

Leif Geiger, Holger Giese, Albert Zündorf (Eds.)

 Days 2007

08th -09th October 2007
Kassel, Germany

Proceedings

Volume Editors
Dipl. Inf. Leif Geiger
University of Kassel
Research Group Software Engineering
Department of Computer Science and Electrical Engineering
Wilhelmshöher Allee 73, 34121 Kassel, Germany
leif.geiger@uni-kassel.de

Jun.-Prof. Dr. Holger Giese
University of Paderborn
Department of Computer Science
Warburger Straße 100, 33098 Paderborn, Germany
hg@uni-paderborn.de

Prof. Dr. Albert Zündorf
University of Kassel
Chair of Research Group Software Engineering
Department of Computer Science and Electrical Engineering
Wilhelmshöher Allee 73, 34121 Kassel, Germany
zuendorf@uni-kassel.de

Program Committee

Program Committee Chairs

Holger Giese (University of Paderborn, Germany)
Albert Zündorf (University of Kassel, Germany)

Program Commitee Members

Jürgen Börstler (University of Umea, Sweden)
Gregor Engels (University of Paderborn, Germany)
Holger Giese (University of Paderborn, Germany)
Pieter van Gorp (University of Antwerp, Belgium)
Jens Jahnke (University of Victoria, Canada)
Mark Minas (University of the Federal Armed Forces, Germany)
Manfred Nagl (RWTH Aachen, Germany)
Andy Schürr (TU Darrmstadt, Germany)
Wilhelm Schäfer (University of Paderborn, Germany)
Gerd Wagner (University of Cottbus, Germany)
Bernhard Westfechtel (University of Bayreuth, Germany)
Albert Zündorf (University of Kassel, Germany)

Editor´s preface

Fujaba is an Open Source UML CASE tool project started at the software engineering group
of Paderborn University in 1997. It initially combined features of commercial “Executable
UML” CASE tools with rule-based visual programming concepts adopted from its ancestor,
the graph transformation tool PROGRES. In 2002, Fujaba was redesigned and became the
Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily
while retaining full control over their contributions.

Fujaba followed the model-driven development philosophy right from its beginning in 1997.
At the early days, Fujaba had a special focus on code generation from UML diagrams
resulting in a visual programming language with a special emphasis on object structure
manipulating rules. Today, at least seven rather independent tool versions are under
development in Paderborn, Kassel, Darmstadt, Siegen, and Bayreuth for supporting (1)
reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed
control systems, (5) integration with the Eclipse platform, (6) MOF-based integration of
system (re-) engineering tools, and (7) adaptable and integrated management of development
processes. Several research groups have also chosen Fujaba as a platform for UML and MDA
related research activities. In addition, quite a number of Fujaba users send us requests for
extensions and improvements.

The 5th International Fujaba Days aim at bringing together Fujaba developers and Fujaba
users from all over the world to present their ideas and projects and to discuss them with each
other and with the Fujaba core development team. It is the second time the Fujaba Days take
place in Kassel. The very first event was also held in Kassel in 2003. This year the Fujaba
Days are collocated with the third International Workshop and Symposium on Applications of
Graph Transformation with Industrial Relevance (AGTIVE 2007). The AGTIVE is held
directly after the Fujaba Days (10th – 12th October). It is the biggest purely practice-oriented
event of the Graph Transformation community. It serves as a forum for all those scientists of
the graph transformation community that are involved in the development of graph
transformation tools and the application of graph transformation techniques - usually in an
industrial setting. This is especially true for most of the Fujaba users and developers. So we
hope, that many discussions started at the Fujaba Days will be continued at the AGTIVE.

We received 10 papers, which were reviewed carefully by the program committee. 8
submissions were accepted for presentation. The papers are organized into sections on meta
models, verification and validation, tool building and frameworks.

The workshop programme is decorated with an invited talk given by Arend Rensink,
University of Twente, The Netherlands. Two Developer Sessions and one panel discussion on
current and future work complete the workshop’s programme. The Developer Sessions
provide a forum for Fujaba developers who can´t stop programming and are eager to learn
about the most recent developments of their colleagues (and also like to demonstrate their
own improvements).

The PC chairs would like to thank the PC members for their careful work in reviewing the
papers and contributing to the quality of the Fujaba Days in this way. We hope that the
workshop will be held in a lively atmosphere which encourages discussion and exchange of
ideas.

Leif Geiger, Holger Giese & Albert Zündorf
Organizers

Table of Contents

Meta Models
Harmless Metamodel Extensions with Triple Graph Grammars 1

Jendrik Johannes, Tobias Haupt (Technical University of Dresden)
Breaking the Domination of the Internal Graph Model ... 5

Florian Heidenreich, Ulf Wemmie (Technical University of Dresden)

Verification and Validation
Monitoring of Structural and Temporal Properties... 8

Holger Giese, Stefan Henkler, Martin Hirsch, Florian Klein, Michael Spijkerman
(University of Paderborn)

Model-Based Testing of Mechatronic Systems... 12
Holger Giese, Stefan Henkler, Martin Hirsch, Claudia Priesterjahn
(University of Paderborn)

Building Tools
The Alternate Editing Mode for Fujaba .. 16

Bernhard Grusie, Christian Schneider, Albert Zündorf (University of Kassel)
Copy & Paste concept and realization in Fujaba... 21

Leif Geiger, Christian Schneider (University of Kassel)

Frameworks
EMF Code Generation with Fujaba ... 25

Leif Geiger (University of Kassel), Thomas Buchmann, Alexander Dotor
(University of Bayreuth)

WhiteSocks - A simple GUI Framework for Fujaba ... 30
Ira Diethelm, Ruben Jubeh, Andreas Koch, Albert Zündorf (University of Kassel)

Harmless Metamodel Extensions
with Triple Graph Grammars

Jendrik Johannes
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

Tobias Haupt
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

s0500251@inf.tu-dresden.de

ABSTRACT
Designing Domain Specific Languages through metamodel-
ing is an emerging engineering technique in software devel-
opment. Language development, however, is also always
tool development—which can be costly when languages are
developed from scratch. Costs can be saved by developing
new languages as extensions of existing ones—effectively by
extending metamodels. Here, existing tools, developed for
the existing language, can be reused to a certain degree. We
argue that a certain group of metamodel extensions is harm-
less: keeping existing tools functional, while integrating new
tools to handle additional functionalities. To realize a plat-
form for this, two things are required: 1) a transformation
engine for the metamodel extension and 2) a synchroniza-
tion mechanism for tool integration. In this paper we show
how Triple Graph Grammars can be used to define both and
introduce an interpreter for these grammars that works in
an environment based on the Eclipse Modeling Framework.

