Niere. Incremental Design-Pattern Recognition.
PhD thesis, University of Paderborn, Paderborn,
Germany, 2004. In German.

[11] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proc. of the 24th International
Conference on Software Engineering (ICSE), Orlando,
FL, USA, pages 338–348. ACM Press, May 2002.

[12] J. Niere, L. Wendehals, and A. Zündorf. An
Interactive and Scalable Approach to Design Pattern
Recovery. Technical Report tr-ri-03-236, University of
Paderborn, Paderborn, Germany, January 2003.

[13] OMG. UML 2.0 Superstructure Specification, Revised
Final Adopted Specification (ptc/04-10-02), October
2004.

[14] M. C. Platenius. Berücksichtigung von Objektmengen
bei der dynamischen Entwurfsmustererkennung.
Bachelor thesis, University of Paderborn, 2009. In
German.

[15] N. Shi and R. A. Olsson. Reverse Engineering of
Design Patterns from Java Source Code. In
Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering
(ASE’06), pages 123–134, Washington, DC, USA,
September 2006. IEEE Computer Society.

[16] J. M. Smith and D. Stotts. SPQR: Flexible
Automated Design Pattern Extraction From Source
Code. In Proc. of the 18th IEEE International
Conference on Automated Software Engineering (ASE
03), pages 215–224, Montreal, Canada, October 2003.
IEEE Computer Society Press.

[17] I. Sommerville. Software Engineering. Addison Wesley,
4th edition, May 1992.

[18] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design Pattern Detection Using
Similarity Scoring. IEEE Transactions on Software
Engineering, 32(11):896–909, November 2006.

[19] L. Wendehals. Improving Design Pattern Instance
Recognition by Dynamic Analysis. In Proc. of the
ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, May 2003.

[20] L. Wendehals. Specifying Patterns for Dynamic
Pattern Instance Recognition with UML 2.0 Sequence
Diagrams. In Proc. of the 6th Workshop Software
Reengineering (WSR), Bad Honnef, Germany,
Softwaretechnik-Trends, volume 24/2, pages 63–64,
May 2004.

[21] L. Wendehals. Reclipse, 2007.
http://www.reclipse.org, last visit: September 2009.

[22] L. Wendehals. Struktur- und verhaltensbasierte
Entwurfsmustererkennung. PhD thesis, University of
Paderborn, Paderborn, Germany, 2007. In German.

[23] L. Wendehals and A. Orso. Recognizing Behavioral
Patterns at Runtime using Finite Automata. In Proc.

of the 4th ICSE 2006 Workshop on Dynamic Analysis
(WODA), Shanghai, China, pages 33–40. ACM Press,
May 2006.

APPENDIX

A. BEHAVIORAL PATTERN
CHAIN OF RESPONSIBILITY

The Chain of Responsibility design pattern is another pat-
tern where set objects can be used. The pattern intent is
described in [6] as follows:

”Avoid coupling the sender of a request to its re-
ceiver by giving more than one object a chance to
handle the request. Chain the receiving objects
and pass the request along the chain until an ob-
ject handles it.” [6]

H:AbstractHandler
h:AbstractHandlerclient

handleRequest(r)

handleRequest(r)

other

Loop(0,*)

bp Chain of Responsibility

Figure 5: Chain Of Responsibility behavioral pattern

In Figure 5 there are two objects. client is an untyped ob-
ject that delegates the request r to the handler chain. A set
object represents an arbitrary number of AbstractHandler

objects that constitute the chain. The handleRequest mes-
sage represents the passing of the request along the chain.

Note the property {other} on the message, which is an-
other language extension presented in [14]. A message from
a set object to itself can either represent a method that is
called by an object in the set on itself (i.e. the caller instance
equals the callee instance) or a call of that method on an-
other object in the set. To distinguish between these cases
we introduced the keywords self and other.

The other call is enclosed by a loop fragment with the
bounds 0 and *. Either the request is handled (and con-
sumed) by the first handler in which case the loop fragment
would be executed zero times or it is handled by an arbitrary
handler somewhere in the chain.

19

Mapping Features to Domain Models in Fujaba

Thomas Buchmann
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

thomas.buchmann@uni-bayreuth.de

Alexander Dotor
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

alexander.dotor@uni-bayreuth.de

ABSTRACT
In the past, several approaches have been made to combine
feature models and domain models on the level of class di-
agrams. But the model-driven development approach also
covers models that describe the behavior of a software sys-
tem. In this paper we present a mapping of feature models
and configurations to executable model elements which is
one step towards an overall model driven process for prod-
uct line engineering. We present a tool called MODPLFea-
turePlugin, which allows the user to establish a mapping
between a distinct feature model and the domain model of
the software system realized in Fujaba and also to create
code for specific product configurations.

Keywords
version control, product lines, model-driven development,
configuration management, code generation, feature map-
ping

1. INTRODUCTION
The term model-driven development [13] of software sys-
tems describes the creation of systems by specifying models
instead of writing code. Usually these models are created in
CASE tools which provide class diagrams to model the static
structure of a software system. These kind of diagrams lack
the ability to model variability explicitly. In the context of
software product lines [5], feature models are used to model
variability in a family of software systems.

Recently some approaches have been made to combine fea-
ture models and domain models created with CASE tools [1],
[14], [10]. But model-driven development is more than just
creating models that describe the static structure of a system
- the behavior has to be described as well. The UML stan-
dard provides many behaviour modelling paradigms which
are supported by some tools like Rational Software Archi-
tect1 or Topcased2. Unfortunately not all of those behavioural
models provide execution semantics or allow to generate ex-
ecuteable code. One of the key features of model-driven
development compared to model-based development is the
generation of executable code. Therefore we chose Fujaba
for our current project called MOD2-SCM, in which we de-
velop a model-driven product line for Software configuration
management (SCM) systems [4]. The benefits of a model
driven approach are (1) making the underlying models ex-
plicit, rather than having them implicitly defined in the
1http://www.ibm.com/software/awdtools/swarchitect
2http://www.topcased.org

Define
Feature Model

Define
Fujaba Model

Feature
Model

Fujaba
Model

Annotate
Fujaba Model

Instantiate
Configuration Configuration

Annotated
Fujaba Model

Generate
Code

Configured
Java Code

Feature Model

Domain Model

Figure 1: The MDD process which combines Feature
models and domain models using annotations

program code, (2) providing reusable modules which can
be combined in a flexible way through defining orthogonal
components which are loosely coupled and (3) support rapid
construction of new systems by providing a product line.
This project is an example for the application of the general
model-driven development process of software product lines,
which is supported by MODPLFeaturePlugin (model driven
product line feature mapping plugin for Fujaba).

The domain model of our product line consists of both class
diagrams and behavioral diagrams developed in Fujaba. In
the following we present MODPLFeaturePlugin which en-
ables the Fujaba user to map elements from feature models
to fujaba domain models and to generate code for specific
product configurations. The plugin consists of two main
parts: (1) an extension of the Fujaba editor to provide ca-
pabilities to establish a mapping between feature diagram
elements and domain model elements and (2) a preproces-
sor for the Fujaba codegenerator, which is able to generate
code for specific product configurations.

Even though the MODPLFeaturePlugin was developed with-
in the MOD2-SCM project, it is by no means specific to the
SCM domain and can be applied to all Fujaba models being
composed of class diagrams and story diagrams.

2. MAPPING FEATURES TO FUJABA MO-
DEL ELEMENTS

In our work we try to bridge the gap between features in
a variability model and model elements of a system fam-
ily. In a model-driven process a system configuration should
be mapped automatically to the domain model, and code
for the specific feature selection should be generated. In
the context of product line engineering, feature models are
widely used. The diagram in Figure 1 depicts our proposal

20

0..*

tags

0..1

revTags is tagged

UMLIncrement

«reference»

String : name

UMLTag

«reference»

Figure 3: Excerpt from the Fujaba meta-model.

of a model-driven development process of software product
lines, which is supported by MODPLFeaturePlugin. The
domain model and the feature model are created in their
respective tools, and a mapping between both models is es-
tablished via MODPLFeaturePlugin. In the final step a con-
figuration which is derived from the feature model is used to
generate code for that specific configuration. Since there is
no tool which supports the whole model-driven development
process of software product lines, but several tools support-
ing single tasks in the whole development process (like Fea-
turePlugin which allows the creation of feature models, or
UML tools which allow modeling the domain model), our
work shows a way how to bridge the gap between feature
modelling and domain modelling. The left part of Figure 2
shows the feature model of our model-driven pro-duct line
of SCM systems. On the right hand side an excerpt of the
domain model (particularly the package diagram and a class
diagram) realizing those features is shown.

The feature model shown on the left side in Figure 2 was
created using the tool FeaturePlugin [1]. It offers the op-
tion to export feature models and respective configurations
via XML. MODPLFeaturePlugin is able to import feature
models and configurations exported from FeaturePlugin.

Our approach establishes a mapping between feature model
elements and their respective realizations in the domain model
through attaching annotations containing the feature’s unique
identifier to the domain model elements. Fujaba’s meta-
model offers basic support for annotations by providing the
class UMLTag. Instances of UMLTag can be attached to any
element derived from UMLIncrement (see Figure 3).

A model element can also be decorated with multiple tags.
The syntax that is used to describe the tag is similar to Java
annotations: Each tag starts with the symbol ”@” followed
by a string literal which specifies the name of the tag and
key-value pairs surrounded by parentheses (i.e.
@name(key=value)) Examples are shown in Figure 4, like
@feature(id="directedDeltas"). The annotation of model
elements with the respective feature identifier can be per-
formed on any level of granularity. On a coarse-grained level,
units such as packages, classes and associations are deco-
rated with features, whereas on a more fine-grained level,
attributes, methods and even story patterns etc. can be
decorated. The coarse-grained approach keeps the multi-
variant architecture manageable. But it is up to the mod-
eler’s discipline to use the feature annotations carefully.

In an extensive way of using feature annotations, the mod-
eler may easily lose track and may face a degree of com-
plexity which cannot be managed anymore. Therefore, sev-
eral aids for the developer have been implemented in MOD-
PLFeaturePlugin.

• First of all, the creation of tags, which annotate model
elements, has been made much easier by providing a
class FeatureTag, which is derived from UMLTag. It
has a fixed name feature and it only support one key-
value pair: the unique identifier of the feature model
element. MODPLFeaturePlugin also provides a spe-
cial dialog for creating and editing such FeatureTags.
The modeler can only choose between the identifiers
of an already existing feature model. The advantage
over manually specified feature identifiers is integrity
of configurations based on existing feature models and
the annotated model elements.

• To keep track which model elements are used to realize
a certain features, MODPLFeaturePlugin highlights all
FeatureTags that match a feature when clicking on
that specific feature in the tree view (c.f. in Figure
4 the feature Forward Delta has been selected in the
tree view). Selected features in the tree view are sym-
bolized by FeatureTags with green background in the
Fujaba editor.

• Additionally, the plugin also checks for missing fea-
tures in the domain model (depicted by yellow tri-
angles in the feature model with an expression mark
in the feature tree and the text ”[unused feature]”)
and it provides several constraint checkers. E.g. high-
lighting domain elements with feature tags violating an
exclusive-or constraint definded in the feature model.
The elements displayed with a red background in Fig-
ure 4 show that kind of constraint violations.

Additionally, propagation rules for the tagged elements to
their dependent elements can be applied, to give the modeler
an overview which other model elements (attributs, roles,
associations, subclasses etc.) are affected by adding a Fea-

tureTag to a domain model element. The automatically
added tags are highlighted with a blue background (not
shown in Figure 4). These rules are also applied automati-
cally during the code generation process, cf. section 3. Enu-
merating the propagation rules is not possible due to space
restrictions. All rules and their application can be found in
[2].

MODPLFeaturePlugin was primarily designed to work with
the Fujaba4Eclipse-SwingUI branch, but it can also be used
with the stand-alone version of Fujaba. Please note that
Eclipse specific extensions, like the separate view showing
the feature tree is not supported in the stand-alone version.

3. GENERATING CODE
After a domain model has been tagged with the feature an-
notations, code for a specific configuration can be gener-
ated. For that, a configuration created with FeaturePlugin
is loaded by our plugin (also via XML import). A config-
uration is a distinct selection of features from the feature
model which describes a concrete product. This configura-
tion is used to control the preprocessor of the codegenerator.

The preprocessor is a plugin to the Fujaba Codegen2 plugin
[8]. Since Codegen2 provides a so called ”chain-of-responsibi-
lity” to address codewriters for different model elements or

21

Storage .DirectedDeltas

Core.DeltaCore.Storage

+duplicate()
+getItemId()
+setItemId()

«interface»
IProductItem

+compare()

«interface»
IDeltifiableItem

+apply()

«interface»
IDelta

+store()
+restore()

«interface»
IStorage

+createStorage ()

«interface»
IStorageFactory

Core.Product

6contains 6decorates

+storageId
StorageItem

1

*

ForwardDeltaStorage
{feature = Forward Deltas}

BackwardDeltaStorage
{feature = Backward Deltas}

MixedDeltaStorage
{feature = Mixed Deltas}

DeltaStorageDeltaStorageFactory

6hasNext

4stores

1

*

BaselineItem

+apply()

DeltaItem

<<import>>
<<import>>

<<im
port>>

<<im
port>>

0..1

1

0..1

1

Figure 2: Conceptual dependency between features and model elements

purposes (see Figure 5), it was fairly easy to add a prepro-
cessor to this chain. During the code generation process,
these feature annotations are evaluated against a given sys-
tem configuration which is specified in FeaturePlugin [1]. If
a feature is selected in a configuration the model elements
with its name have to be part of the configured domain
model. Each model element can be tagged by multiple fea-
tures, in which case they are evaluated analogous to a logical
and (i.e., all features have to be selected). This means also,
that untagged model elements are always part of the con-
figured model. For all model elements which contain tags
representing features not part of the current configuration
no code is generated. This process is very similar to the
preprocessor step in compilers. As a consequence we face
the same problems as compiler preprocessors: it is very easy
to produce syntactically wrong code. Therefore we set up
several consistency rules [2] that have to be met to ensure
syntactical correctness of the resulting code.

0..ngenerators

0..1engine

 {ordered}generators

collapsed

collapsed

<< from Fujaba Code Generation>>
CodeWritingEngine

collapsed

collapsed

<< from Fujaba Code Generation>>
TemplateCodeWriter

collapsed

MODPLPrecprocessorCodeWriter

ContextClearer

«reference»

collapsed

<< from Fujaba Code Generation>>
CodeWriter

Figure 5: MODPLPreprocessorCodeWriter in the
Codegen2 context.

4. RELATED WORK

22

Figure 4: Highlighting of selected features and constraint violations.

Czarnecki et al. describe in their work about Mapping Fea-
tures to Models [6] a tool to establish a bidirectional map-
ping between feature models and Ecore elements, based on
Ecore class diagrams (see [14]), called Ecore.fmp. It uses
many of the same notations and display elements as a previ-
ous version named FeaturePlugin [1]. Unlike FeaturePlugin,
which focuses strict-ly on feature modelling in an isolated
context, Ecore.fmp aims to create Ecore compliant class di-
agrams out of existing feature models and vice-versa. In the
current version of Ecore.fmp, the creation of a feature model
from an existing Ecore model is not yet supported properly.
The creation of Ecore model files out of feature models also
still needs to be implemented. Since it is tightly coupled
with Ecore, it does not support arbitrary EMF-models or
even executable models. Furthermore a 1:1 mapping of a
feature model to a class model is not appropriate in many
cases: E.g. cross-cutting feature such as ”Synchronization”
in our example shown in the feature model in Fig. 2, map-
ping features to model elements of different granularity such
as classes or methods - not every feature may be realized
by a class. But also UML class diagrams do not provide
capabilities to model variability in terms of cardinality of
association ends. The realization of a feature could require

a to-one association, whereas the realization of another fea-
ture could require a to-many end of the same association.
According to the project website, there is no further devel-
opment of Ecore.fmp.

Heidenreich et al. developed a set of Eclipse plugins that also
allows the user to establish a mapping between features and
feature realisations (i.e., model elements) [11]. The under-
lying model (feature realisation) can be defined in arbitrary
Ecore-based languages. It provides four different kinds of
views, that visualize the current feature selection in differ-
ent ways [9]. The plugin aims at supporting the developer
in the complex task of defining mappings between features
/ configurations and their realizations. FeatureMapper pro-
vides no support for consistent model annotations. In MOD-
PLFeaturePlugin, dependencies between model elements are
taken into account which are specific to the meta-models for
class diagrams and story diagrams. FeatureMapper does
not know these dependencies, since it is a generic tool work-
ing with any meta-model defined in Ecore. FeatureMapper
provides the possibility to configure models and to use that
configured models in the further development process. Our
approach allows to either configure the code directly (by

23

using the java code generation engine) or to obtain a con-
figured Ecore model, by using the EMF Code Generator [7].
The EMF-Adapter for Fujaba [12] could be a promising ap-
proach to combine FeatureMapper and Fujaba, but it is still
in a very early stage. In case of a working EMF-Adapter,
it could be feasible to try using FeatureMapper on Fujaba
models.

There are also some commercial tools, that support model-
ing a product line by specifying feature models, like pure sys-
tem’s pure::variants3. These tools do not provide a model-
driven process to develop a product line in a model-driven
way. Usually they work on features provided on a file basis
and only cover a small part of the product line process -
variant management.

5. CONCLUSION
In this paper we presented MODPLFeaturePlugin, a plugin
to Fujaba which aims at supporting a model-driven develop-
ment process of software product lines in terms of realizing a
mapping between elements from feature models and domain
model elements. It provides several aids to the modeler and
it supports the generation of specific product configurations
based upon feature selection. Currently work is addressed to
add several other constraint checkers to the editor plugin and
to integrate it with the package diagram editor presented in
[3].

6. ACKNOWLEDGEMENTS
We would like to thank our supervisor Prof. Dr. Bernhard
Westfechtel for the invaluable input during the development
of this plugin and his feedback as a reader of this paper.
Further thanks go to (in alphabetical order): Leif Geiger,
Ruben Jubeh and Dietrich Travkin for their hints how to
extend Fujaba and the codegeneration engine.

7. REFERENCES
[1] M. Antkiewicz and K. Czarnecki. Featureplugin:

Feature modeling plug-in for eclipse. In OOPSLA ’04
Eclipse Technology eXchange (ETX) Workshop,
Vancouver, British Columbia, Canada, Oct. 24-28
2004. ACM.

[2] T. Buchmann and A. Dotor. Constraints for a
fine-grained mapping of feature models and executable
domain models. In M. Mezini, D. Beuche, and
A. Moreira, editors, 1st International Workshop on
Model-Driven Product Line Engineering (MDPLE’09),
volume 1 of CTIT Workshop Proceedings, pages 9–17.
CTIT, 2009.

[3] T. Buchmann, A. Dotor, and M. Klinke. Supporting
modeling-in-the-large in Fujaba. submitted for
publication.

[4] T. Buchmann, A. Dotor, and B. Westfechtel.
Model-driven development of software configuration
management systems - a case study in model-driven
engineering. accepted for publication.

[5] P. Clements and L. Northrop. Software product lines:
practices and patterns, volume 0201703327.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

3http://www.pure-systems.com/

[6] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In GPCE 05, 2005.

[7] L. Geiger, T. Buchmann, and A. Dotor. EMF code
generation with Fujaba. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proceedings of the 5th
International Fujaba Days, 2007.

[8] L. Geiger, C. Schneider, and C. Reckord. Template-
and modelbased code generation for MDA-Tools. In
H. Giese and A. Zündorf, editors, Proceedings of the
3rd International Fujaba Days. Universität Paderborn,
2005.

[9] F. Heidenreich, I. Şavga, and C. Wende. On controlled
visualisations in software product line engineering. In
Proceedings of the 2nd Int. Workshop on Visualisation
in Software Product Line Engineering (ViSPLE 2008),
Sept. 2008. To appear.

[10] F. Heidenreich, J. Kopcsek, and C. Wende.
Featuremapper: Mapping features to models. In
Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE’08), pages
943–944. ACM, May 2008.

[11] F. Heidenreich and C. Wende. Bridging the gap
between features and models. In 2nd Workshop on
Aspect-Oriented Product Line Engineering
(AOPLE’07), 2007.

[12] J. Johannes. Letting EMF tools talk to Fujaba
through adapters. In U. Assmann, J. Johannes, and
A. Zündorf, editors, Proceedings of the 6th
International Fujaba Days 2008. Technische
Universität Dresden, Technische Universität Dresden,
September 18-19 2008.

[13] A. G. Kleppe, J. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[14] M. Stephan and M. Antkiewicz. Ecore.fmp a tool for
editing and instantiating class models as feature
models. Technical report, University of Waterloo,
2008.

24

PropertyChange Events meet Fujaba Statecharts

Ruben Jubeh, Albert Zündorf
University of Kassel, Software Engineering,

Department of Computer Science and Electrical
Engineering

Wilhelmshöher Allee 73
34121 Kassel, Germany

[ruben | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

ABSTRACT
The current Fujaba Statechart semantics allows arbitrary
event triggers, but currently Statechart Transitions can only
be triggered by timers and by dedicated signal methods.
While modeling an application, one still has the problem
how and where to call these signal methods. This restricts
especially reactive systems modeling, where event handling
and dispatching are central key elements. In this proposal,
we suggest to use PropertyChange-Events on arbitrary model
objects as event triggers. This broadens the available event
triggers to any change occurring in the model, without the
need to implement the trigger manually.

1. INTRODUCTION
In this proposal we want to show how property change events
can be used as statechart event triggers. Property change
events are dispatched every time a runtime model change
occurs, so this is a powerful event source. As running ex-
ample, we will utilize a reactive heating control application
which consists of a controller, a temperature sensor and a
radiator. First we show how the problem may be modeled
with the already existing statechart features of Fujaba, as
described in [4] and [2]. Showing the weaknesses of the old
approach, we will then propose a more direct handling of
PropertyChange Events.

2. EXISTING APPROACH
Figure 1 shows the class diagram for the old-style solution
of our application. To conform with common Java design
standards, our Sensor has a corresponding SensorListener
interface, which may be used to listen to sensor events. Our
example has two states, idle and heating. Figure 2 shows
the basic corresponding statechart.

In order to react to sensor change events, we need to reg-
ister a listener at the sensor. The listener invokes the cor-
responding signal methods, which will fire the state transi-
tions, finally, cf. Figure 3. Note that one needs to declare
a listener implementing class, delegate the call to the corre-
sponding signal method when the right conditions are met,
and has to register the listener implementation on the sensor.
This classic approach is error prone and excessive. In addi-
tion, the specification of the reactive behavior is scattered
between the statechart and the PropertyChange handling
method, making it hard to assess the overall behavior dur-
ing maintenance. Anyhow, if the sensor temperature reading
changes and the sensor informs all listeners of that change

(not shown), this will eventually fire the state transitions.

3. NEW NOTATION PROPOSAL
We are basically interested in any change of the tempera-
ture property of the TemperatureSensor class. By using the
JavaBean stereotype on that class, Fujaba generates:

1. a generic observer pattern implementation based on
the Java PropertyChange mechanism with a to-n-Asso-
ciation to PropertyChangeListeners

2. modified setters for each property (attributes and roles)
that fire a PropertyChangeEvent when the property
changes

This mechanism is also the basis for a Fujaba persistency
mechanism and is stable, as described in [3].

Figure 4: Revised Class Diagram with JavaBean
stereotype added

We now use this as source of our event delegation chain.
For the sake of simplicity, we will start with a statechart
within the TemperatureSensor class itself. Figure 4 shows
the updated class diagram with JavaBean stereotype added.
Figure 5 shows a statechart example according to our new
proposal. Instead of having event triggers corresponding to
signal methods, we use the property temperature of the class
TemperatureSensor as event trigger, directly. When detect-
ing such a construct, the code generator now will generate
code that:

1. adds a PropertyChangeListener for the property tem-
perature of the instance itself

25

Figure 1: Example Domain Model

Figure 2: Heating Control Statechart

Figure 3: Wrapping Change Events

26

2. dispatches a corresponding FEvent is to the statechart,
when the listener is called

Figure 5: Property declared as Event Trigger

The semantics of such a state transition is as follows: the
transition fires when the given property, in this case tem-
perature of the this-instance, changes. Furthermore, one
might want to add a condition to the transition by adding a
boolean transition guard. When doing so, the code genera-
tor will now add the new property value as local variable to
the guard method. So, compact conditions like [tempera-
ture < 18] are possible. Note that with this new approach,
it is not necessary to deal with the SensorListener or, more
generally, PropertyChangeListener, manually. The neces-
sary implementation details are just in the generated code.
Figure 6 shows an excerpt of the generated code within the
statechart initialization method.