1. INTRODUCTION
In contrast to general-purpose modeling language develop-
ment, Domain Specific Language (DSL) development has to
be much more cost-efficient. High development costs are not
acceptable since each DSL is designed for a specific prob-
lem domain with a limited set of application possibilities.
A main issue for high development costs is tool building,
which is crucial to render newly designed languages usable.
Costs can be reduced by reusing existing tools where feasi-
ble instead of developing new ones from scratch. One way
to achieve this is to reuse metamodels as well—extending
existing ones rather than designing new ones.

Metamodel extension seems to be a promising direction for
simplifying DSL design and implementation. Especially, if
such extensions can be captured in a generic formalism for
extending arbitrary metamodels in a similar fashion. Then
tools based on the original metamodels and tools that know
about the specific extension can be used in combination,
without needs to develop new tooling. We have identi-
fied one such extension formalism—the Reuseware formal-
ism [4]1—which we believe of strong importance: adding
reuse abstractions to a language. That is, adding notions
of components, modules, aspects, or similar to leverage the
reuse of artifacts written in that language.

1The formalism was defined for context-free grammars here.
It was ported to metamodels, but publication is still pend-
ing.

The Reuseware extension of a metamodel is harmless: 1) all
original language syntax and semantics are preserved and 2)
the added features are syntactically closely related to orig-
inal ones. For a harmless extension, reuse of the original
modeling tools to design models is applicable: 1) the origi-
nal language is supported anyway and 2) the new constructs
can be mimicked by existing ones using naming conventions
or an escape mechanism, like annotations or comments, if
available.

Nevertheless, it is desired to translate such models into mod-
els conforming to the extended metamodel such that the ex-
tension specific (in this case the Reuseware specific) elements
can be clearly identified. This allows further processing of
the models (in this case by composition editors and engines).
This dualism of tools working on two different representa-
tives of the same model requires model synchronization.

In this paper we propose to utilize Triple Graph Grammars
(TGG) [7, 5] for both, the metamodel extension and the syn-
chronization of models. To realize this, we require a TGG
environment which integrates into our tool chain. We are
aiming for solutions based on the Eclipse Modeling Frame-
work (EMF) [1]. Since there is no TGG engine available for
EMF that supports model synchronization, we developed,
driven by our use case, the TGG interpreter Tornado.

The remainder of this paper is structured as follows. In
Section 2 the metamodel extension and model synchroniza-
tion scenario within the Reuseware composition context is
introduced. Following this, requirements for a TGG engine
and their realizations in the Tornado engine are described
in Section 3. Some related work is discussed in Section 4.
Section 5 concludes and points at future directions of work.

2. METAMODEL EXTENSION AND MO-
DEL SYNCHRONIZATION SCENARIO

We argue that through harmless metamodel extension a lan-
guage can be enriched with new powerful features while pre-
serving compatibility with original tooling. Such a harmless
extension is the Reuseware formalism [4]. In this section we
describe how Triple Graph Grammars are used 1) to per-
form the Reuseware extension on arbitrary metamodels and
2) to preserve tool compatibility.

2.1 Metamodel Extension
A metamodel extension can be expressed through a model
transformation, which in turn can be formulated as a TGG.

1

ReuseMMCoreMM

Reuse

CoreMM2
ReuseMM

refines imports

Core2
Reuse

Figure 1: Reuseware metamodel extension formal-
ism

Usinig this notion, the basic idea of the Reuseware meta-
model extension is illustrated in Figure 1. A metamodel
CoreMM of the original language (the core metamodel) is ex-
tended by the transformation CoreMM2ReuseMM to an ex-
tended metamodel ReuseMM (the reuse metamodel). The
transformation is a specialization of a generic transforma-
tion (Core2Reuse) and the extended metamodel imports a
metamodel defining the basic Reuseware concepts (Reuse).

For illustrative purposes, we will use a simplified version of
the Reuseware metamodel extension formalism in this pa-
per. The main idea is to introduce metaclasses for variation
point definition2 for a selected set of existing metaclasses.
Variation points can be seen as placeholders for concrete in-
stances of metaclasses. They can be used to define template-
like incomplete models (so-called model fragments) that can
be reused to compose complete models. A variation point
is typed with the metaclass it stands for. That is, it can
only be replaced by an instance of that metaclass during
composition. This is reflected in the formalism, which can
be formulated in abstract TGG rules. One rule is shown
in Figure 2, where a metaclass (Reusable) is introduced as
superclass of the original metaclass and the corresponding
variation point metaclass. The latter additionally inherits
features from the abstract concept of variation point. The
other rules that complete the formalism are not shown.

As a concrete example, consider an UML-like metamodel
defining the metaclasses Package and Class into which we
would like to introduce variation points for classes. We spe-
cialize the TGG rule from Figure 2 to match the meta-
class with the name Class by adding the constraint name

== "Class" to the coreEClass. Application of the gram-
mar, interpreted as a left-to-right transformation, gives us
the extended metamodel, where ClassVariationPoints are
available as alternatives for Classes. Note that the special-
ization of the rule can be automated by a simple wizard tool,
where the developer only states for which metaclasses vari-
ation points shall be introduced. This effectively hides the
(sometimes complex) TGG rules from the developer.

2.2 Model Synchronization
The second, and more challenging, application of TGGs is
the synchronization between models (instances of the core
metamodel) and model fragments (instances of the reuse

2The full Reuseware formalism distinguishes different kinds
of variation points and allows structuring and grouping of
them as demonstrated in [3].

coreEClass : EClass

name = coreClass.name

reuseEClass : EClass

name = coreClass.name
 + "Reusable"

reusable : EClass

name = coreClass.name
 + "VariationPoint"

variationPoint : EClass

eSuperTypes
++

eSuperTypes
++

name = "VariationPoint"

: EClass

name = "Reuse"
 + corePackage.name

reuseEPackage : EPackage

coreEPackage : EPackage

eSuperTypes
++

++

++ ++

from Reuse:

eClassifiers
++

eClassifiers

++++
++

Figure 2: Operational TGG rule to introduce a vari-
ation point metaclass (in EMF-based metamodels)

metamodel). The synchronization is required because mod-
els are used to impersonate model fragments which allows
the reuse of existing editors. The real model fragment, used
in Reuseware specific tools, then describes conceptual the
same as the impersonator and both have to be synchronized.
While we focus on editor integration in this section, it is also
beneficial to enable synchronization between fragments and
composed models. That is a powerful and desired feature
in a Reuseware environment, since it allows to modify frag-
ments directly in a composition result. It can be achieved
by realizing the composition algorithm in terms of TGGs as
well.

placeholderElement :

variationPoint :

containerReuse :

containerCore :

++

++

++

++++
++++

Figure 3: Generic synchronization rule for variation
points

 name == "VP*"

placeholderElement :
UMLClass

 vpName = placeHolder.
 name.subString(2)

variationPoint :
UMLClassVariationPoint

containerReuse :
ReuseUMLPackage

containerCore :
UMLPackage

++

 classes
++

 classes
++

++++
++

++

Figure 4: Specialized synchronization rule for UML
class variation points

2

synchronization
(Figure 4)

a b

Figure 5: Synchronization of a UML model and a
ReuseUML model fragment

As mentioned, we reuse existing editors and define model
fragments by means of the core language to save the ef-
fort of developing new editors for every reuse metamodel.
Variation points, not available as concepts in those editors,
are expressed through name conventions, annotations, com-
ments or similar means. TGG rules can then be applied to
translate such marked fragments into real model fragments
(i.e., instances of a reuse metamodel). An abstract TGG
rule for this is illustrated in Figure 3.

The abstract rule can be specialized to be used in the UML
scenario (cf. Figure 4). The rule defines that a naming con-
vention VP* can be used to express variation points through
classes. We can then use any EMF-based UML editor to
model a UML model fragment (cf. Figure 5a). Applica-
tion of the rule would translate it to a real model fragment
(shown in an abstract tree notation in Figure 5b). Further-
more, if changes are made later on in the editor, the TGG
engine will reflect those changes on the real fragment.

3. TORNADO TGG ENGINE
From the scenario presented in the last section, the following
requirements for a TGG engine are derived:

• Requirement: EMF as a model repository and Ecore
as a metamodeling language should be supported.
Justification: EMF is an accepted tool platform for
modeling and most (open-source) modeling editors are
based on it, and are thus targets for tool integration

• Requirement: Triple Graph Grammar rules should be
interpretable for incremental model synchronization.
Justification: Different physical model elements can
exist for the same conceptual element (e.g., model frag-
ments and composed models) and have to be synced.

• Requirement: A rule abstraction mechanism (like rule
inheritance) has to be provided to efficiently define
generic rules and specialize them.
Justification: The rules used in the metamodel exten-
sion and the model synchronization always have some
common part independent of the concrete metamodel
to extend. It is convenient to define this part once and
specialize it for concrete metamodels.

The following sections describe how these requirements are
fullfilled by the Tornado TGG engine and discuss problems
that are still topics of research.

3.1 Processing of EMF–based Models
The kernel of the Tornado engine is a pattern matching and
rule application algorithm which is capable of adding and
synchronizing model elements by updating or reseting. It
utilizes the reflection facility of EMF for both: the analy-
sis and the updating of the model graph. In EMF, meta-
classes have the type EClass. Attributes and references are
stored in EStructuralFeatures possessed by EClasses. The
identification of model element types is done by matching
the name feature of their EClass. The matching of refer-
ences and attributes is a name-matching over the names
of the EStructuralFeatures of the corresponding EClass.
Through this metamodel-independent implementation, mod-
els written in arbitrary EMF-based DSLs can be addressed
on the left and right side of TGG rules.

3.2 Incremental Model Synchronization
To support incremental model synchronization on changes in
the involved model graphs, the engine uses correspondence
models that are persistent over all successive synchronisa-
tion tasks. These are also EMF-based models which consist
mainly of CorrespondenceNodes and CorrespondenceLinks.
The EMF model import feature—the possibility to reference
elements in other models—is utilized to reference elements
of the left- and right-hand-side models. EMF ensures that
these links are kept when models are persisted.

Through the correspondence model, inconsistencies are rec-
ognized. If elements are deleted in one of the models this
can be easily observed because a reference to the imported
models breaks. Changes of elements (e.g., changes of at-
tribute values) are in general difficult to track. Here another
advantage of the EMF-based system can be utilized. If we
activate the engine at runtime we can observe the model ele-
ments and react on changes immediately. This can be easily
implemented since EMF comes with an observer mechanism
that is inherited by all EMF-based applications.

In synchronization, the major problem is to derive the re-
quired and optimal transformation steps towards a consis-
tent graph. As an example consider the change of attributes
of an element. This can put constrains on the element
that prevents the rule, used to create it, from matching any
longer. The problem can be resolved by resetting the for-
mally applied rule. Previously created elements have to be
deleted and, consequently, all depending rule applications
have to be reseted as well. An algorithm addressing this with
certain optimizations is described in [5]. However, the reset-
ing of rule applications is a severe action. Often, it leads to
a deletion of elements that later have to be re-created by re-
applications of rules leading to possible loss of information.
We currently work on an improvement of the algorithm that
tries to match other rules first on elements before deleting
them irrevocably.

3.3 Rule Definition with Rule Inheritance
To realize the required abstraction mechanism for TGG rules,
a rule inheritance mechanism has been realized in Tornado’s
TGG rule definition language. The mechanism supports
multiple inheritance (as known from object-oriented lan-
guages) on the base of nodes and edges. That is, features
of nodes can be refined and additional edges can be con-
nected to nodes. Through multiple inheritance, nodes can

3

be merged if their feature and connected edges conform. The
mechanism allows for abstract (i.e., incomplete) rules which
can not be applied without being refined. An example are
nodes without type declaration as used in Figure 3. The
other features of the rule definition language are designed
based on the general TGG formalism.

We provide an editor for rule definition which has been de-
signed and generated with the Graphical Modeling Frame-
work3. In the Reuseware metamodel extension case it is
primarily applied to define the abstract rules. Figure 6
shows the rule from Figure 3 defined for the Tornado en-
gine utilizing the editor. The concrete specializations can
be semi-automatically derived by DSL-developers using pro-
vided wizards.

Figure 6: TGG rule editor

4. RELATED WORK
Fujaba provides the most advanced TGG engine at the mo-
ment [8]. Unfortunately, integrating it into an EMF en-
vironment is not trivial. A close integration, for instance,
with the EMF observer mechanism to track changes is not
realistic at the moment.