Back to the initial example, we want to have the statechart
in the controller. Figure 7 shows the statechart according
to our proposal. The temperature property is addressed in-
directly by sensor.temperature. Note that is sufficient to
specify just the guard expression. An expression parser will
be used to extract the ”sensor.temperature” string. The left
side of that string, ”sensor”, will be recognized as role name
(c.f. Figure 4) of the association reads between Temper-
atureSensor and Controller, so it resolves to an associated
TemperatureSensor instance. The right side, will be resolved
to the property of that instance. When detecting such a con-
struct, the code generator will now generate code that does
the following:

• It adds a PropertyChangeListener for the sensor prop-
erty of the instance itself

• When the listener is called, it adds/removes a Prop-
eryChangeListener to the TemperatureSensor instance

• When the latter listener is called, a corresponding FEvent
is dispatched to the statechart

So, we use nested PropertyChangeListeners to allow proper-
ties of non-this objects as event trigger source. Note that the
given example utilizes transition guards, for which the code
generator will generate local variables as parameter of the
guard method. Figure 8 shows an excerpt of the generated
code for the given example within the statechart initializa-
tion method.

4. OPEN ISSUES AND FUTURE WORK
The given proposal works fine on the given running example,
but for more compex systems, some aspects still need to be
discussed:

1. For pure reactive systems, we want to fire transitions
not only when the property changes, but also instantly

when the guard condition is met. This means, when-
ever a state is entered, the guards of outgoing transi-
tions that refer to model properties shall be evaluated
and if a guard holds, the transition should fire. This
semantic probably needs to be annotated.

2. It might be useful to have any property change of an
object as trigger, for example sensor.*. That would
change the generated code minimally, but guard meth-
ods then need all properties of the resolved objects as
local variables.

3. We want to support even more complex path expres-
sions as e.g. house.sensor[1].value || house.sensor[3].value.
This eventually leads to the necessity of an action lan-
guage for transition guards.

4. Name conflicts for transitions can occur. It is possi-
ble to have a signal method with the same name as
a property. At least the code generator should give a
warning when detecting such a construct.

5. When the event triggering property resolves to a to-n
association end, conditions might want to read addi-
tional properties of the CollectionChangeEvent. This
needs to be addressed.

5. CONCLUSIONS
So far, we have elaborated the new concepts for an elegant
handling of PropertyChange Events with Fujaba Statecharts
and we have evaluated various examples to show the value
of this new feature. These examples show that our proposal
is efficient and it reduces the model complexity for a reac-
tive system, significantly. We have started to implement
this new approach through an adaption of the correspond-
ing CodeGen2 templates (See [1] for details). An extension
of Fujaba’s meta model for Statecharts seems not necessary.
Thus, we will be able to present a working code generation
and running examples at the FujabaDays 2009.

This paper enables the use of Fujaba Statecharts for mod-
eling reactions to model changes. Beyond this, we currently
investigate the use of Fujaba Statecharts for modeling asyn-
chronous remote procedure calls, RPCs, in case of Google
Web Toolkit (GWT), where one needs to provide RPC re-
sult callback handlers. We want to model such callbacks
with Fujaba Statecharts elegantly as well.

6. REFERENCES
[1] L. Geiger, C. Schneider, and C. Record. Template- and

modelbased code generation for MDA-tools. In 3rd
International Fujaba Days, Paderborn, Germany, 2005.

[2] H. J. Köhler, U. Nickel, J. Niere, and A. Zündorf.
Integrating uml diagrams for production control
systems. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages
241–251, New York, NY, USA, 2000. ACM.

[3] C. Schneider. CoObRA: Eine Plattform zur Verteilung
und Replikation komplexer Objektstrukturen mit
optimistischen Spe rrkonzepten. PhD thesis, 2007.

[4] A. Zündorf. Rigorous object oriented software
development. Habilitation Thesis, University of
Paderborn, 2001.

27

Figure 6: Generated code for an property change event trigger

Figure 7: Indirect Property declared as event trigger with condition

Figure 8: Generated code for a nested/indirect property change event trigger

28

Evolution of Modelling Languages

Bart Meyers
Modelling, Simulation and Design Lab (MSDL)

University of Antwerp
Middelheimlaan 1

B-2020 Antwerp, Belgium
Bart.Meyers@ua.ac.be

Hans Vangheluwe
Modelling, Simulation and Design Lab (MSDL)

University of Antwerp
Middelheimlaan 1

B-2020 Antwerp, Belgium
Hans.Vangheluwe@ua.ac.be

ABSTRACT
Over the course of the complete life cycle of complex software-
intensive systems and more importantly of entire product families,
evolution is inevitable. Not only instance models, but also entire
modelling languages are subject to change. This is in particular true
for domain-specific languages. Up to this day, modelling languages
are evolved manually, with tedious and error-prone migration of for
example instance models as result. This position paper discusses
the different evolution scenarios for various kinds of modelling ar-
tifacts, such as instance models, meta-models and transformation
models. Subsequently, evolution is de-composed into four primi-
tive scenarios such that all possible evolutions can be covered. The
pre-requisites for implementing this approach are discussed, show-
ing how a number of these are not yet supported by Fujaba. We sug-
gest that using our structured approach in Fujaba will allow a rel-
atively straightforward implementation of (semi-)automatic model
evolution.

1. INTRODUCTION
In software engineering, the evolution of software artifacts is ubiq-
uitous. These artifacts can be programs, data, requirements, docu-
mentation, but also languages. Language evolution applies in par-
ticular to domain-specific modelling (DSM), where domain-specific
languages (DSLs) are specifically designed to minimize accidental
complexity by using constructs closely coupled with their domain.
This results in a reported productivity increase of a factor 5 to 10
[10]. DSLs must be quickly built and used, and grow incremen-
tally. A formal underpinning for DSM is given by multi-paradigm
modelling (MPM) [15].

The high dependence on their domains and the need for instant de-
ployment make DSLs highly susceptible to change. Such an evo-
lution of a language can have substantial consequences, which will
be explained throughout this paper. Early adopters of the model-
driven engineering paradigm dealth with this evolution problem
manually. However, such a pragmatic approach is tedious and error-
prone. Without proper methods, techniques and tools to support
evolution, model-driven engineering in general and domain-specific
modelling specifically will not scale to industrial use.

Figure 1: A model and its relations in MPM.

1.1 Modelling Languages
To allow for a precise discussion of language evolution, we briefly
introduce the concepts fundamental to modelling languages, in the
context of multi-paradigm modelling [5].

The two main aspects of a model are its syntax (how it is repre-
sented) and its semantics (what it means).

Firstly, the syntax comprises concrete syntax and abstract syntax.
The concrete syntax describes how the model is represented (in 2D
vector graphical form for example), which can be used for model
input as well as visualization. The abstract syntax contains the
essence of the structure of the model (as an abstract syntax graph),
which can be used as a basis for semantic anchoring. A single
abstract syntax may be represented by multiple concrete syntaxes.
There exists a mapping between a concrete syntax and its abstract
syntax, called the parsing mapping function. There is also an in-
verse mapping, called the pretty printing mapping function. Map-
pings are usually implemented, or can be at least represented, as
model transformations.

Secondly, the semantics of a model are defined by a complete, total
and unique semantic mapping function which maps every model
in a language onto an element in a semantic domain, such as dif-
ferential equations, Petri Nets, or the set of all behaviour traces.
Semantic mapping functions are performed on the abstract syntax
for convenience.

A meta-model is the finite and explicit description of the abstract
syntax of a language. Often, the concrete syntax is also described
by (another) meta-model. Semantics are however not covered by
the meta-model. The abstract syntax of the semantic domain itself
will of course conform to a meta-model in its own right.

Figure 1 shows the different kinds of relations a model m is in-

29

volved in. Relations are visualized by arrows, “conform to”-rela-
tionships are dotted arrows. The abstract syntax model m con-
forms to its meta-model MM. There is a bidirectional relationship
κi (parsing mapping function and pretty printing mapping func-
tion) between m and a concrete syntax κi(m). κi(m) conforms to its
meta-model MMκi . Semantics are described by the semantic map-
ping function M, and map m to a model M(m). M(m) has syntax
which conforms to MMM . Additionally, there may be other trans-
formations Ti defined for m.

2. RELATED WORK
In this section other work related to evolution is presented and some
useful concepts are introduced.

2.1 Model Differencing
In order to be able to model evolution in-the-large, one should be
able to model differences between two versions of a model. This
can of course be done by using lexical differencing, as used for text
files, on the data representation of the model. However, the result of
such analysis is often not useful, as (1) the differences occur at the
granularity level of nodes, links, labels and attributes and (2) mod-
els are usually not sequential in nature and equivalences between
models will not be taken into account. Hence, model differencing
should be done at the appropriate level of abstraction. Some useful
research has been done in this area [1, 17, 13, 23, 4]. Existing ap-
proaches typically rely on the abstract syntax graphs (ASGs) of the
two models, and mainly traverse both graphs in parallel. Nodes in
the graphs are matched by matching unique identifiers [1, 17], or
by a number of heuristics [13, 23]. However, no large-scale version
control system that computes the differences between graph-like
models exists yet.

Next to the problem of finding differences, one should be able to
represent them as a model, which we will call the delta model.
There are two kinds of representations: operational and structural
representations. In the operational representation, the difference
between two versions of a model is modelled as the edit oper-
ations (create/read/update/delete) that were performed on the on
one model to arrive at the other [1, 8]. When these operations are
recorded live from a tool, this strategy is quite easy and powerful,
but dependent on that particular tool and hard to visualize. In struc-
tural representations, either the model (or its DOM representation)
is coloured [17, 23, 13, 19] or a designated delta model is created
which can be used by modelling tools as yet another model [4, 20].

2.2 Model Co-Evolution
When the syntax of a modelling language evolves (i.e., the meta-
model evolves), the most obvious side-effect is that its instance
models are not conform to the new meta-model. Therefore, the
co-evolution of models has become a popular research topic. This
research is inspired by evolution in other domains, such as grammar
evolution [18], database schema evolution [2] and format evolution
[12].

It is widely accepted that a model co-evolution (i.e., migration) is
best modelled as a model transformation [24, 11, 20, 9, 7, 22, 21,
3, 8], which we will call the migration transformation. Grushko et
al. write this transformation manually using the Epsilon Transfor-
mation Language (ETL) [7].

Most of the approaches however define some specific operations
as building blocks for evolution, similar to the operational repre-
sentation of model differences. Such operations typically include

Table 1: Evolution operations as presented in [3].
Operation type Operation
Non-breaking
operations

Generalize meta-property
Add (non-obligatory) meta-class
Add (non-obligatory) meta-property

Breaking and
resolvable
operations

Extract (abstract) superclass
Eliminate meta-class
Eliminate meta-property
Push meta-property
Flatten hierarchy
Rename meta-element
Move meta-property
Extract/inline meta-class

Breaking and
unresolvable
operations

Add obligatory metaclass
Add obligatory metaproperty
Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

“create meta-class”, “restrict multiplicity on meta-association” or
“rename meta-attribute” and are related to object-oriented refactor-
ing patterns. These operations, which we will call delta operations,
are reusable. Conveniently, migration transformations can be gen-
erated from sequences of delta operations. It is important that any
possible evolution can be modelled, but there is a general consensus
that the proposed sets of delta operations do not suffice. In a very
recent approach, Herrmannsdörfer et al. try to solve this problem
by repeatedly extending their list of delta operations [8]. In addi-
tion, they support customized evolution. This ensures expressive-
ness, but the migration transformation code must be implemented
manually.

Gruschko et al. make a distinction between non-breaking, resolv-
able and unresolvable operations. Non-breaking operations do not
require co-evolution. Inconsistencies caused by resolvable opera-
tions can be resolved by co-evolution. However, model co-evolution
for unresolvable operations requires additional information in order
to execute. For example, when a “create obligated meta-feature”-
operation is performed on a meta-model, then a new feature is cre-
ated for each instance. However, the information about what the
initial value of this feature will be, is unknown, as it differs from
model instance to model instance. As an illustration, the opera-
tions proposed by Cicchetti et al. [3] are shown in Table 1. Note
the similarities with refactoring patterns.

3. EVOLUTION FOR MPM
While model co-evolution as described above implements automa-
tion to some extent, there are other artifacts that might have to co-
evolve. This section presents an exhaustive survey of possible evo-
lutions and co-evolutions.

3.1 Syntactic Evolution
To get a general idea of the consequences of evolution, let us go
back to Figure 1. When MM evolves, all models m have to co-
evolve, which was discussed in Section 2.2. However, as the rela-
tions of Figure 1 suggest, the evolution of MM might affect other
artifacts. First, similar to m, (the domain and/or image of) transfor-
mations such as κi, Ti and M might no longer conform to the new
version of the metamodel. As a consequence, they too have to co-
evolve. This makes all relations (syntactically) valid once again,
which means that the system is syntactically consistent again. In

30

short, meta-model evolutions can only be useful when both their
model instances and related transformation models can co-evolve.

However, there are more scenarios. Firstly, it is possible that the
meta-model changes in such a way that the co-evolved models be-
come structurally different, for example by removing a language
construct. This means that each transformation defined for each
co-evolved model has to be re-executed. The resulting co-evolved
models can also be structurally different, so a chain of required
evolution transformation executions may be required.

Secondly, changes made to one meta-model can reflect on another
meta-model. For example, when a meta-element is added to a meta-
model, a new meta-element is often also added to the meta-model
of the concrete syntax(es) in order to be able to visualize this new
construct. A similar effect can occur between any two related (by
transformation) meta-models. In this sense, a chain of meta-model
changes is again possible.

Thirdly, until now, we only discussed meta-model evolution as the
driving force. Evolution of other artifacts, such as instance models
and transformation models should also be taken into account. The
case of the evolution of a model is trivial: related models can co-
evolve by executing the respective transformations. Note however
that a co-evolved model may be a meta-model, so that might trigger
a number of co-evolutions of its own.

The case of the evolution of a transformation model can get com-
plicated. In many cases though, the evolved transformation simply
has to be executed again on each model it is defined for. However,
this would restrict a transformation evolution to remain compliant
to its source and target metamodels, which is not always what we
want. For example, it might be possible that a new language is cre-
ated by mapping rules for each language construct of an existing
language. This is in particular convenient for creating a concrete
syntax. On top of this, there are two additional special cases of
transformation evolution. Firstly, the evolution of the parsing map-
ping function or the pretty printing mapping function requires the
other one to co-evolve in order to maintain a meaningful relation
between abstract and concrete syntax. Such a co-evolution can be
generalized to any bidirectional transformation. Secondly, the evo-
lution of the semantic mapping function requires a means to reason
about semantics in order to trigger co-evolution, which brings us to
the concept of semantic evolution.

3.2 Semantic Evolution
As mentioned above, semantics of a model are defined by its se-
mantic mapping function to a semantic domain. Some analysis
can be performed on models in this semantic domain (for example:
check for a deadlock in a Petri Net). The results of this analysis
can be considered a property of the model, or P(m). A semantic
mapping function is constructed in such a way that some proper-
ties PM(m) hold both for a model and for its image under the se-
mantic mapping (i.e., the intersection of both property sets). These
common properties have to be maintained throughout evolution.
An evolution is a semantic evolution if some of these properties
change. This typically happens when the requirements of a system
change.

In general, when a model m in a formalism whose semantics is
given by semantic mapping function M evolves to m’, then PM(m’)
must be exactly PM(M(m)) modulo the intended semantic changes.
In general, when two versions of a system are (a) equal modulo

Figure 2: Co-evolution in (a) model evolution, (b) image evolu-
tion, (c) domain evolution and (d) transformation evolution.

their intended syntactic and semantic changes and (b) syntactically
consistent, then the evolution of the system is continuous. Only
continuous evolutions are deemed correct (and meaningful).

4. DE-CONSTRUCTING EVOLUTION
As discussed in the previous section, there are infinitely many pos-
sible co-evolution scenarios. Nevertheless, these scenarios can al-
ways be broken down into a few basic ones. Figure 2 shows the
possibilities. Again, arrows are transformations and dotted arrows
are “conforms to”-relationships. Dashed arrows denote a (semi-
)automatic generation. Each diagram starts from a bold relation
between two meta-models MMD and MMI , modelled as a transfor-
mation T of models m.

4.1 Model Evolution
Figure 2 (a) shows model evolution. Some model m evolves to m’.
In step 1 (the only step), a delta model ∆mis constructed (either
automatically or manually) that models the evolution of m to m’.
This means that m’ = m + ∆m. The evolution itself is typically
represented as a migration transformation, namely E. The equation
mE = m + ∆m = m’ is valid. As previously discussed, because
m evolved to m’, every transformation T must be executed again,
resulting in T(m’), conform to MMi.

4.2 Image Evolution
Image evolution is shown in Figure 2 (b). Suppose that a meta-
model MMI evolves to MMI′ . In step 1 a delta model ∆MMI is
constructed to represent the difference between MMI and MMI′ . In
step 2 a migration transformation E is generated out of ∆MMI . The
execution of E co-evolves models T(m) to T(m)E , so that they con-
form to the new meta-model MMI′ . Moreover, the execution trans-
formation T has to result in valid models (i.e., conform to MMI′).
As a consequence, T has to co-evolve to a new transformation T’
(as in step 3), which is able to transform every possible m that con-
forms to MMD, to T(m)E . The diagram presents a solution for the

31

Figure 3: Set representation of domain-evolution. The evolu-
tion E(D) does not map onto D’ exactly. For m’, the constraint
T’ = T◦E−1 does not hold!

generation of this T’: for every m, T’(m) = E(T(m)) holds, or in
short, T’ = E ◦ T. The co-evolution T’ can be simply composed out
of T and E.

4.3 Domain Evolution
Figure 2 (c) shows domain evolution, where MMD evolves. The
artifacts that co-evolve are similar to image evolution. This time
however, T can be expressed as T’ = T ◦ E−1. So, in this case,
an inverse transformation E−1 needs to be constructed. Unfortu-
nately, this equation does not hold for the entire domain D’, as
shown in Figure 3. The migration transformation E projects the
entire domain D to E(D), but it is possible that E(D) 6= D’. For m
in Figure 3 it may be possible possible to construct E−1 such that
T’(mE) = T(E−1(mE)) holds. However, for m’, which is an element
of D’ \ E(D), this is not possible. Nevertheless, T’ must apply to
its entire domain D’, so the equation T’ = T ◦ E−1 can not be used
for all possible models conform to MMD′ .

4.4 Transformation Evolution
Figure 2 (d) shows transformation evolution. The requirements of
a system can change, resulting in the adjustment of the (desired)
properties of a model. If transformations evolve according to a
delta model ∆T, it is possible that they only have to be executed
once again. In this case, the changes on the transformation are
limited: the image of T’ must conform to MMi. As previously
discussed, other artifacts might possible co-evolve. In this case, a
migration transformation E must be composed from which a delta
model ∆MMi can be constructed.

4.5 Evolution Scenario Amalgamation
Using a combination of these four scenarios, all possible evolu-
tions can be carried out. Note however that the problem of Fig-
ure 3 applies, so automated co-evolution is not always possible.
The so-called unresolvable changes can be classified as models in
E(D) \ D’. On the other hand, the transformation has to support
the models in D’ \ E(D). We call this the projection problem. In
general, the projection problem arises when domE (T) * dom(T).

5. PRE-REQUISITES FOR EVOLUTION
Following the discussion above, the proposed approach depends on
a few more general techniques. Many of these pre-requisites are

currently not supported by Fujaba. As a consequence, implement-
ing all forms of evolution is currently not feasible in practice in
Fujaba. The following pre-requisites (in order of priority) are nec-
essary or at least useful for implementing evolution:

• higher order transformation: the automatic generation of mi-
gration transformations out of delta models requires support
for higher order transformations, which are transformations
that take other transformations as input and/or output. This
is not supported by Fujaba, as the transformation language
is not modelled explicitly (i.e., the meta-model is not avail-
able). There are several other uses for higher order transfor-
mation, in and out of the context of evolution, which are not
discussed here [3, 16, 14], making higher order transforma-
tion a valuable feature in any MDE-tool;

• model differencing: in order to support automated evolution
on a industrial level, it must be possible to generate delta
models out of two versions of a model. Moreover, it is de-
sirable that the activity of meta-modelling does not have to
change in order to support automated evolution. The Fujaba
Difference Tool Suite uses the SiDiff framework to calculate
and visualize the difference between two models’ XMI doc-
uments [19]. A so-called Difference Viewer Plugin shows a
coloured difference model in Fujaba;

• transformation inversing: in order to automatically co-evolve
a transformation in domain evolution, the inverse of the mi-
gration transformation is needed. In Fujaba this is implicitly
featured by providing the possibility to implement bidirec-
tional transformations using Triple Graph Grammars (TGGs)
in MoTE [6]. However, in that case, one is restricted to the
use of bidirectional transformation with triple graph gram-
mars. It remains an open question whether TGGs are expres-
sive enough to obtain the inverse of the migration transfor-
mation (which may for example delete elements).

• representation of semantics: as not only the syntax but also
semantics of a modelling language evolves, there must be
a way to represent these semantic changes. A more precise
means to reason about semantics preservation (through prop-
erties?) is needed.

If all of these pre-requisites are implemented in Fujaba, a frame-
work for evolution can be relatively easily implemented.

6. CONCLUSIONS
Extensive adoption of model-driven engineering is obstructed by
the lack of support for automated evolution. Especially in domain-
specific modelling, modelling languages are used while under de-
velopment or under ceaseless change. When such languages evolve,
support for (semi-)automated co-evolution must be available. To
this day, research has been done only to support model co-evolution
for meta-model evolution. Transformations or semantics are not yet
taken into account.

We addressed this problem by de-constructing all possible (co-)evo-
lution processes into four basic scenarios, which can be combined.
We showed that the co-evolution of transformations can be prob-
lematic, because a transformation always needs to be able to trans-
form all possible elements in its domain.

32

We discussed the pre-requisites for an implementation of automated
evolution. It turns out that, in order to implement support for evo-
lution, a number of pre-requisites, such as higher order transforma-
tion, model differencing, transformation inversing and semantics
represention, have to be dealt with. Like all other current tools, Fu-
jaba only supports a few of these, with higher order transformation
as major absentee.

7. ACKNOWLEDGMENTS
We would like to thank Tihamér Levendovszky for the fruitful dis-
cussions on the subject of this paper.

8. REFERENCES
[1] M. Alanen and I. Porres. Difference and union of models,

2003.
[2] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics

and implementation of schema evolution in object-oriented
databases. SIGMOD Rec., 16(3):311–322, 1987.

[3] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. In
EDOC ’08: Proceedings of the 2008 12th International
IEEE Enterprise Distributed Object Computing Conference,
pages 222–231, Washington, DC, USA, 2008. IEEE
Computer Society.

[4] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A metamodel
independent approach to difference representation. Journal
of Object Technology, 6(9):165–185, 2007.

[5] H. Giese, T. Levendovszky, and H. Vangheluwe. Summary of
the workshop on multi-paradigm modeling: Concepts and
tools. In T. Kühne, editor, Models in Software Engineering
Workshops and Symposia at MoDELS 2006, volume 4364 of
LNCS, pages 252–262. Springer-Verlag, October 2006.

[6] H. Giese and R. Wagner. Incremental model synchronization
with triple graph grammars. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, editors, Proc. of the 9th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), Genova, Italy, volume
4199 of Lecture Notes in Computer Science (LNCS), pages
543–557. Springer Verlag, 10 2006.

[7] B. Gruschko, D. Kolovos, and R. Paige. Towards
synchronizing models with evolving metamodels. In
Proceedings of the International Workshop on Model-Driven
Software Evolution at IEEE European Conference on
Software Maintenance and Reengineering (ECSMR), 2007.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens. Cope -
automating coupled evolution of metamodels and models. In
Proceedings of the 23rd European Conference on
Object-Oriented Programming (ECOOP), pages 52–76,
2009.

[9] J. Hoessler, J. Soden, Michael, and H. Eichler. Coevolution
of models, metamodels and transformations. Models and
Human Reasoning, pages 129–154, 2005.

[10] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, March
2008.

[11] R. Lämmel. Coupled Software Transformations (Extended
Abstract). In First International Workshop on Software
Evolution Transformations, Nov. 2004.

[12] R. Lämmel and W. Lohmann. Format Evolution. In Proc. 7th
International Conference on Reverse Engineering for
Information Systems (RETIS 2001), volume 155 of
books@ocg.at, pages 113–134. OCG, 2001.

[13] Y. Lin, J. Gray, and F. Jouault. Dsmdiff: A differentiation
tool for domain-specific models. European Journal of
Information Systems, 16(4, Special Issue on Model-Driven
Systems Development):349–361, 2007.

[14] B. Meyers and P. Van Gorp. Towards a hybrid transformation
language: Implicit and explicit rule scheduling in story
diagrams. Sixth International Fujaba Days, September 18–19
2008.

[15] P. J. Mosterman and H. Vangheluwe. Computer automated
multi-paradigm modeling: An introduction. In
SIMULATION80, volume 9, pages 433–450, 2004.

[16] O. Muliawan. Extending a model transformation language
using higher order transformations. Reverse Engineering,
Working Conference on, 0:315–318, 2008.

[17] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of uml diagrams. SIGSOFT Softw. Eng. Notes,
28(5):227–236, 2003.

[18] M. Pizka and E. Jurgens. Automating language evolution. In
TASE ’07: Proceedings of the First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering,
pages 305–315, Washington, DC, USA, 2007. IEEE
Computer Society.

[19] M. Schmidt and T. Gloetzner. Constructing difference tools
for models using the sidiff framework. In ICSE Companion
’08: Companion of the 30th international conference on
Software engineering, pages 947–948, New York, NY, USA,
2008. ACM.

[20] J. Sprinkle and G. Karsai. A domain-specific visual language
for domain model evolution. Journal of Visual Languages
and Computing, 15, April 2004.

[21] S. Vermolen and E. Visser. Heterogeneous coupled evolution
of software languages. In MoDELS ’08: Proceedings of the
11th international conference on Model Driven Engineering
Languages and Systems, pages 630–644, Berlin, Heidelberg,
2008. Springer-Verlag.

[22] G. Wachsmuth. Metamodel adaptation and model
co-adaptation. In E. Ernst, editor, Proceedings of the 21st
European Conference on Object-Oriented Programming
(ECOOP’07), volume 4609 of Lecture Notes in Computer
Science, pages 600–624. Springer-Verlag, July 2007.

[23] Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE ’05: Proceedings
of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 54–65, New York,
NY, USA, 2005. ACM.

[24] J. Zhang and J. Gray. A generative approach to model
interpreter evolution. In OOPSLA Workshop on
Domain-Specific Modeling, pages 121–129, 11 2004.
Vancouver, VC.

33

Fujaba hits the Wall(-e)

Pieter Van Gorp
Eindhoven University of

Technology,
School of Industrial

Engineering
De Lismortel 2

5600MB, Eindhoven, The
Netherlands

p.m.e.v.gorp@tue.nl

Ruben Jubeh,
Bernhard Grusie
Kassel University,

Software Engineering Group
Wilhelmshöher Allee 73
34121 Kassel, Germany

ruben@cs.uni-kassel.de,
bernhard.grusie@gmx.de

Anne Keller
∗

University of Antwerp,
Dept. of Mathematics and

Computer Science
Middelheimlaan 1

2020, Antwerpen, Belgium
anne.keller@ua.ac.be

ABSTRACT
With the ever increasing pervasiveness of software in every
day’s life, it is quite easy to explain children the impor-
tance of software development. Especially when using gad-
gets such as LEGO robots, one can fascinate young pupils.
It is much harder though to find a fair link to the actual edu-
cational and research programs from a particular university
without blowing the audience away with details of a partic-
ular Java framework. This paper illustrates how one can use
Fujaba to involve children from 8 to 18 years old in realistic
requirements elicitation workshops. The children implicitly
get in touch with the object-oriented paradigm by playing
in the real world the communication between objects in a
robot’s computer. Fujaba’s visual object browser provides
a convincing means to illustrate that the game adequately
represents the robot’s internals.

1. INTRODUCTION
Fujaba has been used for educational robotics programming
since 2002 [2, 3]. The Fujaba NXT framework provides the
technical infrastructure for interacting with the NXT ver-
sion of the LEGO Mindstorms hardware [4]. So far, there
has been more focus on the fine-tuning and debugging of
this framework than on the elaborate use thereof. This pa-
per describes the current state of the NXT framework and
provides an overview of the quickly growing set of educa-
tional projects in which it has been used so far.

This work is based on a collaboration between the devel-
opers of the framework (from the University of Kassel) and
external ”users” thereof (from the University of Antwerp and
the University of Eindhoven). From this collaboration, one
can conclude that: (i) the framework supports smooth mi-
grations to new implementation layers, and (ii) even when
both teams use completely different robot hardware designs,
one can share valuable software artifacts.

This paper also specifically points to the limitations of the
NXT framework that was presented on the Fujaba Days in

∗This work was partially funded by (i) the Interuniversity
Attraction Poles Programme - Belgian State – Belgian Sci-
ence Policy, project MoVES, and (II) the Research Founda-
tion – Flanders (FWO) project G.0422.05. Additionally, the
authors wish to thank Nick Baetens and Glenn van Loon for
both their conceptual as well as practical work on the copy
robot.

2008 and indicates which problems were overcome and which
tough issues remain unsolved so far. As a major novelty, this
paper shows how to combine story driven modeling (SDM [1,
8]) with Statechart modeling for optimizing model readabil-
ity. Obviously, such readability is an essential property of
models that are used in an educational context. The remain-
der of this text is structured as follows: Section 2 briefly in-
troduces the Fujaba NXT framework that is used through-
out this paper. Section 3 presents a brief overview of the
educational projects that use this framework. Section 4 de-
scribes which lessons have been learned from developing the
NXT examples for these projects. Finally, Sections 5 and 6
close this paper by summarizing, concluding and pointing to
future work. An extended version of this paper is publicly
available as a technical report [6].

2. THE FUJABA NXT FRAMEWORK
This section briefly revisits those concepts from [4] that are
essential for understanding the core of this paper.

The Fujaba NXT framework adds the ability to model com-
plete applications for LEGO Mindstorms in Fujaba using
model driven development with a graphical programming
environment. It relies on the LeJOS [7] framework, a Java
firmware and API for LEGO Mindstorms. The basic ap-
proach is to remotely control a NXT with a program running
on a host PC. The main advantage of remote controlling the
NXT is that it can be easily debugged with a Standard Java
Debugger.

Using the eclipse Dynamic Object Browsing System (eDOBS),
one can (i) inspect the java heap space and watch a visu-
alization of objects, their attributation and links and (ii)
interactively change attributes (or links) and invoke meth-
ods. This is very useful in the NXT context, as one can
control the robot interactively by invoking motor methods
manually within the context of the running program.

3. EDUCATIONAL PROJECTS
This section presents the educational projects in which the
NXT library was applied. Each project was developed with
a different target audience in mind. Therefore, for each
project the strengths, weaknesses, opportunities and inher-
ent limitations are evaluated.

34

Figure 1: UniKassel Forklift robot in action

3.1 Towers of Hanoi: Fujaba Robotics Classic
The Towers of Hanoi example was first elaborated by Di-
ethelm et al. [2, 3]. The 2002 solution relies on very lim-
ited LEGO hardware of the so-called RCX (Robotic Com-
mand Explorer) type. That RCX hardware has (among
other problems) rather unreliable infrared PC communica-
tion. Since 2008, the NXT library relies on more modern
hardware (e.g., bluetooth instead of infrared communica-
tion). In [4], the second author of this paper describes how
this overcomes much of the problems from 2002. A remain-
ing weak point of the 2008 solution is that it makes the robot
drive blind just with the help of a single touch sensor. In
the 2009 version, the robot uses straight black lines leading
from the disc places to find each place. A single light sensor
is used to detect that the robot crosses the black line while
driving between the places. Figure 1 shows the robot with
a disc picked up, following the black line on the ground.

Mind the so-called “continuous track” wheels, whose design
is primarily known from caterpillar tanks. As discussed
in [4], this wheel design provides a precise steering mech-
anism and the capability of turning on the spot, and is ca-
pable of carrying high loads. The hardware design has been
improved further in 2009 [6].

3.2 Forklift in Factory
This example has been designed in the context of a promo-
tion event at the University of Antwerp in 2008. During
one week, the university welcomed secondary school classes
in order to motivate them for higher education in exact sci-
ences. The local Software Engineering groups working with
Fujaba aimed to seize this opportunity for making students
between the age of 14 and 18 excited about model-driven
software development.

The goal of the role playing game is to derive behavioral
models for an autonomous forklift robot. This robot needs
to pick up all goods from a bill of materials and deliver them
to an output line. More specifically, the robot needs to pick
up four wheels, an engine, and a bodywork kit to enable the
assembly of a car. In practice, students should mimic the
different pieces of a robot (its navigator, its wheels, its sen-
sors, ...) and walk through a classroom. Tables are arranged
in rows that mimic the different shelves in the factory. At

the end of each row, they can pick up an item. The robot is
initialized next to the first row and should return there for
item delivery.

3.3 A Copy Robot
The copy robot example was developed by students of the
University of Antwerp in the course of a student project fol-
lowing the science week held at the University of Antwerp.
The goal was to produce a educational demonstration in-
troducing computer science principles to secondary school
students in their last two years of school and consequently
motivating them for computer science studies in general.
The aim was to create a reusable teaching unit for occa-
sions such as the prior science week. The result was a 1,5
hour interactive lecture that was held in a secondary school
in Essen, Belgium. About 20 students attending the school’s
computer science class, between 16 and 17 years old, took
part in the lecture.

The robot developed for this demonstration copies an im-
age consisting of non-crossing, connected lines by scanning
it with a light sensor and drawing it on a sheet of paper with
a attached pen. The choice of a copy robot was motivated
by the idea that copying and scanning are well known mech-
anisms that can be understood instantly. Additionally, the
copy robot offers a physically compact setup (i.e., does not
drive around) that is well suited for the intended interactive
lecture setup (see Figure 6).

3.4 Wall•E Rescues Eve
Less than one year after the science week at the University
of Antwerp, one of the instructors was asked to organize
at Eindhoven University of Technology (TU/e) a science-
related workshop for families with kids. It seemed promising
to use this event as an opportunity to tackle some of the
weaknesses of the Factory example described above. The
so-called ”open day” targeted kids between the age of 8 and
12 and a session should take about half an hour at most.

The following considerations have driven the design of a new
Fujaba NXT example: (i) all existing examples were too
complicated for the children younger than 12 years of age,
(ii) the 2008 forklift design and its multi-step turning ap-
proach was a promising basis, (iii) several participants to
the 2008 Factory Robot workshop had made enthusiastic
references to the Wall•E movie.

Figure 7 shows an example execution of a Wall•E robot, con-
trolled by a Fujaba NXT application. Note how the robot
drives from the black line several times and backs up itera-
tively to find a state where his both light-sensors are on top
of the black line again.

When arranging tables as a corridor in an S-shaped path,
12 year old kids need about 5 minutes to walk from start to
end. In order to avoid cheating, one can blindfold particular
role players.

3.5 Evaluation of the Examples
The main strengths of the Towers of Hanoi example (cfr.,
Section 3.1) are that (i) it has been implemented several
times already (which facilitates a comparison between the

35

different approaches), and (ii) it involves challenging tasks
in the real world (picking up a block, delivering it at a vari-
able height, moving from tower to tower, ...). An important
weakness is that it requires an understanding of recursion.
It turns out that very little children come to the intended
solution spontaneously. Therefore, the Hanoi example will
primarily be used as an internal testcase: from that per-
spective it presents the opportunity to use new sensor types
(compass sensor for accurate 90-degree turns, ultrasonic,
...). Reusable functionality will obviously be moved to the
appliation-independent library layer.

The forklift example (cfr., Section 3.2) is designed for stu-
dents of 16 years or older. The example appeals especially
to those that are concerned with industrially relevant edu-
cation. The Copy Robot example (cfr., Section 3.3) has the
advantage that the robot supports a detailed treatment of
hardware related issues. A current limitation is that it is
programmed in Java directly. This is due to the fact that it
was programmed by students that were unfamliar with Fu-
jaba. The fact that these students did not pick up the Fujaba
modeling method autonomously did challenge us in improv-
ing the basic building blocks in the Fujaba NXT framework.
Additionally, we are reminded of the importance of good
documentation.

Since the Wall•E example (cfr., Section 3.4) has been devel-
oped most recently, we have been able to take into account
the experience from performing sessions with the other ex-
amples [6]. The new example is designed to make kids
from primary school enthusiastic about software engineer-
ing. About 80 children between 5 and 12 years of age have
completed a survey that was designed to identify which parts
of the educational session that children like most (and least)
and which parts that children understand best (and worst).
A key conclusion from this survey is that more time should
(relatively) be spent with eDOBS: although quite a number
children very much enjoy the role-playing game, a compa-
rable amount of children wants to interact more with the
actual robot. In fact, we have already experimented with
some variants to the standard session setup. In one particu-
lar case, we noticed that a group of children already under-
stood very much of the robot’s internals after analyzing how
the robot completed the scenario shown on Figure 7. There-
fore, we skipped the role-playing and used eDOBS directly,
with remarkable success.

4. LESSONS LEARNED
This section presents the main lessons that the authors have
learned after the publication of [4]. We present new model-
ing guidelines and a list of known open issues.

4.1 Modeling Guidelines
The common approach to model a custom robot is to sub-
class one or more classes from the core API, like FNXT. This
way, default behaviour can be easily overridden. Figure 2
shows an extract of the Fujaba NXT API: the FMotor and
FTouchSensor class.

Some methods of these classes are synchronous whereas oth-
ers are not. This is neccessary to model efficiently, but
for inexpierenced developers, it is very difficult to distin-
guish between these. For example, all waitFor...()-methods

Figure 2: Class diagram extract of the Fujaba NXT
library layer.

Figure 3: Example of SDM bad style.

are blocking, forward() and backward() not, whereas ro-
tate(long) is synchronous as well: it returns when the rotate
task is completed. A waitFor...() method implicitly encodes
an event handler.

When using the waitFor...() methods frequently in story di-
agrams, one is scattering implicit event handlers. Figure 3
for example contains some, rather hard to find, waitIfLast
and waitIfEmpty calls.

In general, Figure 3 illustrates the authors’ negative expe-
riences with the Story Driven Modeling of multi-threaded
event handling. These experiences have eventually lead to
the combined use of story diagrams and statecharts. Obvi-
ously, Figure 3 is not intended to be readable. In fact, it does
not even fit on a mainstream notebook screen. One could
work around this limitation by refactoring some fragments
to separate methods. However, the core complexity, which
relates to the explicit modeling of an event queue, cannot
be removed using Story Driven Modeling constructs. Mind
that this is not only an issue of forced over-specification (i.e,
a lot of work) but more dramatically we have learned the
hard way that this modeling style is very error-prone and
hard to debug.

36

Figure 4: Line Follower algorithm as a statechart.

Statecharts seem to be a feasible solution to overcome the
problems related to the Story Driven Modeling of event han-
dling: each statechart runs in a separate thread implicitly
while wait and notify methods are called when expected,
behind the scenes. The framework ensures that all sensor
events can be used to trigger state transitions. Currently,
we use a very simple string encoding of the event triggers:
<sensor-port> <state>, where sensor-port is s1, s2, s3
or s4 referring the hardware ports at the NXT brick, and
state is black, white, pressed or released, depending on the
connected sensor type.

Figure 4 shows the statechart of a common task for a driving
robot: Follow a black line on the ground. The robot has two
light sensors attached, which both should follow a wide black
line. When one sensor goes off the line, it will read white,
and an event trigger either s2 white or s3 white is fired. The
statechart goes in one of the turn states and the robot will
turn until both sensors read black again.

Recall from Section 3 that for sequential domain algorithms
(e.g., let a robot collect goods from shelves) and basic nav-
igation modeling (e.g., make a trike turn right), story dia-
grams do not expose the bad style that is discussed in the
previous section. In fact, it does not make sense to replace
the use of story diagrams by statecharts completely: in sev-
eral cases, the pattern-based specification approach and the
use of icons appears a perfect fit for all children between 8
and 18 years of age. Therefore, a multi-formalism modeling
approach seems most appropriate.

Also mind that we decided only show to the children those
diagrams that illustrated good modeling style (see [6] for
examples). In the authors’ opinion, it is not yet relevant for
the children to learn from advanced pitfalls in the context of
sessions that are primarily intended to stimulate motivation
and a basic understanding.

4.2 Open Issues
Work on the Fujaba NXT framework and the construction
of the examples described in this paper has so far been quite
challenging. Although this should no longer be visible in a
finished example, it does have an impact on the number of
examples that has been completed successfully. The authors
are convinced that a core issue has been tackled with the new
statechart approach. However, the reader should be aware
that other challenging issues are still open. Therefore, this

section provides an overview of such issues and some known
workarounds. Although these issues have not been solved
yet, new developers of Fujaba NXT examples can save time
by taking into account the known dangers and pitfalls, as
experienced by the authors.

• when debugging Fujaba NXT applications (or embed-
ded software in general), one can often not easily make
erroneous behavior available for replay by other devel-
opers. This is due to the large amount of electrical
components that can have bugs or thoughput limita-
tions too (bluetooth dongles, electric cables, ...). So
far, the first and second author managed to collabo-
rate remotely by means of video sharing. In the case
that the other developer could not reproduce the un-
desirable behavior, the first developer understood he
had to consider deploying on another machine before
spending more time on software debugging. In future
work, best practices for using the simulation adapters
will be investigated to make the debugging cycle more
reliable and less time consuming.

• debugging multi-threaded software is a challenging task
in general. The following characteristics make debug-
ging the multi-threaded Fujaba NXT applications par-
ticularly hard to debug: when suspending a thread
running on the host computer, the related threads on
the LEGO components may continue to execute. To
tackle this, special debugging features should be added
to the Fujaba NXT framework (e.g., stopping all mo-
tors when suspending the VM on a breakpoint). This
can be tightly integrated with Design Level Debug-
ging [5]. Also mind that Design Level Debugging fa-
cilities would be very valuable too for the Statechart
models.

• The underlying LeJOS framework still exposes bugs
(obviously where they are least expected) and has a
counter-intuitive design. For example, the bluetooth
startup code is in the static initializer of the Motor
class.

5. SUMMARY AND CONCLUSIONS
This paper illustrates how the Fujaba NXT framework is ap-
plied with reasonable success in several educational projects.
An intended outcome of these projects is that the children
acknowledge that role playing can provide a useful basis for
programming. The underlying hypothesis is that this will
break perceptions (if any) of software development as a pure
asocial activity and we hope this attracts additional bright
people to the software industry that would otherwise have
choosen another path.

The framework consists of (i) Fujaba models that provide
some basic data structures and building blocks of primitive
sensor and motor functionality, and (ii) a set of hand-coded
wrapper classes that integrate third party (LeJOS) binaries.
The object-oriented nature of the Fujaba models enables
one to easily apply inheritance and delegation techniques to
deal with variability in robot hardware designs (e.g., contin-
uous track designs versus the trike design). The underlying
LeJOS framework does not have this characteristic.

37

The Fujaba NXT framework turns out to be useful for role-
playing sessions (at least) with kids between 8 and 18 years
old. From 2002 onwards, behavioral modeling was done
with story diagrams that generalized the behavior of story
boards, that in turn represented snapshots from a role play-
ing game [2]. The authors of this paper still acknowledge
that the unique strengths of Story Driven Modeling remain
(i) its semi-structured method for role-playing, (ii) the sim-
ple mental mapping for role players, since several domain
alogithms involve rewriting steps, (iii) its syntax specializ-
ability by means of a simple icon mechanism, and (iv) its
tool support for runtime visualization (eDOBS).

In 2008, the inherent limitations of this approach became
better understood and since 2009 one can bypass these limi-
tations by expressing event-based behavior using Statecharts.

6. FUTURE WORK
Section 4.2 already lists the technical issues that remain to
be solved. This section focuses on future work on the con-
ceptual level.

From the Copy Robot example, we learn the following: in-
structors cannot expect that bachelor or master students
without Fujaba training will use story diagrams (or state-
charts) spontaneously for the development of new Fujaba
NXT projects. Such students do rely on a story boarding
process but resort to pseudocode for generalizing method
behavior. The authors consider it a challenge for the Fujaba
community to provide more, and more elaborately docu-
mented, examples of story diagrams (and statecharts). The
authors themselves will continue their collaboration to con-
tribute such examples to the community. On the sort term,
the Fujaba NXT library will be extended with more ready-
to-reuse basic functionality.

Additionally, some university student projects related to Fu-
jaba NXT are being supervised and even more will be su-
pervized on the longer term. These projects should result in
(i) stable hardware/robot/sensor setups (with building in-
structions) and (ii) multiple modeling solutions for one given
problem and one or more robot designs.

7. REFERENCES
[1] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story

Diagrams: A New Graph RewriteLanguage Based on
the Unified Modeling Language and Java. In
Proceedings of the 6th International Workshop on
Theory and Application of Graph Transformation
(TAGT) , volume 1764 of LNCS, pages 296–309.
Springer Verlag, Nov 1998.

[2] I. Diethelm, L. Geiger, A. Zündorf. UML im Unterricht:
Systematische objektorientierte Problemlösung mit
Hilfe von Szenarien am Beispiel der Türme von Hanoi.
Erster Workshop der GI-Fachgruppe Didaktik der
Informatik, Bommerholz, Germany, Oct. 2002.

[3] I. Diethelm, L. Geiger, A. Zündorf. Fujaba goes
Mindstorms. Objektorientierte Modellierung zum
Anfassen; in Informatik und Schule (INFOS) 2003,
München, Germany, Sept. 2003.

[4] R. Jubeh. Simple robotics with Fujaba. In Fujaba
Days. Technische Universität Dresden, Sept. 2008.

[5] Leif Geiger. Design Level Debugging mit Fujaba. In
Informatiktage, Bad Schussenried, Germany, 2002. der
Gesellschaft für Informatik.

[6] P. Van Gorp, R. Jubeh, B. Grusie, and A. Keller.
Fujaba hits the Wall(-e) – Beta working paper 294,
Eindhoven University of Technology.
http://beta.ieis.tue.nl/node/1487, Nov. 2009.

[7] LeJOS, Java for Lego Mindstorms.
http://lejos.sourceforge.net/, 2009.

[8] A. Zündorf. Story driven modeling: a practical guide to
model driven software development. In G.-C. Roman,
W. G. Griswold, and B. Nuseibeh, editors, ICSE, pages
714–715. ACM, 2005.

38

Figure 5: Pictures from the Science Week event in Antwerp, 2008.

Figure 6: Copy Robot in action.

Figure 7: Example run of the Wall•E Rescues EVE scenario.

39

Synthesis of Component Behavior ∗

Tobias Eckardt, Stefan Henkler
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany

[tobie|shenkler]@uni-paderborn.de

ABSTRACT
Component-based architectures are widely used in the domain of
embedded real-time systems. For managing complexity and im-
proving quality of component-based architectures, separation of
concerns is one of the most important principles. For one com-
ponent, separation of concerns is realized by defining the overall
component functionality by separated protocol behaviors. One of
the main challenges of applying separation of concerns is the later
(application specific) composition of the separated, maybe interde-
pendent concerns. This is also one of the main disadvantages of
current component-based approaches as at least the separated spec-
ification and automatic integration of interdependent concerns is
not supported. Moreover, the overwhelming complexity of embed-
ded systems, which is especially present if these systems are also
of distributed real-time character, requires to also consider safety
requirements for the composition of the separated concerns. We
present an approach which addresses these problems by a well-
defined automatic composition of protocol behaviors with respect
to interdependent concerns specified as composition rules. The
composition is performed by taking a proper refinement relation
into account so that analysis results of the separated concerns are
preserved which is essential for safety critical systems.

1. INTRODUCTION
Component-based architectures are widely used in the domain of
embedded real-time systems. The main benefits of using compo-
nents are their support for information hiding and reuse. The in-
terface of a component is well defined by structural elements and a
collaboration of protocols (cf. [BSW00]). The overall component
behavior is defined by the (parallelly executed) protocol behaviors.
Dependencies between components are reduced to the knowledge
of interfaces or ports. Thus, a component can be exchanged if the
specified port remains fulfilled. The port and interface definitions
of architectural components therefore facilitate the construction of
complex functionality by the composition of existing components.

For managing complexity and improving quality of component-
based architectures, separation of concerns [Dij76] is one of the
most important principles. It enables primary software engineering
goals like adaptability, maintainability, extendability and reusabil-
ity. Accordingly, advanced applications of separation of concerns
have gained popularity like aspect-oriented programming (AOP)
[KLM97], for example.

∗This work was developed in the course of the Collaborative Re-
search Center 614 – Self-optimizing Concepts and Structures in
Mechanical Engineering – University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemein-
schaft.

One of the main challenges of applying separation of concerns is
the later (application specific) composition of separated, maybe
interdependent concerns [TOHS99]. In general, we can distin-
guish between structural, data, and behavioral composition. In the
area of structural composition, approaches exist for example, that
consider the software architecture as well as architectural patterns
[BMR+96, GP95]. For data composition approaches like [Gru93]
support the generation of suitable translators. In [Mil89, GV06]
approaches for the behavioral composition are presented. The
overwhelming complexity of embedded real-time systems, how-
ever, requires to also consider safety requirements for the com-
position which is not included in these approaches. On the other
hand, component-based approaches for embedded real-time sys-
tems [Sys07, UML08, GS03, JS05, MRBC03, Sel96] suffer the
support for interdependent concerns for the well-defined composi-
tion.