Another EMF-based interpreter is currently developed at
the University of Paderborn [5, 6]. Unfortunately, up to
now it only supports one-directional model transformations.

The Atlas Model Weaver [2] can handle EMF-based models
and realizes a similar idea as TGGs. Instead of synchro-
nization models, so-called weaving models express relations
between elements, which do not necessarily express equal-
ity. Thus, there is no interpreter for the synchronization
semantics we require. However, the underlying Atlas Trans-
formation Language4 provides a rule inheritance mechanism
with similarities to our TGG rule inheritance.

Other EMF-based tools for model management tasks, which
were considered as alternatives to TGGs, are developed in
the GMT project5 (Epsilon, VIATRA2, oAW, and others).
While these are powerful tools, they all process models in a
batch-like fashion, have little support for model update, and
no build-in synchronization mechanism. Thus, they could
have been used as a base for the implementation of the syn-
chronization mechanism. Because of the desired close EMF
integration we decided on a Java implementation.
3http://www.eclipse.org/gmf
4http://www.eclipse.org/m2m/atl
5http://www.eclipse.org/gmt

5. CONCLUSION AND FUTURE WORK
The result of our work is twofold: First, we showed how
Triple Graph Grammars can be applied in a scenario of
harmless metamodel extension. Second, we developed a
TGG interpreter that meets our specific needs.

Our feeling is that the Reuseware formalism is only one pro-
totype of what we called harmless metamodel extensions. It
is an interesting direction to identify other useful extensions
like this. Possibly, the generic Reuseware TGG rules can
be further abstracted to a set of TGG rules reusable in any
harmless metamodel extension. This, paired with tool sup-
port for semi-automatic TGG rule specification, could lead
to powerful, yet easy to use, DSL development tools.

The development of the TGG engine driven by the concrete
use case has revealed interesting challenges. At many points
trade-off decisions had to be made concerning expressive-
ness versus usability. We are optimistic that ongoing de-
velopment will result in an interpreter that is utilizable in
the EMF world by TGG experts for several tasks. How-
ever, it seems that the direct usage of TGG rules for model
synchronization in software modeling is a too complex and
error-prone task for many developers. Systems, like the pre-
sented one, where TGG experts define a set of abstract rules
which are then refined by developers in a semi-automatic
way offer an interesting combination of the powerful TGG
formalism with easy usability.

6. ACKNOWLEDGMENTS
This research has been co-funded by the European Com-
mission within the 6th Framework Programme project Mod-
elplex contract number 034081 (cf. www.modelplex.org).

7. REFERENCES
[1] F. Budinsky, E. Merks, and D. Steinberg. Eclipse Modeling

Framework 2.0. Addison Wesley, Jan. 2007.
[2] M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Breton,

and G. Gueltas. AMW: A Generic Model Weaver. In Proc.
of the 1res Journées sur l’Ingénierie Dirigée par les
Modèles, France, Paris, 2005.

[3] F. Heidenreich, J. Johannes, and S. Zschaler.
Aspect-Orientation for Your Language of Choice. In Proc. of
the 11th Int’l Workshop on Aspect-Oriented Modeling (to
appear), Nashville, TN, September 2007.

[4] J. Henriksson, J. Johannes, S. Zschaler, and U. Aßmann.
Reuseware – Adding Modularity to Your Language of
Choice. Proc. of TOOLS EUROPE 2007: Special Issue of
the Journal of Object Technology (to appear), 2007.

[5] E. Kindler and R. Wagner. Triple Graph Grammars:
Concepts, Extensions, Implementations, and Application
Scenarios. Technical Report tr-ri-07-284, University of
Paderborn, June 2007.

[6] C. Lohmann, J. Greenyer, J. Jiang, and T. Systä. Applying
Triple Graph Grammars For Pattern-Based Workflow Model
Transformations. Proc. of TOOLS EUROPE 2007: Special
Issue of the Journal of Object Technology (to appear), 2007.

[7] A. Schürr. Specification of graph translators with triple
graph grammars. In Proc. of the 20th International
Workshop on Graph-Theoretic Concepts in Computer
Science, Herrsching, Germany, volume 903 LNCS. Springer,
Berlin, 1994.

[8] R. Wagner. Developing Model Transformations with Fujaba.
In H. Giese and B. Westfechtel, editors, Proc. of the 4th

International Fujaba Days 2006, Bayreuth, Germany,
volume tr-ri-06-275, pages 79–82. University of Paderborn,
September 2006.

4

Breaking the Domination of the Internal Graph Model

Florian Heidenreich
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

florian.heidenreich@tu-dresden.de

Ulf Wemmie
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

s2918002@mail.inf.tu-dresden.de

ABSTRACT
Graph rewrite systems are often build to only transform graphs that
are expressed using their internal graph modelling language. This
prevents the use of the advanced techniques in graph rewriting on
graphs or models that are not expressed in a way that the tool is
able to understand. In this paper we present our approach to model
migration for graph rewrite systems, that is, adaptation of graphs
from external tools to the graph rewrite system’s internal model.
We exemplify our ideas by a prototypical implementation for Fu-
jaba4Eclipse.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE); D.2.2 [Design Tools and Techniques]: Ob-
ject-oriented design methods

General Terms
Design, Languages

Keywords
Graph Rewriting, Model Migration

1. INTRODUCTION
One of the major drawbacks of current Graph Rewrite Systems
(GRS) is the tight coupling of the system to a specific repository
and a specific internal graph model. This situation often prevents
use of the GRS in other context that was not foreseen by the de-
velopers of the specific GRS. To alleviate this situation, a general
approach for adaptation of external models to an internal model of
the GRS is crucial. Doing this manually is an error-prone and te-
dious task. Therefore we aim at providing a semi-automated gener-
ative solution for bridging from external models to internal models
of the GRS (and back again). We use Fujaba4Eclipse [3] as GRS
to exemplify our approach, since it also suffers from the limitations
mentioned above.

The paper is structured as follows. At first we elaborate the domain
of model migration and present the different steps that are needed
to migrate an external model to the internal model of Fujaba. Sec-
tion 3 highlights interesting points of the prototypical implementa-
tion while Section 4 presents related work. Section 5 summarizes
the paper and discusses future work.