In this paper, we present an approach which addresses these prob-
lems by a well-defined automatic composition of protocol behav-
iors with respect to interdependent concerns specified as composi-
tion rules. The composition is performed by taking a proper refine-
ment relation into account so that analysis results of the separated
concerns are preserved which is essential for safety critical systems.
For this, we extend our modeling approach MECHATRONIC UML
which addresses the development of complex embedded real-time
systems. MECHATRONIC UML supports the specification and
compositional verification of real-time coordination by (1) apply-
ing component-based development and pattern-based specification
[GTB+03] and (2) the integrated description and modular verifi-
cation of discrete behavior and continuous control of components
[GBSO04]. In this paper we give a brief overview of the approach
and the integration in the Fujaba Real-Time Tool Suite1. For more
details, we refer to [Eck09].

In the following section, we present a case study which is used to
exemplify our approach. A sketch of our approach is presented in
Section 3. In Section 4, we present the concept of composition
rules. The synthesis algorithm is described in Section 5. Related
work is discussed in Section 6. We conclude with a summary and
future work in Section 7.

2. CASE STUDY
The research initiative Neue Bahntechnik Paderborn (NBP – New
Rail Technology Paderborn)2 is developing a rail-based transporta-
tion system at the University of Paderborn since 1997. This system

1http://wwwcs.uni-paderborn.de/cs/fujaba/projects/realtime/index.html
2http://www.railcab.de

40

requires most modern techniques of mechatronics – mechanical en-
gineering, electrical engineering and software engineering. The ba-
sis of the system are driverless vehicles, called RailCabs, which
travel on demand without a fixed schedule and are able to carry ei-
ther passengers or goods. The system and especially the techniques
for developing mechatronic systems are studied with intense effort
by the Collaborative Research Centre 614 – “Self-optimizing Con-
cepts and Structures in Mechanical Engineering” (CRC 614).

Compared to conventional railway systems, RailCabs have two
main advantages: (1) They can travel in automatic convoy opera-
tion mode and (2) they have a built-in active track guidance system.
Traveling in automatic convoy operation mode, RailCabs are able
to build convoys dynamically, without physical contact between
each other. This increases traffic flow and minimizes energy con-
sumption. With the active track guidance system, each RailCab is
able to steer its wheels in order to adapt to the actual track trace and
condition. This increases driving comfort, decreases wear out and
makes passive switches possible.

For the active track guidance system, the RailCab needs track infor-
mation in advance, in order to be able to steer its wheels correctly.
To receive this track information, the RailCab can either commu-
nicate with an external entity or measure the track itself using its
internal track sensors. In this example, the external entity is repre-
sented by so-called base stations. When receiving the track infor-
mation in advance via a base station, the RailCab can achieve the
best comfort but also has to establish and uphold a connection to a
base station which might not always be possible. Using its inter-
nal track sensors instead, the RailCab is independent, but can only
adapt to those track characteristics it is able to process in the short
period of time between receiving the signal input of the sensor and
the wheel actually being on that piece of track. A simple example
of four RailCabs RC1 to RC4 and four base stations BS1 to BS4 is
shown in Figure 1 where each RailCab is connected to the nearest
base station.

BS1BS2

BS3 BS4

RC1 RC2

RC4

RC3

BS

RC
= RailCab

= Base Station

Figure 1: RailCabs and Base Stations on a Track

For traveling with automatic convoy operation, a RailCab needs in-
formation about other RailCabs driving nearby, which constitute
potential convoy partners. In this example, this information is ob-
tained from the base station the RailCab is connected to. Once
a convoy partner is found, the (in driving direction) rear RailCab
contacts the front RailCab and proposes to initiate a convoy. The
front RailCab is able to accept or reject the convoy, depending on
its schedule or other factors. If the front RailCab accepts the con-
voy, it has to do so within a certain time interval and communicate
this to the rear RailCab. This can then again start the convoy op-
eration by driving into the slipstream of the front RailCab and by
reconfiguring its speed control unit from a velocity based mode to

a distance based mode. This reconfiguration is necessary because
driving at the exact same velocity is very difficult and only slight
differences in the velocity of two RailCabs driving in a convoy may
cause collisions within seconds. Therefore, the rear RailCab has to
measure the distance to the front RailCab and adjust its velocity
according to that value. As a collision can lead to high financial
damage or even life threatening situations, the convoy operation
contains safety critical aspects with hard real-time requirements.
In Figure 1 RailCabs RC1 and RC2 operate in convoy, where RC1
is the front and RC2 the rear RailCab.

3. APPROACH
In MECHATRONIC UML separation of concerns is realized by ap-
plying component based development and in accordance with that
by rigorously separating inter-component from intra-component
behavior. Following this concept, the system is decomposed
into participating components and real-time coordination patterns
[GTB+03], which define how components interact with each other.

To exemplify this using the case study, we specify two components
BaseStation and RailCab (Figure 2) and two coordination patterns
Registration and Convoy, which define the before described com-
munication behavior between RailCabs and base stations.

rear front

Convoy

registree registrar

Registration

BaseStation

 RailCab

registree

 registrar

Registration

BaseStation

 RailCab

 rearfront

Convoy

Figure 2: Combining Separate Specifications in MECHA-
TRONIC UML

In real-time coordination patterns, roles are used to abstract from
the actual components participating in one coordination pattern.
This way, it is possible to specify and verify coordination pat-
terns independently from other coordination patterns and compo-
nent definitions and therefore to reduce complexity. In Figure 2 the
participating roles of the Registration pattern are registrar and reg-
istree; the roles of the Convoy pattern are front and rear. Each role
behavior is specified by one protocol statechart. The statecharts of
the rear role and the registree role are depicted in the screenshots
in Figure 3 and 4 which also show the realtime statechart editor in-
tegrated in the Eclipse version of the Fujaba Real-Time Tool Suite.
The statecharts for the front role and the registrar role only form
corresponding counterparts and are therefore not depicted.

To obtain an overall system specification later in the development
process, the separated components and coordination patterns have
to be combined again (Figure 2). The problem which inherently
arises at this point is that separate parts of the system were speci-
fied as independent from each other when they are in fact not. This

41

Figure 3: Rear Role Protocol Statechart

Figure 4: Registree Role Protocol Statechart

means that during the process of combining the separate parts of
the system, additional dependencies between the particular speci-
fications have to be integrated. At the same time, the externally
visible behavior of the particular behavioral specifications may not
be changed in order to preserve verification results [GTB+03].

In the overall system view of the RailCab example (Figure 2), the
RailCab component takes part in both, the Registration and the Con-
voy pattern. While those patterns have been specified independently
from each other, a system requirement states that in convoy opera-
tion mode, each participating RailCab has to be registered to a base
station. Accordingly, a dependency between both patterns exists,
when applied by the RailCab component. As a result, the behav-
ior of the registree role and the behavior of the rear role have to be
refined and synchronized with each other when applied by the Rail-
Cab component in order to fulfill the system requirements. Still, it
has to be regarded that the externally visible behavior of the Rail-
Cab component does not change. If this process of refinement and
synchronization is performed manually, it is a time consuming and
error-prone process. Consequently, this implies the necessity for
automation in order to guarantee the required quality of the devel-
oped systems.

In the proposed approach, we separate the specification of depen-
dencies and the specification of the pattern role behaviors in order
to perform an automatic synthesis for the overall component be-
havior. Once the synthesis is performed, it is further checked if
the synthesized component behavior refines each of the particular

pattern role behaviors properly.

The approach requires (1) the definition of a suitable refinement
relation for (real) dense time systems, (2) the employment of a
suitable and efficient abstraction of the timed behavioral models
which is needed to perform the refinement check and (3) the inte-
gration of reconfiguration behavior. The result is a fully automatic
synthesis algorithm where dependencies between separate behav-
ioral specifications are specified explicitly by so-called composi-
tion rules (cf. [TOHS99]). Accordingly, the input for the algorithm
are composition rules and separate behavioral specifications (Fig-
ure 5) in the form of MECHATRONIC UML’s realtime statecharts.
If the synthesis is possible without violating the externally visible
behavior of any of the input specifications, the output is one par-
allelly composed component behavior which combines all of the
input specifications as well as the composition rules. If the syn-
thesis is not possible, the algorithm returns a conflict description
indicating the reason for the impossibility.

[role conform]

[not role conform]

synthesize

act synthesizeComponentBehavior

Composition Rules

Separate Role

Behavioral Specifications

Conflict Description

Composed Component

Behavior

Figure 5: Activity Diagram Illustrating the Basic Synthesis Ap-
proach

With this algorithm system developers are able to attach compo-
sition rules to components of their views to specify dependencies
to other views. These composition rules are later factored in au-
tomatically during the composition of the full system specification
by the synthesis algorithm if none of the behavioral specifications
is violated. If a behavioral specification is violated, the developer
can use the conflict description to find the part of the specification
which causes the violation in order to resolve the conflict. By giv-
ing the dependencies explicitly by means of composition rules, a
detailed conflict description can be obtained referring to the con-
flicting composition rules. This way, the manual interaction during
the composition of the views is reduced to the essential parts: (1)
specifying dependencies as composition rules, (2) analyzing con-
flict descriptions and (3) resolving these conflicts. The second and
the third action however, are only necessary if a conflict actually
exists between the input specifications.

4. COMPOSITION RULES
With composition rules, interdependent concerns for the separate
role behaviors can be specified as system properties which syn-
chronize parts of the separated role behavioral models. Generally
speaking, system properties can be specified in terms of safety and
liveness properties for a given behavioral specification [Lam77,
Hen92]. Safety properties state that something bad will never hap-
pen during the execution of a program. Liveness properties state
that something good will happen eventually. Transferring this to
the context of automata synchronizations, these properties always
concern two or more automata. Consequently, a safety property for
synchronization states that something bad will never happen, when
executing the corresponding automata in parallel, while a liveness
property for synchronization expresses that something good will

42

eventually happen during this parallel execution.

Transferring these properties to composition rules, we are able to
specify both safety and liveness properties. Safety properties can
be specified (1) by means of state composition rules in terms of
forbidden state combinations of the parallel execution and (2) by
means of event composition automata by adding further time con-
straints to time guards of selected transitions. Liveness properties
in turn can be specified through state composition rules and event
composition automata by adding further time constraints to loca-
tion invariants of location combinations of the parallel execution.
As we integrate controller configurations in states, we can describe
dependencies between controllers or controller configurations by
the aforementioned composition rules, too.

In the screenshot of the component diagram editor (Figure 6) the
annotated state composition rule is given with r1, where

r1 = ¬((unregistered, true) ∧ (convoy, true)).

r1 formalizes the pattern overlapping system requirement ex-
plained in Section 3. Correspondingly, it defines that a Rail-
Cab is not allowed to rest in states (unregistered, true) and
(convoy, true) at the same time, where the clock constraint true
denotes that all clock values of the corresponding automata are con-
cerned.

Due to the lack of space, we omit the description and illustration of
event composition automata and instead refer to [Eck09].

Figure 6: Specified State Composition Rule and the Menu En-
try to Synthesize the Component Behavior

5. SYNTHESIS ALGORITHM
The input for the synthesis algorithm are both the composition
rules and the role behaviors as MECHATRONIC UML’s real-time
statecharts [BGHS04] or reconfiguration charts [GBSO04], respec-
tively. As the behavioral models for the pattern roles are based on
the semantics of timed automata [AD90, HNSY92], they can also
be transformed into semantically equivalent timed automata. Con-
sequently, the complete synthesis procedure is performed on the
basis of timed automata and we refer to the transformed role state-
charts as pattern role automata.

The synthesis algorithm is divided into four distinct steps (see Fig-
ure 7), which are described in detail in [Eck09]. First, the parallel
composition of the role automata is computed, which forms an ex-
plicit model for the parallel execution of the pattern role automata.
On this parallelly composed timed automaton the composition rules
are applied, by removing the forbidden system states specified by
the state composition rules and by including the specified event
composition automata in the parallelly composed automaton. In
the last step, it is verified that the externally visible behavior of the
particular role automata is preserved, as the changes made on the
parallelly composed automaton by means of the appliance of com-
position rules might lead to violations of properties of the original
role behaviors. In Figure 8 the synthesized behavior of the shuttle
component with the composition rule as shown in the last section
is depicted.

Check Role
Conformance

Apply Event
Composition Automata

Apply State
Composition Rules

[role conform]

[not role conform]

Compute Parallel
Composition

act Synthesize Component Timed Automaton

Pattern Role
Timed Automata

State Composition
Rules

Event Composition
Automata

Synthesized
Component Behavior

Conflict Description

Figure 7: Synthesis Algorithm for Timed Automata

Figure 8: Synthesized Component Behavior of the RailCab
Component

6. RELATED WORK
The field of controller synthesis [AMP95, AT02, GGR08] deals
with the problem of synthesizing a behavioral model for a con-
troller which interacts with some environment. In a controller,
interaction is specified through alternating actions between the
controller and the environment. Consequently, for the behavioral
model a special type of timed automaton, a timed game automaton
[AMP95], is applied. In a timed game automaton, transitions are
partitioned into those controllable by the controller and those con-
trollable by the environment. The main difference to our synthesis
approach is that the given behavioral model of controller synthe-
sis does not take a compositional character of this model into ac-
count as this is not necessarily given in the underlying controller

43

behavior. In our approach this is given by the independent pattern
role automata. Consequently, the compositionality can also not be
considered for the specification of the properties which have to be
synthesized. Altogether, this results in a different equivalence rela-
tion between the original and the synthesized model which in turn
results in different synthesis algorithms.

In [GV06] a synthesis procedure for the behavior of interacting
components is presented. [Sei07] extends this approach by the
notion of time concerning the behavioral models and the state re-
strictions. The main difference between our approach and [Sei07]
approach is that in [Sei07] a discrete abstraction of time is applied.
This is not applicable for MECHATRONIC UML. Indeed, discrete
time approaches are not well suited and in general not applica-
ble for embedded systems [CGP00]. Furthermore, [Sei07] applies
both the parallel composition and the state restrictions to the inter-
nal discrete-time automaton model, while we use the abstraction
only to verify role conformance and apply the composition rules
directly to the timed automaton model instead. At last, [Sei07] also
allows for representational non-determinism by the explicit use of
τ -transitions representing internal component behavior, instead of
treating the behavior of other ports as internal component behavior.
Consequently, the applied refinement relation differs in this point.
Nevertheless, [Sei07] proposes to allow an arbitrary number of de-
lay transitions and internal component behavior transitions between
the relevant actions of the port automata, which is equally applied
in our refinement relation.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed an approach to automatically synthe-
size the behavior for a MECHATRONIC UML component which
takes part in several real-time coordination patterns. The current
approach of MECHATRONIC UML suffers from the manual re-
finement and synchronization of the coordination role behaviors
which has to be accomplished to construct the component behav-
ior. Therefore, we propose to specify dependencies between sev-
eral role behaviors separately by means of composition rules. Ad-
ditionally, we defined a procedure to automatically integrate the
composition rules for a given set of role behaviors. Afterwards it
is checked that the resulting component behavior refines each of
the role behaviors properly. For future work we plan to perform a
complete evaluation of the approach regarding a realistic set of case
studies. This way, it could also be evaluated if the proposed compo-
sition rule formalism is sufficient to specify existing dependencies
between several coordination roles.

8. REFERENCES
[AD90] Rajeev Alur and David L. Dill. Automata for Modeling Real-time

Systems. In Proceedings of the Seventeenth International Colloquium
on Automata, Languages and Programming, volume 443 of Lecture
Notes in Computer Science (LNCS), pages 322–335, New York, NY,
USA, 1990. Springer-Verlag New York, Inc.

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller
synthesis for discrete and timed systems. In Hybrid Systems II, pages
1–20, London, UK, 1995. Springer-Verlag.

[AT02] Karine Altisen and Stavros Tripakis. Tools for controller synthesis of
timed systems. In Paul Pettersson and Wang Yi, editors, Proceedings of
the 2nd Workshop on Real-Time Tools (RT-TOOLS’02), August 2002.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental design and formal verification with UML/RT in the
FUJABA real-time tool suite. In Proc. of the International Workshop on
Specification and Validation of UML Models for Real Time and
Embedded Systems, SVERTS2004, Satellite Event of the 7th
International Conference on the Unified Modeling Language,
UML2004, pages 1–20, October 2004.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-oriented Software Architecture , volume 1.

John Wiley & Sons, 1996.
[BSW00] Jan Bosch, Clemens A. Szyperski, and Wolfgang Weck.

Component-oriented programming. In Jacques Malenfant, Sabine
Moisan, and Ana M. D. Moreira, editors, ECOOP Workshops, volume
1964 of Lecture Notes in Computer Science, pages 55–64. Springer,
2000.

[CGP00] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, January 2000.

[Dij76] E.W. Dijkstra. A discipline of programming. Prentice-Hall Series in
Automatic Computation, 1976.

[Eck09] Tobias Eckardt. Synthesis of reconfiguration charts. Diploma Thesis,
Software Engineering Group, University of Paderborn, Oct 2009. to
appear.

[GBSO04] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver
Oberschelp. Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. In Proc. of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004),
Newport Beach, USA, pages 179–188. ACM Press, November 2004.

[GGR08] Stephanie Geist, Dmitry Gromov, and Jörg Raisch. Timed discrete event
control of parallel production lines with continuous outputs. Discrete
Event Dynamic Systems, 18(2):241–262, 2008.

[GP95] David Garlan and Dewayne Perry. (introduction to the) special issue on
software architecture. IEEE Transactions on Software Engineering,
21(4), April 1995.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowl. Acquis., 5(2):199–220, 1993.

[GS03] Gregor Gössler and Joseph Sifakis. Component-based construction of
deadlock-free systems. In FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science, volume 2914/2003 of
Lecture Notes in Computer Science, pages 420–433. Springer Berlin /
Heidelberg, 2003.

[GTB+03] Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and
Stephan Flake. Towards the Compositional Verification of Real-Time
UML Designs. In Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering (ESEC/FSE-11),
pages 38–47. ACM Press, September 2003.

[GV06] Holger Giese and Alexander Vilbig. Separation of non-orthogonal
concerns in software architecture and design. Software and System
Modeling (SoSyM), 5(2):136 – 169, 6 2006.

[Hen92] Thomas A. Henzinger. Sooner is Safer than Later. Information
Processing Letters, 43(3):135–141, 1992.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic Model Checking for Real-Time Systems. In
Proceedings of the Seventh Annual Symposium on Logic in Computer
Science (LICS), pages 394–406. IEEE Computer Society Press, 1992.

[JS05] Ethan K. Jackson and Janos Sztipanovits. Using separation of concerns
for embedded systems design. In EMSOFT ’05: Proceedings of the 5th
ACM international conference on Embedded software, pages 25–34,
New York, NY, USA, 2005. ACM.

[KLM97] Aspect-Oriented Programming, volume 1241 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1997.

[Lam77] Leslie Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[MRBC03] Mohammad Reza Mousavi, Michel Reniers, Twan Basten, and Michel
Chaudron. Separation of concerns in the formal design of real-time
shared data-space systems. In ACSD ’03: Proceedings of the Third
International Conference on Application of Concurrency to System
Design, page 71, Washington, DC, USA, 2003. IEEE Computer Society.

[Sei07] Andreas Seibel. Behavioral Synthesis of Potential Component
Real-Time Behavior. Diploma Thesis, Software Engineering Group,
University of Paderborn, June 2007.

[Sel96] Bran Selic. Real-time object-oriented modeling (room). In 2nd IEEE
Real-Time Technology and Applications Symposium (RTAS ’96), June
10-12, 1996, Boston, MA, USA, pages 214–. IEEE Computer Society,
1996.

[Sys07] OMG Systems Modeling Language (SysML) Specification, Version 1.0,
2007. SysML07.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N
degrees of separation: multi-dimensional separation of concerns. In
ICSE ’99: Proceedings of the 21st international conference on Software
engineering, pages 107–119, New York, NY, USA, 1999. ACM.

[UML08] UML Profile for Modeling and Analysis of Real-time and Embedded
Systems (MARTE), Version Beta 1.0, 2008. MARTE08.

44

Modeling Safe Reconfiguration with the FUJABA
Real-Time Tool Suite ∗

Claudia Priesterjahn, Matthias Tichy
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[cpr|mtt]@uni-paderborn.de

ABSTRACT
Software systems are increasingly built to exhibit self-* prop-
erties (e.g. self healing or self optimization) which require
reconfiguration and change at runtime. This is even true for
embedded or mechatronic systems which are often used in
safety critical environments. In those cases, the effects of the
reconfiguration on the safety of the system must be carefully
analyzed. We present an approach to ensure the safety of
self-* systems during runtime by checking whether a recon-
figuration is allowed w.r.t. the hazard probability and the
associated damage after the reconfiguration. The approach
has been implemented as plugins for the Fujaba Real-Time
Tool Suite.

1. INTRODUCTION
Embedded systems are often used in a safety-critical context.
Consequently, hazards and risks have to be considered dur-
ing system development. Standard development approaches
(cf. [Lev95]) for safety-critical computer systems require haz-
ards to be identified and the associated damage to be de-
fined. The damage is the result when a hazard leads to an
accident. We define risk as the product of the hazard prob-
ability and the damage of the accident linked to the hazard.
We refer to [Lev95, Sto96] for more detailed definitions.

Self-* systems pose a challenge to these activities as they
change their behavior and structure during runtime. This
leads to changes of the hazard probabilities and damage val-
ues, which in turn affect the associated risks. However, this
also opens up possibilities for risk management as it enables
to adapt the behavior, and thus the hazard probability, by
reacting to changes in the damage during runtime. Conse-
quently instead of checking whether the worst case damage
results in a safe risk for all configurations before runtime, we
check during runtime whether the target configuration of a
reconfiguration activity is safe w.r.t. the current damage.

A recent approach on risk analysis computes risk component
wise and combines the results for a static component struc-
ture [YA02]. In contrast to our work, Yacoub and Ammar
do not address self-* systems with different configurations
during runtime.

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

In previous works [GTS04, GT06, THMvD08], we have pre-
sented a component-based hazard analysis approach which
also considers the associated risk. This approach is specifi-
cally tailored to self-* systems which change their behavior
by structural adaptation.

The approach extends all components by an abstract failure
propagation which relates random errors in the components
to failures at the components’ ports. We follow the terminol-
ogy of Laprie [Lap92] by associating failures – the external
visible deviation from the correct behavior – to the ports
where the components interact with their environment. Er-
rors – the manifestation of a fault in the state of a com-
ponent – are restricted to the internal of the component.
We use Boolean logic with quantifiers to formally encode
the failure propagation of the system and the occurrence of
hazards.

The failure propagation models of all components in the sys-
tem structure are then combined to form the system failure
propagation. This system failure propagation is analyzed
w.r.t. the errors which have to manifest so that a given haz-
ard occurs. The hazard probability is computed based on
the individual probabilities of the errors. Finally, the risk is
the product of hazard probability and damage.

For the special case of self-* systems which change their
structure during runtime, the approach supports to com-
pute all structural configurations. These configurations are
also considered in the aforementioned analysis. We deter-
mine the configurations in which a hazard can occur and,
quantitatively, the configurations with the highest and worst
hazard probability and risk. We currently pessimistically ab-
stract from different damage values during runtime, which
would result in different risk values, by employing the worst
case damage.

In this paper, we present how we deal with damage values
which change during runtime. The basic idea is that we
refine the structural adaption behavior of the system com-
ponents by additional checks whether the reconfiguration
to another structure is allowed with respect to the current
damage value and the defined maximum risk.

In our approach, the reconfiguration behavior is distributed
over the system components but the hazard probability de-
pends on the system structure which is typically not known

45

by the individual components. Therefore, we opted to add a
central component called the Risk Coordinator. This com-
ponent is asked by a component whether a reconfiguration
is safe with respect to the risk and allows or disallows this
reconfiguration.

We exemplify our approach based on a scenario from our
real-life RailCab project. The RailCab project1 was founded
at the University of Paderborn in 1998 in order to develop
a new railway system which features the advantages of both
public and individual transport in terms of cost and fuel effi-
ciency as well as flexibility and comfort. The novel system is
characterized by autonomous vehicles operating on demand
instead of trains being determined to a fixed schedule. One
particular goal of the RailCab project is to reduce the en-
ergy consumption due to air resistance by coordinating the
autonomously operating RailCabs in such a way that they
build convoys whenever possible. The RailCabs use differ-
ent configurations w.r.t. whether they are driving alone or
in a convoy. In the first case, they use a speed controller
whereas they use a sophisticated distance controller in the
second case. The damage associated to a hazard can change
during runtime, e.g. in response to loading and unloading of
goods like hazardous materials.

We present our approach in the following section. This pre-
sentation focuses on the behavioral extension of the recon-
figuration behavior taking the real-time characteristics of
embedded systems into account. In Section 3 we sketch
how the presented approach has been implemented in the
Fujaba4Eclipse Real-Time Tool Suite. Finally, we give a
conclusion and an outlook on future work.

2. SATISFYING RISK CONSTRAINTS
DURING RECONFIGURATION

In order to avoid configurations that exceed the maximum
risk we enhance our system by a central component that per-
forms risk analysis for the requested configuration to allow
or prohibit reconfiguration. Therefore, we first introduce
the extension of the architecture before we present the ex-
tension of the behavior models that is necessary to enable
the blocking of reconfiguration transitions.

2.1 Architecture Extension
The system architecture is extended by an additional com-
ponent which supervises the reconfigurations of the system,
namely the Risk Coordinator. Before executing a reconfig-
uration each components sends a request to the Risk Co-
ordinator. The Risk Coordinator computes the risk of the
total system after the requested reconfiguration and checks
if the system would still satisfy the maximum risk level after
this reconfiguration. Depending on this verdict the Risk Co-
ordinator allows or prohibits the reconfiguration. Further,
each system component contains a sub component Sub Co-
ordinator that encapsules the communication between this
component and the Risk Coordinator. Figure 1(a) shows an
examplary system consisting of two RailCabs. Figure 1(b)
shows the same architecture extended by a Risk Coordinator
instance and a Sub Coordinator instance for each RailCab
Instance.

1http://www-nbp.upb.de/en/index.html

rc1 : RailCab rc2 : RailCab

(a) Architecture of Two RailCabs

rc1 : RailCab

rico : RiskCoordinator

sub1 : SubCoordinator

rc2 : RailCab

sub2 : SubCoordinator

(b) Architecture of Two RailCabs with a Coordi-
nator Component

Figure 1: Architecture Extension

2.2 Behavior Extension
We define the component’s behavior by hybrid Reconfigura-
tion Charts - UML state machines extended by time, con-
tinuous behavior and reconfiguration. Reconfigurations are
specified by embedding configurations into the states. A re-
configation can result in a different hazard probability for
the system or a different damage value.

We introduce Safety Transitions as an extension of hybrid
Reconfiguration Charts. Safety Transtions can be blocked
in order to prevent unsafe configurations. Figure 2 shows an
example of a Safety Transition between the states noConvoy
and convoy representing the reconfiguration taken in order
to join or build a convoy of RailCabs. Safety Transitions are
drawn as a fat line with the label �Safety Transition�.

noConvoy convoy

<<Safety Transition>>
:VCtrl :PosCtrl

Figure 2: Safety Transition

wait
{t0 < ttotal – treconfig}

/requestReconfConvoy

rejected/
onFail()

onTimeout() approved/

{t0}

noConvoy

convoy

:VCtrl

:PosCtrl

Figure 3: Safety Transition Semantics

The semantics of the Safety Transition are shown in Figure
3. We add the state wait between the states noConvoy
and convoy connected by the Safety Transition. The
reconfiguration request to the Risk Coordinator is trig-
gered by the message RequestReconfConvoy of the transition
(noConvoy, wait). In case the Risk Coordinator answers

46

with approved the reconfiguration is executed and the sys-
tem switches to convoy. If the Risk Coordinator rejects the
request, the system switches back to noConvoy and executes
the side effect onFail(). onFail() is a method provided by
the developer in order to react to the rejection. In our exam-
ple the RailCab would inform the RailCab driving behind
about the rejection and brake the convoy.

To guarantee a WCET for a Safety Transition, we add
the clock t0 and a timing constraint: the invariant {t0 <
ttotal − treconfig} for the state wait. ttotal represents the
time needed for the total Safety Transition. treconfig names
the time needed for the reconfiguration itself, namely the
transition (wait, convoy). Consequently, ttotal − treconfig is
the time left for requesting the Risk Coordinator. The clock
t0 is reset at transition (noConvoy, wait). The invariant
{t0 < ttotal− treconfig} guarantees that after requesting the
Risk Coordinator there is still enough time left to execute
the actual reonfiguration. If t0 exceeds the time limit, the
system switches back to noConvoy with the side effect on-
Timeout().

2.3 Allowing Required Reconfigurations
In some cases blocking transitions is not acceptable, e.g. re-
configuration in case of a component failure, or the request
to the Risk Coordinator exceeds the time limits. Conse-
quently, not all reconfiguring transitions can be Safety Tran-
sitions.

state1

state2 state3 state5

<<Safety
Transition>>

<<Safety
Transition>>

<<Safety
Transition>>

state4

state6

Block

Figure 4: Safe Reconfiguration and Required Be-
havior

In order to still guarantee safe reconfigurations, we block
transitions to configurations from which unsafe configura-
tions are reachable via non blockable transitions. Fig-
ure 4 shows an examplary path containing non blockable
transitions, which are drawn as thin lines. If the config-
uration in state5 was not allowed and we had to block
transition (state4, state5) as a consequence, we also would
have to block transitions (state2, state3) and (state3, state4)
(marked by a grey shadow). This check has to be applied to
reconfigurations of the other system components as well, as
a reconfiguration of one component can lead to a reconfigu-
ration of another component.

Instead of sending a request to the Risk Coordinator when
executing a non blockable transition, the component informs
the risk coordinator of the executed reconfiguration. Since
the non blockable transition must not be delayed, this in-
formation is sent immediately. Consequently, it is possible
that the Risk Coordinator processes the update later than
the reconfiguration takes place and doesn’t know about the
real system state. However, this is no threat to the safety
as we already excluded unsafe configurations from the last

blockable transition preceding the non blockable (cf. Figure
4).

2.4 Computing the Risk
The Risk Coordinator computes the risk of a configuration
in order to decide whether the target configuration satis-
fies the maximum risk level or not. The risk is computed
by multiplying the probability of the hazard in the target
configuration with the damage of an accident that could re-
sult from the hazard. Currently, the hazard probabilities of
the different system configurations are computed offline with
the approach of [GT06] and stored in the Risk Coordinator.
The damage is adapted continuously, e.g. when a RailCab
is empty or contains hazardous materials.

2.5 Online Hazard Analysis
The approach presented so far only allows for the safe recon-
figuration of a system of which all configurations are known
before runtime as the hazard probabilities of all these con-
figurations are pre-computed. For example, it is not pos-
sible to model infinitely long RailCab convoys as proposed
in [THHO08]. In the following, we sketch an approach for
computing the hazard probabilities during runtime.

Since the current configuration of the total system is only
known during runtime, the Risk Coordinator has to build
the failure propagation model of the total system. The com-
ponent’s failure propagation model is stored in each compo-
nent’s Sub Coordinator. The Sub Coordinator transmits
this failure propagation to the Risk Coordinator that com-
putes the global failure model and performs a hazard anal-
ysis on the complete system. Once the hazard probabilities
are known, the risk can be determined and the requested
reconfiguration can be approved or rejected.

3. TOOL SUPPORT
The approach presented in this work has been imple-
mented and embedded into several Fujaba4Eclipse plugins
[THMvD08, BGH+07]. These plugins support the model-
ing and analysis of safety-critical embedded systems with
reconfiguration.

In this work we extended hybrid Reconfiguration Charts by
Safety Transitions as presented in Section 2.2. We imple-
mented a simulation interface for the Risk Coordinator com-
ponent that supports checking whether configurations sat-
isfy a given risk level. Figure 5 depicts the Simulation View
of the plugin. The editor shows a component structure (con-
figuration) consisting of three RailCabs. Below each system
component is associated a hazard probability for a specific
hazard. The total system is assigned a damage. Further, we
can specify the maximum allowed risk for the total system
and read the current risk. In order to simulate a reconfigu-
ration, we select a component and choose a target configura-
tion (”‘convoy”’) from the drop down menu. After pressing
the Reconfigure button, the risk of the target configuration
is computed and compared to the maximum allowed risk.

We are currently working on implementing the Risk Coor-
dinator component as well as the online Hazard Analysis
as sketched in Section 2.5 in order to fully integrate the
presented approach into the Fujaba4Eclipse Real-Time Tool
Suite.

47

Figure 5: Simulation Interface for the Risk Coordinator

4. CONCLUSION AND FUTURE WORK
We presented a risk analysis approach and its implemen-
tation in the Fujaba4Eclipse Real-Time Tool Suite which
addresses self-* systems and dynamically changing damage
values. The approach is twofold. First, the architecture is
extended by a Risk Coordinator which checks whether a re-
configuration is safe w.r.t. the current damage. Second, the
modelling language for the specification of the reconfigura-
tion is extended by safety transitions which encapsulate the
communication of each individual component with the Risk
Coordinator.

The Risk Coordinator is a single point of failure in the cur-
rent architectural approach. As we already consider self-*
systems, we may add self-healing capabilities to the system
as e.g. in [TG04] to fully operate even in case of failures.

It has to be noted that our approach requires quantitative
data for both the hazard probability as well as the asso-
ciated damage in order to compute the risk and to decide
whether a configuration is allowed or not. Leveson [Lev95]
says that quantitative data should be used with extreme
care. Thus, we are currently investigating whether our ap-
proach can be extended to qualitative reasoning using prob-
ability and damage classes.

Our current approach does only block reconfigurations from
a safe to an unsafe configuration. Due to changes to the
damage during runtime a safe configuration may become
unsafe. Therefore, we currently work on complementing our
approach by forcing a reconfiguration from an unsafe to a
safe configuration.

5. REFERENCES
[BGH+07] Sven Burmester, Holger Giese, Stefan

Henkler, Martin Hirsch, Matthias Tichy,

Alfonso Gambuzza, Eckehard Müch, and
Henner Vöcking. Tool support for developing
advanced mechatronic systems: Integrating
the fujaba real-time tool suite with
camel-view. In Proc. of the 29th International
Conference on Software Engineering (ICSE),
Minneapolis, Minnesota, USA, pages 801–804.
IEEE Computer Society Press, May 2007.

[GT06] Holger Giese and Matthias Tichy.
Component-based hazard analysis: Optimal
designs, product lines, and
online-reconfiguration. In Proc. of the 25th
International Conference on Computer Safety,
Security and Reliability (SAFECOMP),
Gdansk, Poland, Lecture Notes in Computer
Science (LNCS), pages 156–169. Springer
Verlag, September 2006.

[GTS04] Holger Giese, Matthias Tichy, and Daniela
Schilling. Compositional Hazard Analysis of
UML Components and Deployment Models.
In Proc. of the 23rd International Conference
on Computer Safety, Reliability and Security
(SAFECOMP), Potsdam, Germany, volume
3219 of Lecture Notes in Computer Science.
Springer Verlag, September 2004.

[Lap92] Jean Claude Laprie, editor. Dependability :
basic concepts and terminology in English,
French, German, Italian and Japanese [IFIP
WG 10.4, Dependable Computing and Fault
Tolerance], volume 5 of Dependable computing
and fault tolerant systems. Springer Verlag,
Wien, 1992.

[Lev95] Nancy G. Leveson. Safeware: System Safety
and Computers. Addison-Wesley, 1995.

[Sto96] Neil Storey. Safety-Critical Computer
Systems. Addison-Wesley, 1996.

48

[TG04] Matthias Tichy and Holger Giese. A
self-optimizing run-time architecture for
configurable dependability of services. In
Rogério de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting
Dependable Systems II, volume 3069 of
Lecture Notes in Computer Science (LNCS),
pages 25–51. Springer Verlag, 2004.

[THHO08] Matthias Tichy, Stefan Henkler, Jörg
Holtmann, and Simon Oberthür. Towards a
Transformation Language for Component
Structures. In Postproc. of the 4th Workshop
on Object-oriented Modeling of Embedded
Real-Time Systems (OMER 4), Paderborn,
Germany, pages 27–39, 2008.

[THMvD08] Matthias Tichy, Stefan Henkler, Matthias
Meyer, and Markus von Detten. Safety of
component-based systems: Analysis and
improvement using fujaba4eclipse. In
Companion Proceedings of the 30th
International Conference on Software
Engineering (ICSE), Leipzig, Germany, pages
1–2, May 2008.

[YA02] Sherif M. Yacoub and Hany H. Ammar. A
methodology for architecture-level reliability
risk analysis. IEEE Trans. Softw. Eng.,
28(6):529–547, 2002.

49

4 Tool Demonstrations

This section contains all background papers for the tool demonstration session.

Future Web Application Development with Fujaba

- visionary ideas, concepts and first results -

Christoph Eickhoff, Nina Geiger, Marcel Hahn, Ingo Witzky , Albert Zündorf
Kassel University, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

[christoph.eickhoff | nina.geiger | hahn | ingo.witzky | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/

ABSTRACT
Nowadays, the trend of web applications getting more and
more complex can barely be overseen. In some areas these
web applications start to replace traditional desktop appli-
cations. The most important facts that lead to this trend
are the possibility to use web applications from nearly ev-
ery place in the world and that the end user does not need
to install anything, nor to maintain the software or install
updates etc.
While in the design and creation process of traditional soft-
ware applications the model driven approach got its standing
this is not yet the case in the development process of web
applications. This paper introduces our ideas and concepts,
as well as first results for web application development with
model driven approaches. Of course, in this model driven
web application development, Fujaba is our tool of choice.

1. INTRODUCTION
One of the strongest points of web applications is the

reachability from every internet-connected place in the world
and the loss of maintenace and software update tasks nec-
essary to stay up to date. These advantages yield to web
applications more and more replacing traditional desktop
applications. The downside of this evolution is the growing
complexity of web applications. This brings the need for
different development methodologies and paves the way for
traditional software engineering approaches adopted for the
web domnain.

While for traditional applications model driven software
development approaches have been introduced for years, this
process has only started its way to the development of tra-
ditional web applications. There are a lot of research av-
tivities in this domain, for example the yearly workshop
on Model-Driven-Web-Engineering [8]. The activities pre-
sented in conjunction with this workshop clearly focus on a
more traditional web application. The evolution mentioned
above leads to the need for development of AJaX (Advanced
JavaScript and XML) web applications. These are more dy-
namic in behaviour and give us the opportunity to have
business logic and model elements on client side. In former
days, when web application meant static HTML pages and
server side logic it was not necessary to really use any kind of
software engineering methodology for the client side. Many
of the older web applications were created by creative people
who did web design and enriched the HTML content with
small snippets of code written in JavaScript. Before the

AJaX technology evolved it was barely necessary to have
code on client side at all. The possibilities within the web
and the growing complexity of web applications we have in
our current times produces needs for web development in a
more methodical way. The approach shown in this paper
aims at the development of highly dynamic AJaX based ap-
plications. We will hold lots of business logic and an own
data model on client side. This is done to distribute some
of the calculation costs to the clients and thus unburden the
server.

From the view of software engineers, complex software
should be developed using the model driven approach. All
the advantages of Model-Driven-Engineering (MDE) like shor-
ter development cycles, better maintainability of the resul-
ting code and better documentation of the whole project
are commonly known in traditional software development.
Surely the more complex web applications that are widely
used today would benefit from all these advantages, too. As
mentioned above, there have been scientific activities to built
the domain of Model-Driven-Web-Engineering (MDWE) for
a few years now. Focusing on the development of AJaX
applications in a model driven way, we want to drive this
community forward with our ideas.

Since from our point of view the Fujaba tool is the method
of choice for model driven approaches, we now want to en-
able Fujaba for the web future. Beyond the ideas and code
generation achievements introduced in [2] this paper talks
about the overall ideas of enabling model driven web engi-
neering with Fujaba. Since the design and implementation
of graphical user interfaces has always been kind of special
and often supported by special editors, we want to introduce
our web engineering facilities from the very top (user inter-
face) to the underlying business model.

Our paper is structured as follows:
Section 2 introduces our overall ideas for model driven web
development and gives an overview of the architecture we
achieve. It also gives a hint on the mapping of the GUI to
the underlying business logic and model. After these ideas
have been cleared, Section 3 introduces the current state of
the development and focuses on our special graphical user
interface (GUI) editor. Section 5 in the end summarizes our
ideas and talks about the work to be done in near and far
future.

51

2. FUJABA WEB DEVELOPMENT
As member of the Fujaba community, we are used to soft-

ware engineering, using the Fujaba tool. For us, creating
the model and developing the logical parts using activity di-
agrams is one of the best ways to develop software. Some
of these steps have been brought to the development of web
applications, already, cf. [2]. In this paper we presented
the ablility to generate source code out of class diagrams
that makes the model executable and usable inside the web
browser. We introduced the special CodeGen2 [4] templates
that replace the traditional collections used in Fujaba source
code with collections from the java.lang package, there. We
talked about the translation of the generated source code
for use inside the web browser with the Google Web Toolkit
(GWT) [11] Java to JavaScript cross compiler. We still rely
on the GWT to deploy the generated Java code since this
brings the advantage of being able to debug the web appli-
cation using the GWT tools. In addition, GWT facilitates
the usage of AJAX technologies, significantly.

Real model driven engineering with Fujaba goes further
than just generating model code out of class diagrams. Of
course we want to be able to design the logical parts of our
web applications with Fujaba. This can be achieved for all
parts that only affect the application model by generating
GWT compliant code from the activity diagrams, too. We
have to create templates similar to the ones for the class dia-
grams shown in [2] for the activities. This would mean to re-
place all occurences of Fujaba collections with the correspon-
dent ones of java.lang within the activity templates. Doing
this, the compilation with the GWT cross compiler should
generate runnable JavaScript code for the web browser. But
for complex web applications, we need more. We want to de-
velop mechanisms to model client-server calls inside Fujaba.
Here, we plan to use Statecharts alongside the just devel-
oped ideas from [7]. [7] describes the generic approach for
the handling of property changes with Fujaba Statecharts.
For client server communication within web applications this
approach has to be slightly modified for the use with GWT
Remote Procedure Calls. These calls are proceeded in an
asynchronous way, which means the graphical user interface
(GUI) will not block and wait for the answer of the server
side. Because of that, the calling client method has to spec-
ify a so called callback object, which is registered and which
will receive the answer from the server side. Since the ap-
proach introduced in [7] uses PropertyChange mechanisms,
this has to be changed to enable the use of this callbacks
for GWT like calls. One implementation that satisfies this
callback approach has been developed at University of Kas-
sel, Software Engineering Research Group to be used within
the European project FAST (Fast and advanced Storyboard
Tools)[10].

Another major point in generating web applications is the
GUI the user will interact with. The creation of user inter-
faces has always been a case of trial and error and needed
a lot of hand coding and testing until the user interface
looked and worked as expected. There have been a load of
GUI designer tools for every interface library one can imag-
ine. Nevertheless, the only useable GUI designer working for
GWT interfaces is commercial and thus it is not possible to
use and extend it. Additionally, we want the GUI design to
happen in concrete syntax, meaning the GUI designer tool

itself will be a GWT application running inside a browser.
To support our ideas for the generation of user interfaces
and the binding of these interfaces to our Fujaba generated
application model and logic, we develop an easy to use GUI
designer for GWT widget libraries. These libraries are used
in GWT to support the user interfaces and there are a lot
of different ones, which we want to support using a modular
plugin architecture for our designer. As mentioned above we
will develop the user interface designer to handle concrete
syntax, which means, the interface will be built out of GWT
library components using a GWT application. This has the
advantage, that the developer really sees how the resulting
interface will look like, without having dummy representa-
tions of the resulting GUI objects. The interface is designed
in a What-You-See-Is-What-You-Get (WYSIWYG) manner
by dragging and dropping interface components from a side-
bar to the main editing area. Figure 1 shows a mockup of
the aspired designer and its functionality.

Figure 1: Mockup of the GUI designer.

To ease the overall web application development with Fu-
jaba, the results of the GUI designer won’t be Java source
code, as it would be with other designers, but Fujaba activity
diagrams building up the corresponding GUI. The challenge
in this approach is the mapping between Fujaba meta model
elements building up the activity diagram and the GUI el-
ements building up the graphical user interface. Since the
GUI designer will be written as GWT code and executed as
JavaScript web application inside a web browser, we need to
enable the editor to communicate with Fujaba to create the
corresponding diagrams. This communication should also
be established the other way round in case of changes oc-
curring on the activity diagrams generated out of the editor.
To achieve this communication, we will build up a wrapper
structure for the user interface components. Since the GUI
designer as an AJaX web application will run in browser
mode, we will not be able to do the model mapping imme-
diately, since it will be to heavyweight to run on client side.
The mapping to the Fujaba meta model will take place on
the server side of our designer, meaning inside Fujaba it-
self. We will have the complete wrapper structure on client
side to give the editor a non-blocking user interaction, but
we will need to replicate this wrapper data structure be-
tween client and server side. We developed an adaption for

52

the CoObRA Framework [9] which enables the replication
of models between a server and mutliple clients. This We-
bCoObRA approach is introduced in [1]. We will use this
mechanism to synchrinize our wrapper structure between
server and client. This enables us to do the mapping in real
time, without having to save our GUI before we create the
corresponding Fujaba diagram. As mentioned earlier, we
will have to map the wrapper structure to Fujaba activity
diagrams. To do this, we will use Triple Graph Grammars
(TGG). For a more detailed view on TGGs see [5]. Using
TGGs and the data replication between client and server
side we are able to propagate all changes made within the
GUI designer to the Fujaba activity diagrams and vice versa.
Figure 2 gives a complete overview about the architecture
we are focusing on.

Besides the mapping to Fujaba diagrams, the wrapper
structure also enables us to have reflection on client side,
which is not the case for the code of the widget libraries since
there is no reflection in GWT. All necessary information
about methods and attributes of the GUI components will
be stored and retrieved inside the wrapper by as well the
editor as the TGGs.

After the GUI has been created all the other web appli-
cation code may be produced using Fujaba diagrams and
methods. Using the adapted CodeGen2 templates, it is easy
to generate executable web application code from Fujaba
that may be debugged using the GWT Hosted Mode browser
or deployed by compiling it to JavaScript using the GWT
Compiler, cf. Figure 2.

3. FUJABA WYSIWYG
As mentioned above, currently there only exists one com-

mercial WYSIWG-GUI-Editor as an Eclipse plugin [6]. This
GUI designer supports the standard GWT widget library
and has an extension for Ext JS [3]based widgets. Since it
is commercial, there is no possibility to adopt this editor.
Since we need to adopt the code generation aspects of the
used editor to generate Fujaba diagram elements as well as
we want to have a plugin architecture to support an infinite
number of widget libraries, we currently focus on the devel-
opment of our own GUI designer.

This application is implemented using the GWT and its
SmartGWT widget library [12]. The first mockup of the
designer can be seen in Figure 1. It consists of a main edit-
ing area and a sidebar containing all the GUI components /
widgets. From the sidebar the components can be dragged
to the editing area and dropped there. The sidebar entries
contain references to the wrapper classes of every GUI com-
ponent and thus ensure the right widget to be created on
drop. We will try to develop templates to generate the wrap-
per classes automatically. These templates should then be
adaptable to the different widget libraries one wants to em-
bed into the editor. The development of these templates is
future work.

For the handling of the GUI design, our editor will be en-
abled with property dialogs and handler objects, to ensure
correct naming, parenting and size of the GUI component.
For the assignment of EventHandlers to GUI components it
will be possible to either use Fujaba or the property editors
of the designer. In every case the implementation of the
handler will take place inside Fujaba.

We also think of a special kind of adaption for the de-
signer. There might be the case that a user wants to reuse
one of his created GUIs. To do this, we want to enable the
designer to store this GUI in a way that it can be added to
the sidebar and used from there the next time the designer is
startet. Imagine for example a Login screen, which consists
of textfields for username and password as well as button
for submission. If saved to the sidebar as LoginWidget, the
next time a Login screen is needed, one only has to drag the
LoginWidget from the sidebar and on drop all the containing
elements will immediately be added to the editing area.

4. HOW TO INTEGRATE BUSINESS LOGIC
The integration of business logic to the web application

will be done using the Fujaba tool. We will have all the
methods and classes needed by the GUI available in Fu-
jaba due to the mapping described above. The logic itself
can be modelled using standard Fujaba mechanisms. Never-
theless, there will be the necessity to combine these logical
operations with GUI elements and on top to define kind of
screenflow for the web application. The concrete workflow
for handling these requirements is not yet defined. We think
of a fully integrated workflow for Fujaba which will enable
the user to create web projects, define GUIs and combine
these with the developed business logic. This will mean to
develop new creation wizards, run the GUI designer from
within Fujaba and of course, enable the assignment of logi-
cal elements to GUI and of EventHandlers to the GUI. For
this assignment there will be the need to create new editors
or diagrams which are not yet defined. The research in this
area is future work and will be published later.

The business logic iteself, be it EventHandlers or more
complex operations on the model will be created using Fu-
jabas activity diagrams. For all operations that will need to
run on the client side of the web application the codestyle
has to be set to “GWT”. Fujaba will do the rest for you.

5. SUMMARY AND FUTURE WORK
This paper showed our ideas on enabling the Fujaba tool

for the creation of complex web applications. We talked
about the steps currently carried out. We tried to motivate
the advantages and needs of model driven development for
web applications and talked about the creation of user in-
terfaces in more depth. We introduced the basic function of
our GUI designer mockup and indicated the possible work-
flow we want to achieve.