2. MODEL MIGRATION
As motivated in the introduction, for the exchange of models be-
tween different applications an adaptation between source and tar-
get is needed. During the adaptation process an external model

is transformed to an internal model, i.e. the graph model of Fu-
jaba4Eclipse. To access the model of the external application, ac-
cess to its representation, i.e. in a specific repository, is needed. We
call this part of the process physical adaptation. In many cases the
external application and the GRS (Fujaba in our case) do not share
the same metamodel. Therefore a second step is needed, where
model elements of the external model are mapped to the target do-
main. This process of domain adaptation is based on the meta-
model level.

Our approach for model migration within Fujaba4Eclipse is based
on the notion of adaptation chaining where a separation of physical
and domain adaptation allows for reuse of adapters. Furthermore,
the development of the adapters can be done by different software
developers where each of them has specific skills regarding repo-
sitory or domain knowledge. The physical adaptation AP is done
programmatically on source code level, whereas the domain adap-
tation AD is defined by Triple Graph Grammars [5, 7] with a graph-
ical notation. The overall adaptation chain is depicted in Figure 1.

Physical
Adaptation Layer

Repository Graph Rewrite System

Mn GnInAP AD

Figure 1: Adaptation chain of physical and domain adaptation.

2.1 Physical Adaptation
A physical adaptation AP is an exogenous transformation [6] that
transforms the source model1 Mn of the external tool into an in-
termediate model In, where In acts as an interface between phys-
ical and domain adaptation. In still represents the concepts of the
external model but is modelled using concepts of the graph rewrite
system. To transform the model elements from the repository to the
representation of In the physical adaptation layer from Figure 1 is
refined into an adaptation chain consisting of repository adaptation
ARep and element adaptation AElem (see Figure 2).

The bidirectional repository adapter provides a linking to the repos-
itory of the external application. It offers means to both access
existing models and to create new models in the repository. The
intermediate model In conforms to the metamodel Mn+1 of the
external model Mn but uses Fujaba classes and interfaces for its
implementation of the element adapters. Thereby, persistence and
the uniform processing of the intermediate model is assured. Since

1In the following we us the abbreviations M for the external model,
I for the intermediate model, and G for the internal graph model.

5

Physical
Adaptation Layer

Repository GRS

Mn

Mn

InAP

ARep AElem

Figure 2: Physical adaptation refined to adaptation chain of
repository and intermediate adaptation.

the number of metalevels is not fixed in general, one can imag-
ine migration of models on multiple metalevels. Since Fujaba of-
fers levels for metamodels, models and objects (besides its internal
meta-metamodel) the specification of graph-rewrite rules is limited
to the model level. This observation leads to a total of two met-
alevels that can be migrated within Fujaba, where the first level is
subject for transformation through the GRS.

2.2 Domain Adaptation
Domain adaptation is an endogenous transformation [6] that pro-
vides a bidirectional mapping of elements from the metamodel In+1

of the intermediate model In to the Fujaba metamodel. The gen-
eral idea is to map elements from one domain to another domain,
where the specific elements are playing identical roles in the spe-
cific domains. To exemplify this, the element EClass from the
Eclipse Metamodeling Language Ecore [2] can be mapped to Fu-
jaba’s UMLClass, since both elements are playing the roles of the
class concept in their domain.

2.3 Process Overview
While the last sections show the general ideas behind our approach
to model migration, this section presents an overview to the over-
all process from the adaptation of the external application to the
successful transformation of the adapted model in Fujaba4Eclipse.

First, a Fujaba conforming representation of the meta-metamodel2

of the external application is needed. This representation can be
modelled as Fujaba class diagram and afterwards generated to Java
code. This is necessary because initially there are no means to im-
port models of the external application to Fujaba. This initial step
is depicted in Figure 3.

The modelled meta-metamodel acts as an interface between physi-
cal and domain adaptation. It is used to generate the physical rep-
resentation of the external meta-metamodel as well as to the partial

2The indices refer to the standard metamodel levels of the MOF
metalevel architecture.

UML metamodel

G3

M3

Fujaba external tool

modelling

Figure 3: Modelling the meta-metamodel of the external appli-
cation.

G3

I3

generation

UML metamodel

Fujaba

M3

external toolJava code Physical Adaptation Layer

AP

Figure 4: Generation of the code representation of the meta-
metamodel and of the physical adapter.

I3TGGUML metamodel

Fujaba

M3

external toolJava code Physical Adaptation Layer

AP

Figure 5: Specification of the domain adaptation.

generation of the physical adapter. Figure 4 shows the generation of
the meta-metamodel to Java code and the generation of the physical
adapter.

After that, domain adaptation can be specified. Therefore the UML
metamodel of Fujaba and the generated physical representation of
the external meta-metamodel are used. Triple Graph Grammars [5,
7] are utilised to graphically define the relationship between the
different domains. These bidirectional rules are then transformed
to Story Diagrams (Fujaba’s notion of graph-rewrite rules) that are
used to exchange models between the different metamodels (see
Figure 5).

This complete adaptation chain now provides means for import and
export of metamodels of the external application (see Figure 6).
This occurs one metalevel below the metalevel on which the defi-
nition of the adapters was done. On import, the metamodel of the
external application is transformed to the intermediate representa-
tion using the physical adapter. The intermediate representation is
then transformed into a Fujaba UML class diagram using the rules
that were specified using Triple Graph Grammars.

It is obvious, that an additional adapter is needed to process in-
stances of the imported metamodel in Fujaba. But in contrast to
the development of the previous adapter, the metamodel already
exists as a UML class diagram and does not need to be modelled
anymore. The next steps that are needed to generate an adaptation
chain are straight-forward according to the previous procedure (see
Figure 7). In the last step, a physical adapter to import instances
of M2 needs to be developed. This adapter allows for applying the
GRS’s rewriting capabilities on the imported models.

M2G2

I3

I2 : I3

M3

external tool

UML metamodel

Fujaba

TGG

Java code Physical Adaptation Layer

AP

Figure 6: Migration of metamodels.

6

G2

UML metamodel

Fujaba

M2

M3

M1

I2
generation

Java code Physical Adaptation Layer external tool

AP

Figure 7: Initial situation for further adaptation.

3. IMPLEMENTATION
We have build a prototype implementation of the presented ap-
proach using Fujaba4Eclipse and the plug-ins TGGEditor (edi-
tor for Triple Graph Grammars) and MoTE (Model Transforma-
tion Engine). It uses the extension points offered by the three
components. The prototype itself provides additional extension
points, namely PhysicalAdapter and DomainAdapter for
the adaptation of external models and MigrationAdapter for
the configuration of the interaction of the physical and the domain
adapter.