Since lots of our ideas still have the status of visions, we
have a lot of work to do in the future. Our first achievements
of GUI creation have to be carried on. The automatic gen-
eration of the wrapper classes needed will be the next topic
to focus, as well as the mapping of these to the Fujaba meta
model. We also will have to enhance the usability of our
GUI designer, to make it as intuitive as possible. Another
important item on our todo list will be the modularization
of our code, to give it the plugin architecture mentioned. We
have to focus on a simple API to extend the designer with
further widget libraries. This extension will have to com-
prise wrapper classes as well as TGG rules for the mapping.
To attract widget library owners to extend our designer with
their libraries, we have to ease this step as much as possible.

53

It will be necessary to extend Fujaba and its wizards for
the creation of web projects and Web UIs. These wizards
shall create the basic structure needed for a web applica-
tion project intended to run with GWT and WebCoObRA
as well as some necessary files, like the html startpage and
xml files needed by GWT.

In the end the saving of widgets to the sidebar has to be
implemented and the corresponding wrapper classes have to
be generated from the ones contained in the widget that was
saved.

6. REFERENCES
[1] N. Aschenbrenner, J. Dreyer, M. Hahn, R. Jubeh,

C. Schneider, and A. Zündorf. Building Distributed
Web Applications based on Model Versioning with
CoObRA: an Experience Report. In Proc. 2009 Intl.
Workshop on Comparison and Versioning of Software
Models, pages 19–24. ACM, May 2009.

[2] N. Aschenbrenner, J. Dreyer, R. Jubeh, and
A. Zündorf. Fujaba goes web 2.0. In U. Aßman,
J. Johannes, and A. Zündorf, editors, 6th International
Fujaba Days, pages 10–14, Dresden, Germany, 2008.

[3] Ext JS. http://www.extjs.com/, 2009.

[4] L. Geiger, C. Schneider, and C. Reckord. Template-
and modelbased code generation for MDA-Tools. In
3rd International Fujaba Days, Paderborn, Germany,
September 2005.

[5] H. Giese and R. Wagner. Incremental model
synchronization with triple graph grammars. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
editors, Proc. of the 9th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS), Genova, Italy, volume 4199 of Lecture
Notes in Computer Science (LNCS), pages 543–557.
Springer Verlag, 10 2006.

[6] Instantiations - GWT Designer.
http://www.instantiations.com/gwtdesigner/, 2009.

[7] R. Jubeh and A. Zündorf. Propertychange events meet
fujaba statecharts. submitted to 7th International
Fujaba Days, 2009.

[8] Yearly held workshop on Model-Driven Web
Engineering. http://mdwe2009.pst.ifi.lmu.de/, 2009.

[9] C. Schneider. CoObRA: Eine Plattform zur Verteilung
und Replikation komplexer Objektstrukturen mit
optimistischen Sperrkonzepten. PhD thesis, 2007.

[10] FAST. http://fast.morfeo-project.eu/, 2009.

[11] The Google Web Toolkit.
http://code.google.com/webtoolkit, 2009.

[12] SmartGWT Widget Library.
http://code.google.com/p/smartgwt/, 2009.

54

Ap
pl

ic
at

io
n

C
od

e
Ja

va

Te
xt

fie
ld

W
ra

pp
er

W
eb

C
oO

bR
A

Pr
op

er
ty

C
ha

ng
e

Tr
ip

le
 G

ra
ph

 G
ra

m
m

ar

C
od

eG
en

 2

Ap
pl

ic
at

io
n

C
od

e
Ja

va
Sc

rip
t

G
W

T
de

bu
g

de
pl

oy

G
W

T
C

om
pi

le
r

C
lie

nt
S

er
ve

r

Te
xt

fie
ld

W
ra

pp
er

Figure 2: Overview of Fujaba Web Development components and communication flow.

55

NT2OD

From natural text to object diagram

Jörn Dreyer, Albert Zündorf
Kassel University, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 129b
34121 Kassel, Germany

[jdr | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/index.php?joern

ABSTRACT
This paper documents the initial results of an attempt to cre-
ate tool support for the “objects first” development process.
The idea is to apply natural language processing (NLP) and
ontology learning techniques to textual use case descriptions
and derive an initial object diagram that can be refined by
the software developer. The prototype is a proof of concept
for simple sentences and will be further improved.

1. INTRODUCTION
The software development process of Fujaba teaches“objects
first” as described in [2]. To find these objects use case
descriptions are scanned for striking parts of speech:

• nouns indicate objects,

• verbs indicate relations or methods, and

• adjectives indicate attributes.

The designer has to decide about an actual mapping and
then creates an object diagram representing the use case.

The NT2OD prototype1 tries to automate this manual task
for the english language by applying NLP algorithms. The
global workflow consists of three steps:

1. Create a parse tree for the sentence.

2. Identify objects and relations.

3. Create the Fujaba object diagram.

A lot of work has already been done by linguists so that
NT2OD can reuse existing technologies.

1availiable as a Fujaba plugin:
https://gforge.cs.uni-kassel.de/projects/nt2od/

2. RELATED WORK
In NLP statistical parsers currently dominate the approaches
to the first step and have been explored thorougly by lin-
guists. The availiable implementations for Java include, but
are not limited to the following projects:

2.1 OpenNLP Tools
The OpenNLP Tools are developed as a sourceforge project2

and use the maximum entropy framework implemented by
the opennlp.maxent package3 based on [7]. The english
models have been trained with the Penn Treebank corpus.
However, a statement on precision or recall could not be
found. It can do POS tagging, named-entity detection,
coreference resolution and anapher resolution.

2.2 The Stanford parser
Based on [5] and [4] the “Stanford Natural Language Pro-
cessing Group” developed the Stanford parser. The lexi-
calized probabilistic parser has been trained on the Penn
Treebank corpus and yields a precision of 86.6% and a recall
of 86.8%. It provides POS tagging and the generation of
parse trees.

2.3 GATE
The “General Architecture for Text Engineering” described
in [1] has been developed by the Natural Language Process-
ing Research Group4 at the University of Sheffield5. The
default set of processing resources is called ANNIE6 and
contains a tokenizer, sentence splitter, gazetter, transducer,
POS tagger, (pro-)nominal coreferencer and ortographical
coreference component for the english language. A verb
phrase chunker can be added from the “Tools” section of
the CREOLE plugins and a noun phrase chunker based on
[6] is also availiable.

The POS tagger with a tagging accuracy of around 97% has
been trained on a large corpus taken from the Wall Street
Journal using a modified version of the Brill tagging algo-
rithm described in [3].

2http://Fopennlp.sourceforge.net/
3http://maxent.sourceforge.net
4http://nlp.shef.ac.uk/
5http://www.shef.ac.uk/
6A Nearly New IE system

56

Finally, the SUPPLE plugin7 provides a parse tree like the
other parsers.

2.4 Text2Onto
Text2Onto8 is a framework for ontology learning from text
that is based on GATE and WordNet9. However, it is de-
signed to customize the ontology learning algorithm and
toolchain when working with large corpora whereas NT2OD
is focused on the task of interactively mapping single sen-
tences and short texts to object diagrams. Still, NT2ODs
main concepts have been greatly inspired by Text2Onto.

3. AUTOMATING “OBJECTS FIRST”
The first step in NT2OD resembles the human process of
identifying Parts of Speech (POS). However, the process of
identifying concepts can be improved by also identifying the
hierarchical structure of the sentence – the “parse tree”.

3.1 Creating parse trees
While several projects for natural language processing are
availiable the prototype initially has been developed with
OpenNLP10 for its speed and ease of integration. The actual
parsing process is best described by an example sentence:

Alice and Bob are playing Ludo.

Simple part of speech tagging attaches short tokens to the
words, identifying its class11:

Alice/NNP12 and/CC13 Bob/NNP are/NNP

playing/VBG14 Ludo/NNP ./.

As you can see the tagger made a mistake and assigned
“proper noun”to the verb are. Switching OpenNLP to parse
trees not only reveals the the sentence structure, it also im-
proves precision:

(TOP (S15 (NP16 (NNP Alice) (CC and)

(NNP Bob)) (VP17 (VBP18 are)

(VP (VBG playing) (NP (NNP Ludo.))))))

Meanwhile, a parser interface has been introduced to the
prototype, enabling users to switch between OpenNLP, Stan-
ford and soon GATE. A small adapter is needed as parser
output differs marginally, e.g. sentence delimiter bracketing.

7http://gate.ac.uk/sale/tao/#x1-2280009.12
8http://ontoware.org/projects/text2onto/
9http://wordnet.princeton.edu/

10http://opennlp.sourceforge.net/
11http://www.ling.upenn.edu/courses/Fall 2003/
ling001/penn treebank pos.html

12NNP: proper noun, singular
13CC: coordinating conjunction
14VBG: verb, gerund or present participle
15S: sentence
16NP: noun phrase
17VB: verb phrase
18VBP: verb, non-3rd person singular present

3.2 Extracting concepts
The parse tree could be used to directly create the fujaba
model, however creating an intermediate layer eases the rep-
resentation of alternatives (should a verb be mapped to a
relation or a method). Consisting of concepts, instances
and relations between them, it also allows an easy reidenti-
fication of conceps by its properties which gains importance
when merging them later in the process. First, the prototype
creates an object world that mimics the parse tree and then
tries to identify subject, predicate and object for a simple
grammar, as shown in figure 1.

Figure 1: Simple sentence structure

All nouns in the first noun phrase become subjects, the last
verb becomes the predicate and the nouns of the verbs noun
phrase become objects (in the sense of sentence grammar).
Any proper nouns are currently used as the object name.
Other nouns become class names. However, the explicit as-
signment of an instance to a class in the form of the verb “to
be” only creates a new inheritance in order not to overwrite
a previously assigned class, preventing loss of information.
This open world assumption creates a lot of classes, but it
leaves the choice of which classes to merge to the user. Fig-
ure 2 shows the class diagram for our example sentence.

Figure 2: Class diagramm after parsing

During the development of the prototype the assumption
was made to map predicates to relations instead of methods,
as this better fits the creation of object diagrams. Further-
more, quantities like four players, as well as a few colors
(those available in java.awt.Color) are taken into account
when creating objects and determinig the multiplicity of an
association in the class diagram.

3.3 Visualizing concepts
The third step to achieve “objects first” tool support is the
visualization of the intermediate layer in Fujaba. When

57

Figure 4: Object diagram after parsing

transforming it into a Fujaba model (mainly UMLObject and
UMLClass) the prototype creates a new name “Unnamed-
Class” for every unnamed class and appends a serial num-
ber. Anonymous objects derive their name from their class
and also append a serial number. In order to visualize links
(UMLLink) between objects Fujaba also requires the corre-
sponding association (UMLAssoc) to be set. Currently the
parsing process is started by choosing the new “Parse Anno-
tation” action in the popup menu of a storyboard as seen in
figure 3. Figure 4 shows the object diagram and parse result
for the example sentence.

Figure 3: Popup menu

4. CONCLUSIONS
Although the process of identifying objects and relations is
heavily influenced by the sentence structure understood by

NT2OD, the current implementation of the prototype has
proven to be a working solution for simple sentence struc-
tures. In the future we plan to switch from a hard coded
model and concept extraction to Fujaba activity diagrams to
visualize the transformation between parse tree and object
diagram. This will allow us to widen the range of sentence
structures and make NT2OD more flexible. Furthermore,
the inclusion of GATE will improve the precision of parse
trees and in consequence the resulting object diagrams.

5. REFERENCES
[1] H. Cunningham, D. Maynard, K. Bontcheva, and

V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools and
applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics, 2002.

[2] I. Diethelm, L. Geiger, and A. Zündorf. Teaching
modeling with objects first. In 8th World Conference
on Computers in Education, Cape Town, South Africa,
2005.

[3] M. Hepple. Independence and commitment:
Assumptions for rapid training and execution of
rule-based pos taggers. In Proceedings of the 38 th
Annual Meeting of the Association for Computational
Linguistics, Hong Kong, October 2000.

[4] D. Klein and C. D. Manning. Accurate unlexicalized
parsing. In Annual Meeting of the Association for
Computational Linguistics, volume 41, pages 423–430,
2003.

[5] D. Klein and C. D. Manning. Fast exact inference with
a factored model for natural language parsing. In
Advances in Neural Information Processing Systems,
volume 15. MIT Press, 2003.

[6] L. A. Ramshaw and M. P. Marcus. Text chunking using
transformation-based learning. In Proceedings of the
Third ACL Workshop on Very Large Corpora, 1995.

[7] A. Ratnaparkhi. Maximum Entropy Models for Natural
Language Ambiguity Resolution. PhD thesis, University
of Pennsylvania, Philadelphia, PA, 1998.

58

Supporting Modeling in the Large in Fujaba

Thomas Buchmann
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

thomas.buchmann@uni-
bayreuth.de

Alexander Dotor
Angewandte Informatik 1

Universität Bayreuth
D-95440 Bayreuth

alexander.dotor@uni-
bayreuth.de

Martin Klinke
Xavo AG

Enterprise IT Solutions
D-95444 Bayreuth

martin.klinke@xavo.com

ABSTRACT
Model-driven software development intends to reduce devel-
opment effort by generating code from high-level models.
However, models for non-trivial problems are still large and
require sophisticated support for modeling in the large. Ex-
periences from our current project, dedicated to a model-
driven modular software configuration management (SCM)
system, confirm this claim. This paper presents a stand-
alone package diagram editor that has been developed using
Fujaba and discusses its integration into the Fujaba tool
suite.

Keywords
package, import, package diagram, model-driven develop-
ment, modeling in the large, validation

1. INTRODUCTION
In object-oriented modeling, modeling in the large is an area
which has not attracted sufficient attention, so far. The fo-
cus in object-oriented modeling tools is clearly on the level
of class diagrams. When it comes to modeling the archi-
tecture of a system, particularly the dependencies between
certain modules, package diagrams play a crucial role. The
experiences gained in our project, dedicated to the devel-
opment of a model-driven product line of software configu-
ration management systems, showed us that managing the
dependencies between packages is mandatory for the overall
success of the project [4].

UML 2.0 offers concepts for structuring large models [6,
1]: A model may be structured into hierarchically orga-
nized packages. Each model element is owned by exactly
one package. Private elements are not accessible from other
packages, while public elements are visible. Each package
defines a namespace in which the names of declared model
elements have to be unique. Public model elements from
other packages may always be referenced through their fully
qualified names. A model element from an enclosing package
may be referenced without qualification, unless it is hidden
by an inner declaration.

Apart from nesting, UML 2.0 introduces the following rela-
tionships between packages: Imports merely serve to extend
the set of those elements which may be referenced with-
out qualification. UML 2.0 distinguishes between public
and private imports, which are denoted by the stereotypes
<<import>> and <<access>>, respectively. A private im-
port makes the imported elements visible only in the im-

porting package, while a public import simultaneously adds
those elements to its exported namespace. Public imports
are transitive; this property does not hold for private im-
ports. UML 2.0 also offers package merges, which will not
be discussed in this paper.

In this paper, we present the MODPL package diagram edi-
tor, which is a first step of supporting UML 2.0 package di-
agrams, either as a stand-alone editor or within the Fujaba
tool suite. Furthermore, it can be used to validate Fujaba
models against a pre-defined package diagram.

2. PACKAGE DIAGRAM META-MODEL
AND EDITOR

Our MODPL package diagram editor has the capability of
creating and editing UML compliant package diagrams. Ba-
sically it is independent of Fujaba or Ecore. But its meta-
model is designed to provide an interface for third party tools
- either to import an already existing package structure, or
to validate visibility constraints.

The package diagram meta-model itself is a subset of
the meta-model described in the UML specification [6]. It
contains the following elements:

• Packages

• Classes

• Package imports (Private and Public)

• Element imports (Private and Public)

Currently package merges are omitted in the meta-model.
Take note that a package diagram model contains only in-
formation about the visibility and no other relationships
between packages or classes.

Additionally, the meta-model provides an interface to cre-
ate, delete and validate model elements which is solely based
on fully qualified names. This way, the interface is inde-
pendent of the 3rd-party meta-models the package diagram
editor has to work with: Ecore, Fujaba or any other UML-
based meta-model can be integrated – identity of elements
is provided by the fully qualified names.

The editor was developed in a pure model-driven way. In
particular, Fujaba was used to describe the meta-model – in-
cluding an interface and behavior to conduct visibility checks

59

Figure 1: The package diagram of the MOD2-SCM project created with the package diagram editor.

– and exported as Ecore model, using Fujaba’s code genera-
tion engine for the Eclipse Modeling Framework (EMF) [5].
Then the Eclipse Graphical Modeling Framework (GMF)
was used to generate the graphical editor, based on our pre-
vious experiences [3]. Figure 1 shows a package diagram of
our MOD2-SCM project.

3. INTEGRATION INTO EMF AND
FUJABA

The ultimate goal of the MODPL package diagram editor
is to become integrated with other tools that are based on
models containing the concept of package diagrams, but lack
a package diagram editor itself: like Fujaba. In the following
sections we describe the various steps we have undertaken,
so far, towards the goal of a seamless integration with Fujaba
and EMF.

3.1 Step 1: Deriving package diagrams from
Ecore

It is very easy to generate package diagrams on top of an
already existing Ecore model definition (see the left depen-
dency in Figure 2). The import mechanism reads the
Ecore file and creates a corresponding package diagram file
containing all packages and classifiers (Classes and Data-
types) from the imported model. Additionally, package or el-
ement imports can be deducted from the given Ecore model.
After that, the graphical representation of the package dia-
gram can be initialized.

3.2 Step 2: Validating Ecore models against
package diagrams

Ecore model

Packagediagram
model

Eclipse

Initialize / Update
packages, types

and imports

Validate visiblity
constraints

Figure 2: Step 1&2 – Dependencies between Ecore
and package diagram models.

The validation checks if for each model element all refer-
enced model elements are visible (see the right dependency
in Figure 2). The validation process works as follows: The
source and target element are specified by their fully qual-
ified name, and a request is made – using our meta-model’s
interface – if the target is visible to the source. This distinc-
tion is necessary as visibility is not symmetric – if element
A is visible to element B they are not necessarily vice versa.

To keep the package diagram small and readable, we require
only the packages to be contained in the package diagram.
Classes can be omitted and should be, as long as they are
no target of an import. Therefore, four possible results can
occur when source and target are validated.

60

1. both elements are contained in the package diagram

2. only the target is part of the package diagram

3. only the source is part of the package diagram

4. both source and target are not contained in the pack-
age diagram

If an element is not contained in the package diagram, the
containing namespace – in most cases a package if no in-
ner class is checked – is used for the validation, instead of
the element itself. The fully qualified name of the contain-
ing namespace can be computed by simply truncating the
element’s fully qualified name before the last dot.

If a violation occurs, we have two possible origins:

1. The validated model uses an non-visible type and
has to be fixed.

2. The package diagram misses one or more imports
which have to be added.

3.2.1 Ecore validation plugin
To validate an Ecore model, we chose to use the EMF Vali-
dation Framework to trigger the constraint checking and the
Object Constraint Language (OCL) to specify a constraint
on each Ecore element. The OCL statement simply del-
egates source and target name to the appropriate package
diagram model method – and does not specify the constraint
itself. This allows us to specify the constraint checks in Fu-
jaba without loosing the capability of the Eclipse Validation
framework to mark violating model elements visually and to
link them with the corresponding error message. During the
validation process, the containment tree of the Ecore model
is traversed, and the following meta-types of Ecore elements
are validated:

• EReference

• EOperation

• EParameter

• EAttribute

• EClass

Source and target are determined as follows: The source is
the owner of the Ecore element, whereas the target is its
type (i.e. their fully qualified names).

3.3 Step 3: Deriving package diagrams from
Fujaba

To create a package diagram for a Fujaba model, it is ex-
ported to EMF first, and the generated Ecore model used to
initialize the package diagram. This way Ecore acts as in-
termediate model between Fujaba and the MODPL pack-
age diagram model (as depicted in Figure 3).

Fujaba

Fujaba model Generate Ecore model

Packagediagram
model

Eclipse

Initialize / Update
packages, types

and imports

Validate visiblity
constraints

Figure 3: Step 3 – Using Ecore as intermediate
model.

Fujaba

Fujaba model Ecore model

Packagediagram
model

Generate

Initialize /Update
packages, types

and imports

Eclipse

Validate visiblity
constraints

Figure 4: Step 4 – Validating Fujaba models directly.

3.4 Step 4: Validating Fujaba models against
package diagrams

By passing the fully qualified names from Fujaba to the cor-
responding package diagram model, it is possible to check
the visibility between two Fujaba elements. Figure 4 depicts
the dependencies between the three models: Fujaba, Ecore
and package diagram model.

3.4.1 Fujaba validation plugin
A connector has been implemented as a Fujaba plugin, which
combines the package diagram editor presented in this paper
and Fujaba4Eclipse with the SwingUI. In the Fujaba tool
suite, an existing package diagram model (created with our
package diagram editor) is loaded during the editing process.
After the model has been loaded, the visibility of model
elements is checked when

1. an association is created.

2. attributes are added.

3. return types of methods are selected.

4. parameters of methods are specified.

5. the type of an object is selected in a story diagram.

The plugin is even capable of updating the package diagram
in case a visibility constraint is violated.

61

Figure 5: A simple example for the integration of
the package diagram editor in Fujaba.

3.5 Step 5: Updating the package diagram
from Fujaba

In case a visibility constraint is violated in Fujaba (i.e. a se-
lected element is not visible), the user can decide whether
he wants to cancel the operation in order not to violate the
import dependencies specified in the package diagram, or to
add the appropriate kind of import automatically to the
package diagram (public or private package import or pub-
lic or private element import). A simple example is given
in Fig. 5: The example consists of two classes, ClazzA and
ClazzB, both defined in package packageA and packageB,
respectively. The corresponding package diagram does not
define any imports between the two packages. Now an asso-
ciation is added between ClazzA and ClazzB. Figure 6 shows
the package diagram after the association was added and the
user selected the kind of import that should be added au-
tomatically to the package diagram (in this case a private
package import was used).

The current dependencies between Fujaba and the package
diagram model are depicted in Figure 7. Please note that the
package diagram editor can be used on existing Fujaba mod-
els - but these have be imported using the editor’s Ecore im-
port mechanism. Therefore, the Fujaba model has (still) to
be exported to Ecore using the EMF code generation. Once
the import has been completed (and the package diagram
has been associated with the Fujaba model), the validation
plugin is used to keep the package diagram up-to-date.

4. RELATED WORK

Figure 6: The package diagram after the association
was added in Fujaba.

Fujaba

Fujaba model Ecore model

Packagediagram
model

Update
packages, types

and imports

Generate

Initialize
packages, types

and imports

Eclipse

Validate visiblity
constraints

Figure 7: Step 5 – Current state: Updating package
diagram models from Fujaba.

Fujaba itself provides only a package tree classes can be as-
signed to, but no package diagrams. MOFLON [2], which
has been built on top of Fujaba, offers package diagram capa-
bilities based on the MOF 2.0 meta-model. The MOFLON
editor filters the elements based on the visibility constraints.
However, it supports, currently, neither the update of the
package diagram if a visibility constraint is violated nor the
integration of other meta-models. UML2Tools for Eclipse
provides a mature package diagram editor for UML2 mod-
els. These models can be used to generated EMF models
so it is possible to use these tools for large EMF models.
However, neither does the graphical UML2 editor support
package imports (although the metamodel does) nor does
the metamodel validation check the visibility constraints.
The latter is common behavior for UML package diagram
editors: If an element is not visible the fully qualified name
is used to access the element – without any warning or error.

5. FUTURE WORK
The next step is the complete integration of our package
diagram editor into the Fujaba tool suite (as depicted in
Figure 8). The validation plugin has to traverse the Fujaba
model and to create a corresponding package diagram
model.

62

Fujaba

Fujaba model Packagediagram
model

Eclipse

Validate visiblity
constraints

Update
packages, types

and imports

Figure 8: Step 6 – Future work: Removing the in-
termediate Ecore model.

Further extensions affect the incorporation of the visibility
information into the user interface: It can be used to limit
the referencing of model elements only where they are vis-
ible. For example, the class diagram editor can only show
elements which are visible from the package the class dia-
gram belongs to. Furthermore, a slight change to the Fujaba
meta-model is recommended: not only model elements such
as classes and associations, but also class and story diagrams
should be assigned uniquely to one package. The package
diagram editor itself can also be extended in various ways.
For example, besides the view with nested packages, differ-
ent visualizations could be chosen to provide a more flexible
view of packages and their interdependencies to the user.

6. CONCLUSION
In this paper, we presented a package diagram editor devel-
oped with Fujaba and GMF. It allows the user to validate
Fujaba and Ecore models against package diagrams with im-
port dependencies – and keep them up-to-date. The pack-
age diagram can be either created from scratch, or it can
be initialized from already existing Ecore models. In the
last section, we discussed possible integration points of the
package diagram editor into the Fujaba tool suite.

7. ACKNOWLEDGMENTS
We would like to thank our supervisor, Prof. Dr. Bernhard
Westfechtel, for the invaluable input during the development
of the package diagram editor and his feedback as a reader
of this paper.

8. REFERENCES
[1] OMG Unified Modeling Language (OMG UML),

Infrastructure, V 2.1.2, Nov. 2007.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF.

[2] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.
MOFLON: A standard-compliant metamodeling
framework with graph transformations. In A. Rensink
and J. Warmer, editors, Model Driven Architecture -
Foundations and Applications: Second European
Conference, volume LNCS 4066, pages 361–375,
Genova, Italy, October 2006 2006.

[3] T. Buchmann, A. Dotor, and B. Westfechtel.
Model-driven development of graphical tools - fujaba
meets GMF. In J. Filipe, M. Helfert, and B. Shishkov,
editors, Proceedings of the Second International
Conference on Software and Data Technologies
(ICSOFT 2007), pages 425–430, Barcelona, Spain, July
2007. INSTICC Press, Setubal, Portugal.

[4] T. Buchmann, A. Dotor, and B. Westfechtel.
Experiences with modeling in the large with fujaba. In

U. Assmann, J. Johannes, and A. Zündorf, editors,
Proceedings of the 6th International Fujaba Days.
University of Dresden, University of Dresden, 2008.

[5] L. Geiger, T. Buchmann, and A. Dotor. EMF code
generation with fujaba. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proceedings of the 5th
International Fujaba Days, 2007.

[6] OMG. OMG Unified Modeling Language (OMG UML),
Superstructure. OMG, November 2007. Version 2.1.2.

63

FRiTSCab: Fujaba Re-Engineering Tool Suite for
Mechatronic Systems∗

Stefan Henkler, Moritz Breit, Christopher Brink, Markus Böger, Christian Brenner,
Kathrin Bröker, Uwe Pohlmann, Manel Richtermeier, Julian Suck, Oleg Travkin,

Claudia Priesterjahn
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[shenkler,mbreit,cbrink,markusb,cbr,kathyb,upohl,mane02,jsuck,oleg82,cpr]@uni-

paderborn.de

ABSTRACT
Mechatronic systems use their software to enable enhanced
functionalities. Due to the complexity of these systems
model-driven engineering of the software has become the
means to construct reliable software. As safety is of
paramount importance for these systems, legacy compo-
nents, which have shown their quality in practice, are often
reused. Therefore, the re-engineering of legacy components
has to taken safety requirements into account. We present
an approach for the re-engineering of mechatronic systems
which focuses especially on distributed real-time and safety
requirements and an integration into a model-driven engi-
neering approach.

1. INTRODUCTION
Mechatronic systems, like automotive systems and aerospace
systems, are usually networks of mechatronics components.
Software is used to enable communication and thus to ex-
ploit knowledge of other components to enhance the func-
tionality and to adapt the behavior of a single component
when beneficial. Adapting the behavior might require com-
plex reconfigurations of controllers in the form of mode man-
agement and control algorithms under hard realtime con-
straints. Due to the complex nature of networked mecha-
tronic systems and their usually safety-critical operations,
e. g. lives may be at risks in case of failure, model-driven en-
gineering of the software has become the means to construct
reliable software.

As safety is of paramount importance for mechatronic sys-
tems, legacy components, which have shown their quality
in practice, are often reused. Therefore, the integration
of legacy components into a model-driven engineering ap-
proach is obvious [Bal00]. The integration postulates that
an adequate model of the legacy system is available. The
automatic extraction of the models of a legacy component
based on the existing executable code and its defined inter-
faces is the topic of this paper.

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

The overwhelming complexity of the interaction of dis-
tributed real-time components usually excludes that testing
alone can provide the required coverage when integrating a
legacy component. Thus formal verification techniques seem
to be a valuable alternative. However, the required verifica-
tion of the resulting system often becomes intractable as no
abstract model of the reused components is available, which
can serve the verification purpose.

As the origin of a legacy component could be different from
case to case, the known information of the legacy component
differs, too. The level of detail of the information is essential
for the required techniques and steps in the development
process to extract the model and to integrate the legacy
component in a system.

An integration is successful if the communication with the
environment is faultless. Furthermore, it is important to
proof that dependent on the control flow (the protocol be-
havior) the needed control behavior is executed. Hence, an
approach for hybrid systems is required which takes safety
requirements into account.

In [GHH08a] we present an approach which enables, in con-
trast to existing approaches (e. g. [RMSM09, BJR06]), an
integration of legacy components which takes safety require-
ments into account. The approach is limited to legacy com-
ponents which support to monitor the current state infor-
mation at the interface of the component. As we have pre-
sented in [BGH+08] this approach works well for advanced
applications in the RailCab project1 and applications which
propose the AUTOSAR2 standard.

We extend this approach by taken legacy components into
account which support only in- and output information in
form of messages at the interface (typically known as black-
box components) and legacy components which support the
message information at the interface as well as the source
code (known as white-box components). Especially the
black-box case is very often given by applications in the au-
tomotive domain (e. g. [BB08]). As in our previous approach

1http://www-nbp.uni-paderborn.de/
2http://www.autosar.org/

64

[GHH08a], we learn and check (iteratively) the control flow
of the communication with respect to the context of the
legacy component (the modeled counterpart of the legacy
component). Furthermore, we integrate the possibility to
identify controller behavior by classical linear system iden-
tification approaches [Ise92]. We identify the controller be-
havior in form of transfer functions. If all transfer functions
are known for each state of the control flow of the commu-
nication, we can identify reconfigurations of the controller
behavior. Hereby, we support an utility which enables an
early conflict recognition also for the engineers. Actual the
integration of legacy controller behavior is done at the very
end of the development process, in the system integration
phase [BN03].

In the next section, we present a sketch of our approach.
We present the relevant parts of Mechatronic UML
[GHH+08b], the model-driven engineering approach in
which we integrate legacy components, and the required ex-
tension for integrating legacy components. After reviewing
the relevant related work in Section 3, we present our inte-
gration approach in Section 4. The presented techniques are
developed in the project group ReCab [MB09]. We conclude
with a summary and future work.

2. SKETCH OF APPROACH
The approach is implemented in the Fujaba Real-Time Tool
Suite. Figure 1 gives an overview of the development pro-
cess of FRiTSCab3. We first start with the specification of
the system (specify system). As in the Mechatronic UML
approach [GHH+08b], the system is specified in a compo-
sitional manner. We start with specifying the structure in
form of components and the behavior by real-time coordi-
nation pattern (with parameterized real-time statecharts).
The reconfiguration behavior of (software, controller) com-
ponents and its ports is described by story diagrams. Based
on this specification we use model checking to proof the cor-
rectness of the specified system with respect to (safety and
liveness) constraints (verify system). If the system is correct,
we generate automatically c++ code for simulation purposes
as well as for the real physical system (automatic implemen-
tation).

As there are a lot of examples in the context of networked
mechatronic systems, which require a dynamic structure and
an adaptation to the changing environment, the Mecha-
tronic UML approach focuses especially on the support of
self-adaptation. An often used example is a convoy of au-
tonomous vehicles for reducing the energy or for extending
the comfort of a driver (of a car) or for driving cars through
a road work in a safe manner4. As oftentimes the collabo-
ration between a flexible number of participants is required
in these examples, we extend the Mechatronic UML ap-
proach in [HHG08] such that we can model collaborations
between components which include structural adaptation in
form of new or removed ports as well as multi-ports with an
open number of participants. To enable this kind of specifi-
cation we extend the classical state based specification of be-

3FRiTS : Fujaba Re-Engineering Tool Suite, Cab: short
form of RailCab, our (real) application which represents a
mechatronic system.
4Our test bed for proving such examples is the RailCab
project (http://www-nbp.uni-paderborn.de/).

havior by Story Diagrams. FRiTSCab also enables the code
generation and worst case execution time analysis (WCET)
of dynamic collaborations in an appropriate manner. The
basic idea is that we can adapt the upper and lower limit of
the required resources during runtime. The approach guar-
antees predictability, which is of paramount importance for
real-time systems. As the focus of this paper is especially
on the reverse engineering part, we refer to [MB09] for more
details.

After the automatic implementation step is finished, we can
integrate legacy components (integrate legacy components).
A side effect of the integration is an appropriate representa-
tion of legacy components in the Mechatronic UML ap-
proach. Additionally to the components whose behavior is
specified by real-time statecharts, FRiTSCab extends the
structure by legacy components (black-box components) as
shown in Figure 3. After we have specified, verified and
synthesized the system, we can than proof the correctness
of the integrated legacy components. The integration in the
Mechatronic UML approach also enables to enhance the
evolution of legacy components by using our modeling ap-
proach for self-adaptive systems. E. g. we can wrap the
legacy component and add self-adaptive behavior in form
of parameterized real-time statecharts and its reconfigura-
tion to enable the communication to an arbitrary number of
communication partners. The wrapping on the model- and
code-level is still a manual task. If the integration is suc-
cessful, the development is complete. The presented process
is idealized for demonstration purposes. It is also possible
to start the integrate legacy components phase on a partially
specified system.

[detect failures]

specify structure (components)

specify behavior (Parameterized Real−Time Statecharts)

specify reconfiguration (story diagrams)

specify system

analyze WCET

generate code

automatic implementation

constraints]
[unsatisfied timing

integration]

verify system

inductive checking of parameterized behavior

compositional model checking of protocols

integrate legacy component

[use legacy
component]

verify integration

(learn behavior)
analyze legacy component

[unsuccessful

Requirements

FRITSCab approach

Figure 1: Overview of FRiTSCab

3. STATE OF THE ART
Abstraction - White-box Approach. Abstraction is an
important technique for handling the state explosion prob-
lem of model checking. Counterexamples are often used to
refine an abstract model. The upper approximation is re-
fined, if some behavior in the approximation which is not

65

present in the original model is the cause of a counterexam-
ple. When this happens, it is necessary to refine the abstrac-
tion so that the behavior which caused the erroneous coun-
terexample is eliminated. Based on white box knowledge
like the program variables, the approach is to find a model
of the system with a good abstraction to reduce verification
efforts. First, it is started with an over-approximation of
states (states are reduced to one). Then, the model is re-
fined as long as erroneous counterexamples are eliminated.
A number of approaches are investigating this problem, like
[CKL04, BHT06].

These approaches are based on white box information.
Hence, no tests are required and these approaches do not re-
quire to consider the possible alphabet of the system, which
is the basis for a black box approach. An interaction to the
environment of the system, e.g. in the form of a context,
is not considered, as well as time. Our white-box approach
especially focusses on the correct mapping of the context
model to code to enable a compositional checking of a real-
time system on code level by using an existing source code
model checker like CBMC [CKL04].

Regular Inference - Black-box Integration. In reg-
ular inference systems are viewed as black boxes. It is as-
sumed that the considered black box system can be modeled
by a deterministic finite automaton (DFA). The problem is
than, to identify the regular language L(M) of the system
M. Learning algorithms are used to identify the regular
language. A Learner, who initially only knows the alphabet
Σ∗ about M, is trying to learn L(M) by asking queries to
a Teacher and an Oracle. L(M) is learned by membership
queries which asks the Teacher whether a string w ∈ Σ∗

is in L(M). Further, an equivalence query is required to
ask the Oracle whether the hypothesized (learned) DFA A
is correct (L(A) = L(M)). The Oracle answers yes if A
is correct, or else supply a counterexample. Typically, the
Learner asks a sequence of membership queries and builds a
hypothesized automaton using the observed answers. When
the Learner determines that the hypothesized behavior is
stable an equivalence query is used to find out whether the
behavior is correct. If the query is successful the Learner has
succeeded, otherwise the returned counterexample is used to
revise A and perform further membership queries until de-
riving the next hypothesized automaton, and so forth. A
common assumption for equivalence checking is that A has
at most as many states as M [BGJ+05]. If this is the case,
the learned behavior is a correct representation of the legacy
component (otherwise, it is not know).

Angluin’s Algorithm. The most widely recognized regu-
lar inference algorithm is L∗ developed by Angluin [Ang87].
The algorithm organizes the information obtained from
queries and answers in a so called observation table. The
observation table regards each string as consisting of a pre-
fix and a suffix. The prefixes are indices of rows and the
suffixes indices of columns in the table. A prefix is a string
which leads to a state in the system, and a suffix is used to
distinguish prefixes that lead to different states. A number
of approaches exist, which are based on Angluin’s [Ang87]
learning algorithm. Some approaches, like [BJLS03, HNS03,

BJR06], extend the algorithm of Angluin to get better run-
time behavior in specific applications or domains. Other ap-
proaches use Angluin’s algorithm and add technologies like
testing or verification. Despite [GPY02], most approaches
rather try to synthesize the whole behavior and than find-
ing conflicting situations. However, our approach considers
especially the collaboration (context) between the environ-
ment and the legacy component. Thus, the whole behavior
of the legacy system is not required but only the relevant
part for the collaboration. Similar to [GPY02] our black
box approach is able to find real errors after each learning
step. The presented approaches, besides [GJP06], did not
consider time (constraints).

System identification. The (discrete) protocol behav-
ior and the (continuous) controller behavior yields a hybrid
system. Hybrid system identification approaches are well
known in the control theory community, but does not scale
very well [Lju08]. Hence our approach addresses this prob-
lem by reducing the hybrid system identification problem to
a standard linear system identification problem as we split
the identification in two steps. The first step is to identify
the protocol behavior based on the approaches presented
previous in this section and the second step is to identify
the control behavior of the identified states of the protocol
behavior.

4. INTEGRATION OF LEGACY COMPO-
NENTS

Reverse engineering [CI90] is the discipline which takes the
analysis and understanding of (legacy) software systems into
account. As reverse engineering is a time intensive task,
(semi-) automatic approaches are required for analyzing the
relevant information. In our case, an approach is required
which can learn the relevant behavior information for inte-
grating a legacy component by proving that the specified
constraints for the integration are fulfilled. We can dis-
tinguish between white-box legacy components (the source
code and all relevant information for the execution of the
legacy component are known) and black-box legacy compo-
nents (only the relevant information of the interface and the
execution of the legacy component are known). In the fol-
lowing, we first describe an approach for taking white-box
legacy components into account. Afterwards, we consider
black-box legacy components and the integration of system
identification to enable the reverse engineering of control
behavior. We will close this section with a short discussion.

Figure 2 gives an overview of the integration approach. The
integration for the white-box- and black-box- approach can
either show a refinement of a abstract role, if specified, or
can show a correct communication with the context. Then,
based on the learned state behavior the controller behavior
is learned by system identification. Hence, it is possible to
identify a reconfiguration of controller behavior. Figure 3
shows a component architecture including a legacy compo-
nent, which is analyzed including the context behavior of
Figure 4 in the following.

White-Box. A precondition for this approach is, that the
source code (in our case C) of the legacy component is avail-

66

3. System identification

3.
Comp1

Coordination

Pattern

RoleA RoleB

Constraint

Comp2

Connector

1. Verify pattern

2.1.

2.2.

2.1 Verify refinement

2.2. Verify communication

Figure 2: Overview of integration

Figure 3: (Legacy-) Component Architecture

able. Furthermore, we have to know the interface procedures
which are responsible for the communication. The basic
idea is to use a source code model checker like BLAST5 or
CBMC6 to enable a compositional formal verification or re-
finement on the source code level. The approach supports
a C code legacy component and a C code component of the
context or the C code of the abstract modeled role (of the
legacy component) as input.

In a first step, we have to map the (abstract) model to source
code to enable the required check (with the legacy compo-
nent). The mapping has to preserve the execution semantics
of the model. Hence, one possible (deterministic) path of the
model has to be mapped to the source code. As the consid-
ered kind of systems are reactive once the generated system
is executed periodically (that is also the case for the legacy
component). The WCET (see Section 2) of a transition has
to satisfy the specified deadlines. Within a period a task
can be executed undeterministically by the scheduler. Fur-
thermore, the periods of the legacy system and the model
can be of different length.

Our Tool Suite supports a C code generation which con-
siders the discussed requirements. Based on the generated
code and a runtime framework which encapsulates the com-
munication calls as well as a simulated time we can start the
proof with a source code model checker. Conceptually the
BLAST model checker fits best as this model checker sup-
ports a good abstraction based on lazy abstraction [BHT06].
But, in our evaluation BLAST had a lot of problems with
bounded arrays which are required for the communication.
The bounded model checker CBMC [CKL04] supports the
most C constructs and also supports the required bounded
arrays. Hence, we use CBMC for our evaluation. Figure 4
shows a part of the behavior which we have verified on the
code level. The used model checker does only scale up for
small examples.

5http://mtc.epfl.ch/software-tools/blast/
6http://www.cprover.org/cbmc/

The cause is not the number of states but rather the number
of non-deterministic variables due to a correct mapping of
the scheduling and timing. E. g. the execution of a task can
be arbitrary within a period. To have a realistic mapping,
we use the concept of a non-deterministic variable for the
starting point of the execution of a task. Non-deterministic
variables are supported by BLAST as well as CBMC.

InitialState

noConvoy

c1 <= 40

Convoy

c1 <= 80

RTSC_for_frontRole | clocks: c1

msgIFace_for_frontRole_rearRole.CONVOY_REQUEST()

{c1}

msgIFace_for_frontRole_rearRole.LEAVE_CONVOY_REQUEST()

{c1}

/ msgIFace_rearRole.APPROVE_LEAVE_CONVOY_REQUEST()

{c1}

/ msgIFace_rearRole.APPROVE_CONVOY_REQUEST()

{c1}

/ msgIFace_rearRole.DECLINE_LEAVE_CONVOY_REQUEST()

msgIFace_for_frontRole_rearRole.LEAVE_CONVOY_REQUEST()msgIFace_for_frontRole_rearRole.CONVOY_REQUEST()
/msgIFace_rearRole.DECLINE_CONVOY_REQUEST()

Figure 4: Verified behavior

Black-Box. Preconditions for the black-box integration are
the interface procedures which are responsible for the com-
munication and all other relevant information for the exe-
cution of the legacy component (e. g. like the period). We
extend the existing work of [Ang87] by considering the con-
text in form of a possible direct input for the membership
queries (see Section 3) by verifying the learned behavior with
the modeled behavior after each learning step. If the counter
example is also true on the code level the integration is un-
successful. Otherwise, if the learned behavior has been de-
termined7 and the model checking is successful, the integra-
tion is correct if the number of states are an upper bound of
the state number of the legacy component [Ang87]. Because
of the known counter part of the legacy component, the con-
text or the abstract behavior, we can determine the number
of states by the number of states of the modeled behavior.
In most cases this should be a good approximation as in the
considered domain with hard real-time requirements, typi-
cally every protocol consists of a watchdog pattern. That
means, after each call an acknowledgment within a speci-
fied time is required which is an indication of a state. Fur-
thermore, we consider timing (constraints) taken the known
period of the legacy component into account.

The implemented concepts (including a caching for the
membership queries) yield fast evaluation results. We have
evaluated our approach by the presented behavior in Figure
4 and test models up to 15 states. The time for learning
the correct behavior for 15 states is about two minutes. In
[May08], we have identified coordination patterns in mecha-
tronic systems. The number of states are about 10 for a
pattern (role). Hence, the application of this approach to
mechatronic systems is given.

System Identification. Before identifying the controller be-
havior, the state behavior has to be known. Hence, we re-
quire that the learning of the state behavior described above
is successful. This approach is not applicable with the white-
box approach as the applied tools do not support an exter-

7That is the case if the equivalence query is successful (see
Section 3)

67

nally visible model of the checked systems (accordingly, an
extension of the CBMC or Blast tool is future work)8.

As described in the introduction, besides the communi-
cation the different (controller) modes are of importance
for a mechatronic system, as well. System identification
[FPW98], is the approach which enables the identification
of a controller algorithm. This is done by simulation. We
can simulate each path of the learned behavior and for each
state we can identify the controller behavior. The input of
the system identification is a specified test trajectory or a
realistic run in its environment. Based on the input and
output behavior the transfer function of the controller is
identified for linear systems. If the transfer functions are
known, we can identify reconfigurations by different trans-
fer functions. This approach supports the engineer in in-
tegrating mechatronic components into early development
phases. Typically the engineers test the legacy components
(controllers) only in hardware-in-the-loop scenarios or the
real environment later in the development process. In order
to get realistic simulation runs we can use our deterministic
replay framework [GH06]. In FRiTSCab we have integrated
the MATLAB System Identification Toolbox9.

Discussion. The FRiTSCab approach extends our former
work and has the benefit that it could pin-point real fail-
ures in the test step which are no false negatives right from
the beginning. In addition, it can also prove the correctness
of the integration for an abstract behavioral model of the
legacy component without learning the whole legacy com-
ponent by only checking possible integration problems for
the explicit given context or abstract behavior. This is true
for the white-box case. For the black-box approach we re-
quire an upper number of the states of the relevant behav-
ior for the integration of the black-box component. As ex-
plained in the previous paragraph, a good approximation
is the number of states of the context or abstract behav-
ior. The presented integrated system identification approach
enables also to identify the controller behavior. Together
with the learned state behavior, we can identify a restricted
class of hybrid systems which change the configuration (the
controller behavior) in an event triggered manner. For the
complete class of hybrid systems system identification is not
possible as a reconfiguration can be triggered at any time
by a continuous value [Lju08]. In our former work, we have
shown that the considered class of hybrid systems are of rel-
evance for mechatronic systems [GBSO04]. In this paper,
we present only a one port to one port integration. If the
legacy component has a dependency to more than one port
the parallel product of the dependent ports is used.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented an overview of FRiTSCab, a tool
for the re-engineering of mechatronic systems. The tool is in-
tegrated into the Fujaba Real-Time Tool Suite. FRiTSCab

especially enables the integration of white- and black-box
components in a Mechatronic UML architecture by taken
safety requirements into account. Currently, we especially

8But, constraints of the controller behavior can be checked
by the presented tools based on the identified states of the
protocol behavior.
9http://www.mathworks.com/products/sysid/

focus on the evaluation of the integration approach by in-
dustrial applications.

6. REFERENCES
[Ang87] Dana Angluin. Learning regular sets from queries and

counterexamples. Inf. Comput., 75(2):87–106, 1987.
[Bal00] Helmut Balzert. Lehrbuch der Softwaretechnik - Software-Entwicklung.

Spektrum-Akademischer, 2 edition, 2000.
[BB08] Gerd Baumann and Michael Brost. Testverfahren für elektronik

und embedded software in der automobilentwicklung Ű eine
Übersicht. In Bernhard Schätz, Holger Giese, Ulrich Nickel, and
Michaela Huhn, editors, Proc. of the Dagstuhl-Workshop: Model-Based
Development of Embedded Systems (MBEES), 7.3.-12.3.2008, Schloss
Dagstuhl, Germany, number 2008-02 in Informatik-Bericht, pages
13–20, Technische Universität Braunschweig, April 2008.

[BGH+08] Christian Brenner, Holger Giese, Stefan Henkler, Martin Hirsch,
and Claudia Priesterjahn. Integration of legacy components in
mechatronic uml architectures. In Uwe Aßmann, Jendrik
Johannes, and Albert Zündorf, editors, Proc. of the 6th International
Fujaba Days 2008, Dresden, Germany, pages 52–55, September 2008.

[BGJ+05] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker,
Harald Raffelt, and Bernhard Steffen. On the correspondence
between conformance testing and regular inference. In Fundamental
Approaches to Software Engineering, volume Volume 3442/2005, pages
175–189. Springer Berlin / Heidelberg, 2005.

[BHT06] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Lazy
shape analysis. In In CAV’2006: Computer Aided Verification, LNCS
4144, volume 4144, pages 532–546, 2006.

[BJLS03] Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank
Saksena. Insights to Angluin’s learning. In Proceedings of the
International Workshop on Software Verification and Validation (SVV
2003), volume 118 of Electronic Notes in Theoretical Computer Science,
pages 3–18, dec 2003.

[BJR06] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular
inference for state machines with parameters. In FASE, volume
3922 of Lecture Notes in Computer Science, pages 107–121. Springer,
2006.

[BN03] Bart Broekman and Edwin Notenboom. Testing Embedded Software.
Addison-Wesley, 2003.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering
and design recovery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ansi-c programs. In In Tools and Algorithms for the
Construction and Analysis of Systems, pages 168–176. Springer, 2004.

[FPW98] G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of
Dynamic Systems. Addison-Wesley Longman Publishing Co., Inc., 3
edition, 1998.

[GBSO04] Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver
Oberschelp. Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. In Proc. of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004),
Newport Beach, USA, pages 179–188. ACM Press, November 2004.

[GH06] Holger Giese and Stefan Henkler. Architecture-driven platform
independent deterministic replay for distributed hard real-time
systems. In Proceedings of the 2nd International Workshop on The Role of
Software Architecture for Testing and Analysis (ROSATEA2006), pages
28–38, New York, NY, USA, July 2006. ACM Press.