However, the generation of the adaptation chain is still in a very
early stage and we try to investigate in further improvements with
regards to the automation of the process.

4. RELATED WORK
The Tool Adapter proposed by Kindler and Wagner [5] is strongly
related to our approach. The authors present an adaptation archi-
tecture for adaptation of proprietary metamodel implementations of
external tools to the metamodel implementation of the standalone
version of the Fujaba tool suite. As we do, they also use TGGs for
domain adaptation but use hand-written adapters to adapt the exter-
nal metamodel (while we follow a semi-generative approach). In
contrast to our work, they do not use a dedicated intermediate meta-
model on which the adapter is built upon, but transform the Fujaba-
generated metamodel of the external application in an adapter to
the external metamodel by replacing the bodies of accessor meth-
ods with delegation code to the API of the external application.
This, on the one side, improves performance of the adaptation, but,
on the other side, decreases flexibility in exchanging and reusing
existing adapters.

Another approach that is related to our work is the concept of non-
materialized model view specifications based on a extension of
TGGs—the declarative view specification approach VTTG [4]. In-
stead of copying tool data and creating physical representations of
the target model, the authors present an approach that offers vir-
tual views of models that can be manipulated and are synchronised
automatically.

The Atlas Model Weaver [10] offers a means for domain adap-
tation, where the adaptation is specified by a dedicated weaving
model. This weaving model is used to generate model transforma-
tions from one domain to another domain. The approach is very
similar to domain adaptation by Triple Graph Grammars but lacks
its mathematical foundations [7].

The Tiger EMF Transformation Project [1, 11] is a framework for
EMF transformations based on graph transformation. It supports
the definition of graph-rewrite rules on arbitrary EMF-based meta-

models and uses AGG [8, 9] as GRS. Internally, the imported EMF
models are transformed to an AGG representation in a fully auto-
mated way. This high degree of automation is at the cost of flexibil-
ity regarding the supported external applications (which is Eclipse
EMF in this case).

5. SUMMARY
In this paper we presented our work on model migration for graph
rewrite systems, that is, mapping external models to internal mod-
els of the GRS and back again and presented a general architecture
for this. Our approach is based on adaptation chaining, where mul-
tiple adapters are chained together and where each of them takes
a specific role in the process of model migration. The decomposi-
tion of the adaptation problem allows for partial generation of the
adapters—and more importantly—for reuse of adapters. We built
a prototypical implementation based on Fujaba4Eclipse, which en-
ables usage of Fujaba’s advanced graph rewriting techniques on
models from other applications in a systematic way.

In our future work we want to improve the generation of the adap-
tation chains through annotations in the modelled metamodels that
would allow for an fully-automated mapping of the external model
elements to the GRS’s internal representation.

6. ACKNOWLEDGEMENTS
This research has been co-funded by the German Ministry of Edu-
cation and Research (BMBF) within the project feasiPLe3.

7. REFERENCES
[1] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and

E. Weiss. Graphical definition of in-place transformations in the
eclipse modeling framework. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS, volume 4199 of Lecture Notes in
Computer Science, pages 425–439. Springer, 2006.

[2] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling
Framework. Pearson Education, 2003.

[3] Fujaba Project Team. Fujaba4Eclipse, Aug. 2007. URL
http://www.fujaba.de.

[4] J. Jakob, A. Königs, and A. Schürr. Non-materialized model view
specification with triple graph grammars. In Proceedings of the 3rd
International Conference on Graph Transformations (ICGT’06),
volume 4178 of LNCS, pages 321–335. Springer, 2006.

[5] E. Kindler and R. Wagner. Triple Graph Grammars: Concepts,
Extensions, Implementations, and Application Scenarios. Technical
Report tr-ri-07-284, Software Engineering Group, Department of
Computer Science, University of Paderborn, June 2007.

[6] T. Mens and P. Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142,
Mar. 2006.

[7] A. Schürr. Specification of graph translators with triple graph
grammars. In Workshop on Graph-Theoretic Concepts in Computer
Science, pages 151–163, 1994.

[8] G. Taentzer. AGG: A Graph Transformation Environment for System
Modeling and Validation. In Tool Exhibition at Formal Methods
2003, 2003.

[9] The AGG Project Team. AGG: The Attributed Graph Grammar
System, Aug. 2007. URL http://tfs.cs.tu-berlin.de/agg/.

[10] The AMW Project Team. Atlas Model Weaver, Aug. 2007. URL
http://eclipse.org/gmt/amw/.

[11] Tiger EMF Transformation Project Team. Tiger EMF Transformation
Project, Aug. 2007. URL http://tfs.cs.tu-berlin.de/emftrans/.

3cf. http://www.feasiple.de

7

Monitoring of Structural and Temporal Properties∗

Holger Giese, Stefan Henkler, Martin Hirsch, Florian Klein, and Michael Spijkerman
Software Engineering Group, University of Paderborn,

33095 Paderborn, Germany

[hg|shenkler|mahirsch|fklein|spijk]@uni-paderborn.de

ABSTRACT
For the design of complex software systems, and self-adaptive
systems in particular, appropriate techniques for the specifi-
cation and verification of combined structural and temporal
properties are required. This paper presents tool support
in Fujaba which allows modeling and monitoring of Timed
Story Scenario Diagrams that cover combined structural and
temporal properties. A scheme to monitor the fulfillment of
the visual scenario specifications is presented and the related
generation of monitoring code is shown using a simplified
example.

1. INTRODUCTION
It is expected that in future dynamic software architectures
with structural adaptation at run-time will replace static
architectures and models in order to realize more intelligent,
efficient, and flexible software-intensive systems (cf. self -
adaptive systems [16]).

While the envisioned dynamic architectures result in more
flexibility, the design and validation of such flexible systems
also become challenging. On the one hand we need descrip-
tion techniques to express requirements and commitments
which cover the evolution of the structure over time (in fact
we even need tightly integrated notations for the specifica-
tion of properties covering structural and temporal aspects
at the same time). On the other hand we also need analysis
techniques that are capable of checking these requirements.

In this paper, the tool support for modeling Timed Story
Scenario Diagrams (TSSD) and Story Decision Diagrams
(SDD) as well as a monitoring scheme and the generation of
monitoring code for their evaluation are presented.

The paper is organized as follows: A survey of the state
of the art concerning modeling and analysis of properties
which combine structural and temporal aspects is presented
in Section 2. Then, the foundation of the presented work
such as the TSSDs and SDDs as well as an application ex-
ample are presented in Section 3. The monitoring scheme
and code generation are outlined in Section 4. In Section 5,
the evaluation of the approach is presented before the paper
ends with a conclusion and an outlook on future work.

∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

2. STATE OF THE ART
The UML only provides a textual specification language,
the OCL [14], for structural properties, which requires the
translation of structural properties from the familiar struc-
tural view in form of UML Class and Object Diagrams into
an often intricate textual syntax. Several approaches try to
overcome this problem by means of special visual techniques
for constraints (e.g., constraint diagrams [10] or VisualOCL
[3]). However, the resulting visually complex diagrams have
only little relation to the original UML specification. Story
Patterns (cf. [13]), in contrast, extend UML Object Dia-
grams and thus avoid this gap. The SDDs used in this paper
further extend them to support quantification and negation.

Temporal logics, such as LTL or CTL, represent the stan-
dard for the specification of temporal properties. However,
as reported in [5], temporal logics are hard to use to the
degree that even experts have serious problems handling
them. Scenario notations describing the interaction of pre-
defined units such as UML sequence diagrams [15], Live Se-
quence Charts (LSC) [9], or Triggered Message Sequence
Charts (TMSCs) [18] have been proposed as a more accessi-
ble means for specifying temporal properties. Visual Timed
Event Scenarios (VTS) [1] are an approach which focuses on
scenarios for pure events and thus abstracts from the units,
an idea that is extended by TSSDs.

A visual approach to combine structural and temporal
properties is introduced in [7]. The authors propose to em-
bed graph patterns into LTL formulas. In [17] an extension
of Story Diagrams [6] by annotating unary forward or past
operators from LTL with additional explicitly encoded time
constraints is presented. While the first approach is not ap-
plicable due to its use of LTL, the second provides at least
the visual concept of an accepting automaton. However, au-
tomata often become rather cumbersome as they require the
specification of the complete sequential order and not only
a partial one.

As the state space of a GTS is typically infinite because
new elements can be added to the system, the model check-
ing of GTS poses a problem, even though there are ap-
proaches for verifying certain invariants of such infinite sys-
tems (cf. [2]). Complete formal verification is therefore only
feasible for restricted properties or very small, finite systems.

A more realistic approach is usually to rely on automated
testing, using a generated runtime monitor as an oracle.
LTL Monitoring and Runtime Verification are two approaches
based on the idea of generating such monitors from the spec-
ification of the system in LTL. While on-line monitoring
with limited resources only seems possible for less expressive

8

specifications, off-line checking of the observed behavior is
feasible even when monitoring is very expensive.

3. FOUNDATIONS
The TSSDs employed in this paper combine the intuitive

concept of matching structural patterns with decision dia-
grams, which foster a consecutive if-then-else decomposition
of complex properties into comprehensible smaller ones, with
a new notation for the temporal ordering inspired by the
Visual Timed Event Scenario approach [1]. Therefore, both
the structural and temporal aspects as well as their combi-
nation can be described in a comprehensible and intuitive
manner. In [12, 11], it has been shown that all Property
Specification Patterns proposed in [4, 5] can be easily en-
coded and derived in a compositional manner using TSSDs.

3.1 Application Example
We introduce a simple example: We want to test the au-

tonomous behaviour of a shuttle. While driving on a circular
railway track, it is supposed to stop at a maintenance point
for inspection after a maximum working time constrained
by technical premises. The following Figure 1 introduces
the underlying Class Diagram.

Figure 1: Shuttle class diagram

When reaching the maintenance point, the shuttle de-
cides whether an inspection is necessary. The shuttle can
request an inspection by generating a maintenance order,
represented by a Maintenance object. The shuttle gets a
confirmation in form of a ShuttleChecked object after main-
tenance has been performed.

3.2 Story Decision Diagrams and Timed Story
Scenario Diagrams

Story Decision Diagrams (SDD) are an extension of Story
Patterns that allow expressing more complex properties.
The most significant enhancements they provide are quanti-
fiers, implication, alternatives, negation of complex proper-
ties, and a concept for modularity (cf. [8]). Figure 2 shows

Figure 2: SDD node example

a simple SDDNode with an embedded Story Pattern. This
SDD calls for at least one Shuttle object referencing a Track

object in an instance graph.
Timed Story Scenario Diagrams (TSSDs) are based on the

idea of specifying scenarios as sequences of Situations, each
characterized by an embedded SDD. Situations are placed

in temporal relation to each other through temporal connec-
tors. A TSSD is fulfilled when a sequence of valid system
states leading from an Initial Node to a Termination Node
is observed (cf. [8]). Time Bounds can additionally place
a lower and upper time bound on the interval between the
observation of two Situations, whereas Guards forbid some
Situation from occurring in that interval.

Figure 3 introduces a simple example. The TSSD consists

Figure 3: TSSD example

of two Situations. The first Situation, ”ShuttleChecked”,
defines a system state where a shuttle has a reference to
a ShuttleChecked object. It is surrounded by a Trigger,
which indicates that the following scenario needs to be com-
pleted for every observation of such a shuttle.

The second Situation called ”ShuttleRepair” describes a
Shuttle with a Maintenance object, which indicates that
the shuttle has requested the next inspection. Both Situa-
tions are connected by an Eventually Connector, which is
constrained by a Time Bound [0..30]. The TSSD thus spec-
ifies that a shuttle needs to be inspected again no more than
30 time units after the last inspection.

Editors for creating SDDs and TSSDs have been added to
Fujaba4Eclipse as plugins.

4. MONITORING
We now want to validate system consisting of the system
model and the TSSD specification (see Figures 1 and 3),
which we have modeled in Fujaba4Eclipse. The system code
can be generated using the standard CodeGeneration2 plu-
gin. Additional plugins are able to generate code for the
TSSD specifications. The current implementation does not
cover the complete TSSD language, but focuses on a core of
syntactic elements consisting of Situations, Eventually Con-
nectors, Time Bounds, Triggers and Guards, which are suffi-
cient to emulate almost the complete syntax through appro-
priate mappings. The monitor code for a TSSD specification
is generated against a TSSD monitoring framework which
handles its invocation. The framework reacts to changes in
the system by notifying each registered specification, trig-
gering the next evaluation step. Changes are recognized by
a central model manager registering as a property change
listener with all objects. The manager also serves as a di-
rectory, which is necessary for enabling SDDs without a
fixed context (this). Figure 4 provides an overview of the
framework. The system code is generated from the system
model defining its structure and, possibly, predefined behav-
iors which are defined as Story Diagrams. The generated
classes are instrumented to register with the model man-
ager and provide property change support. The scheduler
manages a set of processes, each defining the behavior of an
agent as a sequence of activities controlled by a script or a
state machine. Activities describe state changes of the sys-

9

system code
framework

scheduler

evaluator

system

send events

starts

ch
ec

ks

monitor
specification
specificationbehaviour

uses
changes

co
nt

ro
ls

Figure 4: Overview framework

tem, the duration of the state change and the time a state
change should be processed. While being very extendable,
the TSSD monitoring framework currently only provides el-
ementary methods and infrastructure for defining concrete
test scenarios.