[GHH08a] Holger Giese, Stefan Henkler, and Martin Hirsch. Combining
Compositional Formal Verification and Testing for Correct Legacy
Component Integration in Mechatronic UML. In Rogério
de Lemos, Felicita Di Giandomenico, Cristina Gacek, Henry
Muccini, and Marlon Vieira, editors, Architecting Dependable Systems
V, volume 5135 of LNCS, pages 248–273. SPRINGER, 2008.

[GHH+08b] Holger Giese, Stefan Henkler, Martin Hirsch, Vladimir Roubin,
and Matthias Tichy. Modeling techniques for software-intensive
systems. In Dr. Pierre F. Tiako, editor, Designing Software-Intensive
Systems: Methods and Principles, pages 21–58. Langston University,
OK, 2008.

[GJP06] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of
event-recording automata using timed decision trees. In CONCUR
2006 Concurrency Theory, volume Volume 4137/2006, pages 435–449.
Springer Berlin / Heidelberg, 2006.

[GPY02] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive
model checking. In Tools and Algorithms for the Construction and
Analysis of Systems, volume Volume 2280/2002, pages 269–301.
Springer Berlin / Heidelberg, 2002.

[HHG08] Martin Hirsch, Stefan Henkler, and Holger Giese. Modeling
collaborations with dynamic structural adaptation in mechatronic
uml. In SEAMS ’08: Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, pages 33–40,
New York, NY, USA, 2008. ACM.

[HNS03] Hardi Hungar, Oliver Niese, and Bernhard Steffen.
Domain-specific optimization in automata learning. In Computer
Aided Verification, volume Volume 2725/2003, pages 315–327.
Springer Berlin / Heidelberg, 2003.

[Ise92] Rolf Isermann. Identifikation dynamischer Systeme. Springer-Verlag,
1992.

[Lju08] Lennart Ljung. Perspectives on system identification. In Proc. 17th
IFAC World Congress, Seoul, Korea, July 2008. (Plenary session).

[May08] Karl Alexander May. Identifikation von koordinationsmustern in
autonomen mechatronischen echtzeitsystemen. bachelor thesis,
University of Paderborn, September 2008.

[MB09] Christian Brenner Kathrin Bröker Uwe Pohlmann Manel
Richtermeier Julian Suck Oleg Travkin Moritz Breit,
Markus Böger. Abschlussarbeit der Projektgruppe ReCab: Re-Engineering
mechatronischer Systeme, 2009. to appear.

[RMSM09] Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana
Margaria. Dynamic testing via automata learning. International
Journal on Software Tools for Technology Transfer (STTT),
11(4):307–324, October 2009.

68

Specification and Refinement Checking of Dynamic
Systems∗

Christian Heinzemann, Stefan Henkler
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany
[chris227|shenkler]@uni-paderborn.de

Albert Zündorf
Software Engineering Research Group

University of Kassel
Wilhelmshöher Allee 73

D-34121 Kassel, Germany
zuendorf@uni-kassel.de

ABSTRACT
Software is increasingly used in systems which have to sup-
port self* properties like self-adaptation, -management or -
optimization. The key enabler for a consistent model-based
development approach is refinement. Refinement facilitates
to preserve properties of abstract models in more concrete
models. Note, that abstract models are of paramount im-
portance to formal verification in complex safety critical sys-
tems. Despite the increased significance of self* properties
in the last years, surprisingly there is a lack in support of re-
finement techniques being integrated in a model-based devel-
opment approach. We present a modeling approach, called
Timed Story Charts, which supports a flexible specification
of properties like self-adaptation, and furthermore, we will
present an integrated refinement check.

1. INTRODUCTION
Advanced software systems, like mechatronic systems, in-
creasingly exhibit self* properties like self-adaptation, -
management or -optimization. That implies software recon-
figuration at runtime which increases the complexity of the
software additionally. As these systems are often used in a
safety critical environment, formal verification on abstract
models is required to ensure a proper functioning of the soft-
ware. Despite the increased significance of self* properties
in the last years, surprisingly there is a lack in support of re-
finement techniques being integrated in a model-based devel-
opment approach. There are some approaches for modeling
the structural aspects of reconfiguration or the behavioral
aspects but none of them take into account both aspects
[BCDW04].

Based on our approach Mechatronic UML [GHH+08], we
present a modeling approach, called Timed Story Driven
Modeling, an extension of Story Driven Modeling [Zün01],
supporting a flexible specification of reconfiguration. Fur-
ther on, we will present an integrated refinement check.

Mechatronic UML is based on a methodical decomposi-
tion of the embedded software and its constituent compo-
nents. This supports compositional verification. Because
of the dynamics in the behavior as well as the dynamics in

∗This work was developed in the course of the Collaborative
Research Center 614 – Self-optimizing Concepts and Struc-
tures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

the number of participating components, there is a need for
modeling support for dynamic structures. This is also an ex-
isting problem of UML-components and -parts as e. g. cre-
ation and deletion of a part and its (delegated) port is not
supported in UML. Similarly, UML does not address the
question whether an embedded component (part) is a cor-
rect refinement of the protocol behavior of the surrounding
component.

The presented Timed Story Driven Modeling approach sup-
ports the specification of complex dependencies of evolv-
ing behavior and it supports the specification of timing
constraints for hard real-time systems like timed automata
[AD94]. So, it combines the power of story driven model-
ing as well as timed automata, the quasi standard for the
specification of real-time behavior. Hence, a consistent for-
malism is defined which is required by the analysis of timed
behavior with complex dynamic changes at runtime. In con-
trast to former work [HHG08], we have a well defined con-
sistent formalism and did not have to reason about differ-
ent formalisms (which is difficult and could be error prone).
Therefore, we only have to reason about analysis techniques
for one formalism and not for different ones (e. g. state-
charts and graph transformation systems). In this paper, we
present only an overview of the Timed Story formalism and
refinement checking. For more details, we refer to [Hei09].

In the following section, we present our Timed Story Driven
Modeling approach. In Section 3, we present a refinement
check for the Timed Story Driven approach. Related work
is discussed in Section 4. We conclude with a summary and
future work in Section 5.

2. TIMED STORY DRIVEN MODELING
To specify a system being able to dynamically change
the structure (and therefore also the behavior) at run-
time, we specify the structure of the system with UML
2.0-components and a many to many association between
components (using so-called multi ports) and / or an to
many association to its embedded components (called multi
parts, see Section 2.1). The reconfiguration of the architec-
tural parts like components, parts or ports are specified by
(Timed) Story Diagrams and (Timed) Story Pattern (see
Section 2.2 and Section 2.3). It seems, that in some cases
we can specify the timing constraints of a reconfiguration
by the behavior which triggers the reconfiguration (in form
of timing constraints for the trigger). Hence, the timed ver-

69

sion of Story Pattern and Story Diagrams are in some cases
optional. The behavior of the system, which also triggers
the reconfiguration, is specified by Timed Story Charts (see
Section 2.4).

2.1 System architecture
The system architecture is specified by UML 2.0-components
and -parts. For each component diagram, a class diagram
is automatically synthesized. The class diagram includes
classes for each component and its ports, for each embedded
part, and for all delegations and assemblies. The structure
of the class diagram is based on the meta model of the com-
ponent diagram (see Figure 1). An example class diagram
is shown in Figure 2.

Part

ReqI nterfacePart

Component

ComponentPart PortPart

I nt er facePart

ProvI nterfacePart

AssemblyType

Delegat ionTypePort

UMLRealt imeStatechart

ProtocolStatechart

0..*1

isComposedOf

1

0..1

required

1

1

umlRealtimeStatechart

1

0..1

typeOf

1

0..*

has

1 1

umlRealtimeStatechart

0..*1

has

1

0..*

typeOf1

1

protocolStatechart

0..*

1

has

1

0..*

portPart

1

0..1

provided

1 0..*

port

1

1

protocolStatechart

Figure 1: Component and parts meta model

PosCalc

Coordinator

coordPort

coordPortPart

Coordinator

CoordPort

CoordinatorSC

CoordPortSC

PosCalcPart

CoordPortPart

Delegation

CoordPortPartSC

PosCalcPartSC

isComposedOf

has

uMLRealtimeStatechart

protocolStatechart

portPartport

protocolStatechart

uMLRealtimeStatechart

has

1 1

1 1 1 1

1 1
1 0..*

1

0..*

1

0..1

1

0..10..1

1

Figure 2: Example class diagram

2.2 Timed Story Pattern
In this section, we extend Story Pattern by time. Similar to
the approach described in [Hir08], which extends the groove
syntax and semantics by time, the timing concept of Timed

Story Pattern is based on the semantics of Timed Automata
[AD94]. We therefore support the specification of clocks,
clock resets, time guards, and invariants.

Clocks are described by clock instances (see Figure 3). That
means, clocks are represented by objects. Clocks are defined
by a clock instance and its links to the objects of a graph. A
definition of a clock instance for an edge is indirectly speci-
fied by the related objects of the edge.

 : RailCab

 : Convoy

member

c : ClockInstance
id := „c“
value := 0

 : ClockReset

reset
<<++>>

<<++>>

<<++>>
<<++>>

has

<<++>>
has

Figure 3: Defining a clock c

Clock resets are also modeled by objects which have a link
reset to a clock instance. A clock reset object is instanti-
ated at the same time as the associated clock instance. A
time guard is implemented by a ”standard” Story Pattern
condition by referring to clock values. A precondition for
specifying a time guard is, that the referred clock instance
has to be bound in the Story Pattern. Invariants are spec-
ified by a special Story Pattern having no right hand side
and the referred clock instance has to be bounded.

2.3 Timed Story Diagrams
The difference between a Timed Story Diagram and a Story
Diagram is that a pattern of a Timed Story Diagram is a
Timed Story Pattern. The semantics is the same as for Story
Diagrams.

2.4 Timed Story Charts
The Timed Story Chart formalism supports abstract states,
time constraints, and integrates dynamic adaptation by trig-
gering a reconfiguration specified by (Timed) Story Pattern
or (Timed) Story Diagrams.

Figure 4 shows the meta model of Timed Story Charts to
support the specification of states and timing by objects.
Transitions are implicitly implemented by rules1. In contrast
to [Zün01], we did not use a framework for the execution se-
mantics of the Story Chart as a reachability analysis would
be difficult due to the single method executing the transi-
tions. Hence, a transition would not be (easily) identifiable.
Instead, we specify a story diagram which describes the exe-
cution semantics. In more detail, we explain in the following
an overview of the syntax of some elements of Timed Story
Charts and its execution semantics. We focus on the im-
plementation of some specific statechart constructs. Clocks,
guards, time invariants, time guards, clocks resets are imple-
mented in Timed Story Pattern (see Section 2.2). Deadlines
are implemented by the use of invariants and time guards
and therefore are not discussed anymore.

States are represented by an extra object of type State. The
name of the state is implemented by an attribute. AND

1An explicit transition object would lead to extra computa-
tions by the analysis

70

State
name : String

ClockInstance
id : String
parameter : int
value : double

ActiveState
parameter : int

has
Statechart

active

ComplexState

deleteSyncChannels()

subStatechart

has

1
1..*

10..1

1

Synchronization
parameter : int
name : String

recvSrc
0..1

sendSrc

0..1

EventQueue

enqueue(Event e)
dequeue()

parameter : int
Event

name : String

head

1 0..1

0..11

next
tail

has
1

1
0..1

0..1

has

1

0..*

0..*

ClockReset

reset
1

0..*

Parameter
name : String

1
has

0..*

Object

value

1

1

{ordered}

1..*

1..*

1..*0..*

0..*

0..*

0..*

0..*

Figure 4: Meta model for the mapping of real-time
statecharts to story diagrams

States are implemented by the class ComplexState. Com-
plexState can embed a set of statecharts. The Active State is
implemented by an ActiveState object having an association
to the active state. To differ between different instances of
a Statechart (e.g. instances of a parameterized Statechart),
we add an attribute parameter to the ActiveState object. If
a statechart is instantiated more than once, an ActiveState
object for each statechart is instantiated with a specific pa-
rameter. With this technique it is possible to manage the
statechart instances of multi-parts and multi-port (see Fig-
ure 5).

rtsc : AB_Statechart, Instanz 1

A B

s1 : State
name = „A“

s2 : State
name = „B“

sc : AB_Statechart

as1 : ActiveState
parameter = 1

as2 : ActiveState
parameter = 2

active active

rtsc : AB_Statechart, Instanz 2

A B

Figure 5: Example of a mapping of a statechart to
a graph

An event is implemented by the Event type. The name of the
event is implemented by an attribute of Event. Parameter-
ized events are implemented by an ordered set of parameters
by the type Parameter. The value of the parameter is speci-
fied by an association to a corresponding object. An event-
queue is associated to each statechart (instance). An exam-
ple of a trigger event a is shown in Figure 6. A raised event
is implemented by an event object with modifier << ++ >>.
Raised events have to be added to the event queue of the
receiving statechart (instance) which is not shown in the
figure. Further more, Figure 6 shows the implementation of
transition by a Story Diagram. The syntax of a story is that
of a Timed Story Pattern (see Section 2.2).

A B

State
name = „A“

ActiveState

AB_Statechart::Trans_A_B()

this

State
name = „B“

a / b

eq : EventQueue

e1 : Event
name = „a“

head

e2 : Event
name := „b“

<<++>>

1: dequeue()
2: enqueue(e2)

<<-->> <<++>>
active active

Figure 6: Events

Synchronization is implemented by an extra Synchonisation
object. By a name attribute the name of the synchroniza-
tion is implemented and the parameter attribute refers to a
specific statechart instance. As the transitions which have
to be synchronized have to fire simultaneous a joint story
diagram is specified including both transitions. An example
is shown in Figure 7.

ComplexA

as3 : ActiveState

AB_Statechart::Sync_Trans_A_B_C_D()

sy:Synchronisation

sc1 : Port1SC_Statechart

as1 : ActiveState this

sc2 : Sync_Statechart

c1:ComplexState
name = „ComplexA“

s1 : State
name = „A“

A B
synck?

C D
synck!

Port1SC

Sync

s2 : State
name = „B“

s1 : State
name = „C“

s2 : State
name = „D“

as2 : ActiveState

sendSrcrecvSrc

{as2.parameter = sy.parameter sy.parameter = as3.parameter}∧

has

active

<<-->> <<++>>
activeactive

<<-->><<++>>
active active

Figure 7: Synchronization

The syntactical mappings of (Real-Time) Statechart con-
structs defined above are now combined to a sequence of
transformations (see Figure 8) defining the execution seman-
tics of Timed Story Charts. Note, we discuss only a view
relevant constructs in this paper. A complete definition of
Timed Story Charts is presented in [Hei09]. A transition
of a Real-Time Statechart is mapped to a modular Timed
Story Chart with a set of stories. Hence, the exchange of the
semantics is easy. As an example, we take into account the
semantics of a transition without deadline. Figure 8 shows
a schematic Timed Story Chart. The activities are stories.
The first story analyzes whether the precondition is fulfilled.
This includes binding the source state, the event trigger, and
synchronization channels. Furthermore, all (time) guards

71

are considered. If all bindings and (time) guards are ful-
filled, the transition can fire (1. story). The 2. story takes
the relevant events from the queue. The 3. story eliminates
all synchronization objects from the source state. In story
4. the exitAction is executed. The side effect is executed in
story 5. and the trigger events are eliminated. Next, in story
7. , raised events are created and clocks are reseted. Finally,
in story 8. the synchronization channels of the target state
are instantiated and, in story 9., the target state is entered.

1. Check pre-
condition

4. Exit source
state and execute

exitAction

7. Create raised
events and

execute
clock resets

9. Enter target
state and
execute

entryAction

5. Execute
side effect

2. Take event
from queue

6. Remove
Event

3. Remove
syn.-channels
of source state

8. Create syn.-
channels of
target state

E
xi

t s
ou

rc
e

st
at

e
E

xe
cu

te
tra

ns
iti

on
E

nt
er

 ta
rg

et
st

at
e

Figure 8: Execution semantics

3. REFINEMENT
Basically, we have two requirements for the refinement: 1)
the external visible real-time behavior has to be fulfilled by
the refined behavior and 2) the (formal) compositional veri-
fication results of the abstract behavior have to be preserved
by the refinement (cf. Figure 9).

Abstract Timed
Story Chart

Refined Timed
Story Chart

Preservation of (safety-) properties

Preservation of the protocol

Figure 9: Requirements to the refinement

For supporting requirement 1), we require that each exter-
nal visible trace consisting of events (in- and out-going) and
its timing, is implemented by the refined behavior. That
means each event supported by the abstract behavior has
to be supported by the refined behavior2 as well and the
refined behavior has to react in the same time interval as
the abstract one. In contrast to other definitions, we allow
the refined behavior to have a more relaxed receive interval.
For requirement 2), we require that each trace of the re-
finement is related to (simulated by) a trace of the abstract
behavior. That means the abstract behavior simulates the
refined and therefore compositional verification results are
preserved [CGP00]. In [Hei09] a detailed definition is pre-
sented.

In the following we present the refinement check by first
computing a reachability graph of the abstract and the re-
fined Timed Story Chart (see Section 3.1). In principle the
reachable graph could be infinite. As we take into account
hard real-time systems, the reachable graph is finite as de-
pendent behavior (statecharts) has an upper hard timing

2It is allowed that the refined behavior supports more events
than the abstract behavior

constraints or the behavior are independent and therefore
only one possible instance of the behavior has to be consid-
ered. In [Hei09] we discuss an alternative approach which
could also take into account an infinite system. Based on the
reachable graphs, we illustrate an algorithm for checking the
refinement in Section 3.2.

3.1 Reachability Analysis
The timed reachability analysis is based on the computa-
tion of reachability graphs as introduced in [Zün09]. Ba-
sically, the timed story patterns used to execute the timed
story charts are transformed such that the matching and the
rewrite step are separated into two operations. Then, the
matching operation is embedded into a for each construct,
searching for all possible matches of a given timed story pat-
tern in the current graph. For each match, we use a library
operation introduced in [Zün09] in order to create a copy of
the current graph and then, the rewrite operation is applied
to that graph copy. We do this for all story patterns that
are enabled for the current graph. Thus, for a given start
graph the expansion step described above computes the set
of all possible successor graphs reachable with the available
story patterns. We apply this expansion step to all reach-
able graphs as long as possible. During the expansion, we
use a library provide isomorphism check [Zün09], to compare
each new graph with all other derived graphs. Thereby, we
identify and merge graphs that may be reached by different
sequences of story pattern applications. During the appli-
cation of timed story patterns, the timing constraints are
maintained using a dedicated clock zone ([CGP00, p. 280]),
cf. [Hei09]. Accordingly, handling of the clock zones is in-
corporated in the graph copy operation and especially in the
graph isomorphism check. Thus, two timed graphs are con-
sidered isomorphic, if the graph structure is isomorphic and
if the clock zones are equivalent.

Note, in general the computation of a reachability graph may
not terminate. In our case, we model the execution of finite
timed story charts and the timing constraints result in an-
other restriction concerning the length of execution pathes.

3.2 Refinement Check
The refinement check is realized by a depth-first search (see
algorithm 1). The algorithm checks for each event of the
refined behavior if a corresponding event in the abstract
behavior exist. First the algorithm starts with a (timed)
reachability analysis as described in the last section. Then
it is checked if for the starting states a structural refinement
exist. If nodes exist which are not expanded a successor is
checked (row 8) and expanded (row 9). For each successor it
is checked if the successor is already known. If a successor is
not known it is checked if an event is triggered or raised and,
if so, it is checked if a corresponding trace exist. If a node is
already known it could be the case that a circle is closed or
two traces are joined. In both cases, if an event is triggered
or raised it is checked if a corresponding trace exist. In cases
of a circle, we check if the circle is well-formed. That means,
we check if the circle has a corresponding trace.

4. RELATED WORK
In [Gie07] a refinement is defined for hybrid graph trans-
formation systems which preserves verification results of the

72

abstract behavior. The focus is not, as in our case, to define
a more relaxed refinement which enables a more flexible in-
tegration of possible refined behavior and it is not required
that the external visible real-time behavior is still preserved
by the refined behavior. [HT04] considers graph transfor-
mation systems for the specification of service oriented ar-
chitectures. The presented refinement should preserve the
external visible services. The approach did not take into
account time and the ability to preserve verification results.
[GRPS02] examine refinement for graph transformation sys-
tems based on an algebra but they did not take into account
time.

Algorithm 1 Refinement check

1: function checkCorrectRefine-
ment(TimedStoryChart abs, TimedStoryChart ref)

2: absReach = startReachabilityAnalysis(abs)
3: refReach = startReachabilityAnalysis(ref)
4: success := checkStructureRefinement (ab-

sReach.initial, refReach.initial)
5: OPEN.push(refReach.initial)
6: while OPEN 6= ∅ ∧ success do
7: n := OPEN.pop()
8: success := refReach.hasSuccessor(n)
9: for all n′ ∈ refReach.expand(n) do

10: if n′ is not known then . Case 1: new node
11: OPEN.push(n′)
12: if (n, n′) has event e then
13: success := checkPath((n, n′))
14: end if
15: else . Case 2: node is known
16: if (n, n′) closed cycle then . a) Edge

closes an circle
17: if (n, n′) has event e then
18: success := checkPath((n, n′))
19: end if
20: success := isWellFormedCycle(n′)
21: else . b) Joining of two traces
22: if (n, n′) has event e then . The

same as case 1
23: success := checkPath((n, n′))
24: end if
25: end if
26: end if
27: end for
28: end while
29: if success then
30: success := checkCoverage(absReach)
31: end if
32: return success
33: end function

5. CONCLUSION AND FUTURE WORK
We presented in this paper the Timed Story Driven approach
and a refinement check for Timed Story Charts, the behav-
ioral specification language of the Timed Story Driven ap-
proach. We gave in more detail an overview of the syntax
and semantics of Timed Story Charts. The presented re-
finement check, which preserves compositional verification
results and the external visible real-time behavior, is based
on a reachability analysis.

The expand of the reachability analysis is a manual task. Es-

pecially for timed systems, this could be error prone. Hence,
a future task is to develop an automatic expand.

6. REFERENCES
[AD94] Rajeev Alur and David L. Dill. A theory of

timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[BCDW04] Jeremy S. Bradbury, James R. Cordy, Juergen
Dingel, and Michel Wermelinger. A survey of
self-management in dynamic software
architecture specifications. In WOSS ’04:
Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, pages
28–33, New York, NY, USA, 2004. ACM.

[CGP00] E. M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. January 2000.

[GHH+08] Holger Giese, Stefan Henkler, Martin Hirsch,
Vladimir Roubin, and Matthias Tichy.
Modeling techniques for software-intensive
systems. In Dr. Pierre F. Tiako, editor,
Designing Software-Intensive Systems:
Methods and Principles, pages 21–58. Langston
University, OK, 2008.

[Gie07] Holger Giese. Modeling and verification of
cooperative self-adaptive mechatronic systems.
In Reliable Systems on Unreliable Networked
Platforms, volume 4322 of Lecture Notes in
Computer Science, pages 258–280. Springer
Berlin / Heidelberg, 2007.

[GRPS02] Martin Große-Rhode, Francesco Parisi
Presicce, and Marta Simeoni. Formal software
specification with refinements and modules of
typed graph transformation systems. J.
Comput. Syst. Sci., 64(2):171–218, 2002.

[Hei09] Christian Heinzemann. Verifikation von
Protokollverfeinerungen. Master Thesis,
Software Engineering Group, University of
Paderborn, Nov 2009. to appear.

[HHG08] Martin Hirsch, Stefan Henkler, and Holger
Giese. Modeling Collaborations with Dynamic
Structural Adaptation in Mechatronic UML. In
Proc. of the ICSE 2008 Workshop on Software
Engineering for Adaptive and Self-Managing
Systems (SEAMS’08),Leipzig, Germany, pages
33–40. ACM Press, May 2008.

[Hir08] Martin Hirsch. Modell-basierte Verifikation von
vernetzten mechatronischen Systemen. PhD
thesis, University of Paderborn, Paderborn,
Germany, September 2008.

[HT04] Reiko Heckel and Sebastian Thöne. Behavioral
refinement of graph transformation-based
models. In Proc. of the ICGT 2004 Workshop
on Software Evolution through Transformations
(SETra 04), pages 139–151. Electronic Notes in
Theoretical Computer Science, 2004.

[Zün01] Albert Zündorf. Rigorous Object Oriented
Software Development. University of
Paderborn, 2001.

[Zün09] Albert Zündorf. Model Checking the Leader
Election Protocol with Fujaba. In 5th
International Workshop on Graph-Based Tools
(GraBaTs), July 2009.

73

	Introduction
	Organizing Committee
	Program Committee

	Program and Table of Contents
	Research Papers
	Tool Demonstrations