Fujaba4Eclipse allows grouping specifications into Con-
straint Sets, which in turn allows selecting which constraints
should be analyzed by the monitor. An evaluator filters
events according to the originating model elements and re-
stricts evaluation to those specifications that might be af-
fected by the current state change.

The system component represents the test framework and
contains a main class that initializes the specifications, the
model, the evaluator and the scheduler and starts the test
system.

Figure 5 provides an overview of the test process: After

Create
System
Model

Create
TSSD

Generate
Test-

framework

Initialize
Test

System

Define
Scheduler

Start
Monitoring Termination

Figure 5: Test process

defining the system model and the TSSD Specification, the
test framework can be generated. Then next step is to ini-
tialize the test system as described above. Afterwards, the
system behavior needs to be implemented or scripted as pro-
cesses. The test framework can then be executed. If the
outcome is not satisfying, either the system behavior needs
to be changed, or the specification is too restrictive, which
makes refinements in the TSSD necessary.

In the following, we present an overview of the monitoring
concept. Figure 6 provides a TSSD specifying the creation
of a simple synthetic object structure. It has 4 Situations:
FindA describes the identification of an A object. FindB and
FindC enable the parallel search for objects B and C refer-
encing the previously bound (indicated by the blue colour)
object A. TimeBounds are constraining FindB and FindC.
After identifying appropriate objects B and C, an object D

referencing B and C must be found in Situation FindD. The
instance path shows a system run. Every time a correspond-
ing system state is identified for a Situation, a node in the
calculation tree, called an Observation, is created. A se-
quence of Observations is a Trace. Each Observation is a
correct extension regarding the TSSD, meaning that all re-
quired objects are bound, all necessary predecessor nodes
are available and all TimeBounds hold in the Trace. Where
several branches join, we need to find compatible Traces for
each branch, recombining them into a single Trace fulfilling
all preconditions. For that we copied the node FindC at
time 3 to the parallel Trace 1. The copied Observation is

FindA
(a1)

time: 1

Initial
Node

time: 0

FindB
(a1,b1)
time: 1

t = 1) t = 5)t = 3)

FindC
(a1,c2)
time: 5

FindC
(a1,b1,c1)

time: 3

FindD
(a1,b1,c1,d1)

time: 5

Term
Node

time: 5

Instance path

Calculation tree

TSSD

FindC
(a1,c2)
time: 3

Figure 6: Monitoring concept

marked bold and blue. In time step 5 you could observe
another FindC Observation, but this extension is prohib-
ited because the Time Bound between Situation FindA and
FindC allows at most 2 time units for observing FindC.
Thus, the Observation is marked dashed and red. The goal
is to observe a Trace with valid Observations ending in a
TerminationNode. In this example we reach the Termina-
tionNode in time step 5, making the system run valid accord-
ing to the defined TSSD. This example gives only a shallow
idea of the whole monitoring algorithm (cf. [19]).

The generated code implements the presented algorithm.
It consists of both static information that represents the
structure of the TSSD and code for managing the calcula-
tion tree. The TSSD structure is mapped to a static class
structure. There are classes which represent the Situations
and the Eventually Connectors. The pseudo states Initial
Node and Termination Node are treated as Situations as
well. The code to manage the calculation tree is generic
and provided by abstract base classes. They exist for every
core element and the overall diagram. An Observation is an
instance of the corresponding Situation class. Using static
factory methods, the extension is computed in the appro-
priate class. If all preconditions are valid and the embedded
SDD returns a valid binding, the current class can be in-
stantiated, extending the calculation tree.

5. EVALUATION
The efficiency of the validation depends on the number

of existing Observations in the calculation tree. Each cal-
culation step iterates through all nodes and tries to extend
them, in turn checking the structural preconditions for each.

Unfortunately, the upper bound for the possible number of
nodes is rather large. The dimension of the calculation tree
depends both on system behavior and the size and struc-
ture of the specification. While the size of each Trace is
limited by the number of Situations in the TSSD, many Ob-
servations can be made for the same Situation, leading to
branching into a set of alternative Traces whose number can

10

rise exponentially in the worst case.
To limit the size of the calculation tree, optimizations are

applied that eliminate all calculation tree nodes which are
unnecessary for further validity calculations. If a Trace is
successfully extended to a Termination Node and no Guards
or Time Bounds are defined the Trace is marked final. Traces
containing Time Bounds defining an upper bound also nec-
essarily become final, either when they are successfully ex-
tended or when the upper bound is reached. If a Guard
is observed, the Trace cannot be extended any more and
becomes final as well. An Observation which cannot be ex-
tended because its binding becomes invalid is obsolete. All
markings made during validation of the calculation tree are
propagated towards the Observation for the Initial Node.
Only the first node of a final Trace needs to be retained
until it becomes obsolete in order to prevent it from being
observed again prematurely, all other final nodes are deleted.

The number of Observations significantly depends on the
instantiated model elements. In the example, the number of
new Traces is limited by the number of shuttles which are
instantiated in the system as the specifications refer to the
state of individual shuttles. In all evaluation examples the
size of the calculation tree is importantly smaller than the
worst case.

For a practical description of the evaluation, we run the
shuttle with its defined behavior based on the system model
introduced in Figure 1 to check if the behavior fulfills the
specification shown in Figure 3. Figure 7 presents an in-

Shuttle
Checked
time: 151
isTrue = 1
isFinal = 1

Repair
Time:181
isTrue = 1
isFinal = 1

Initial
Node

time: 0
isTrue =1
isFinal = 0

i = 181)

Termination
Node

Time: 181
isTrue = 1
isFinal = 1

Figure 7: Calculation tree at time = 181

stance of the calculation tree at the random time t=181 to
give an example. At t=0 the Observation of the InitialNode
was created at start of the evaluation. At t=151 the shut-
tle was repaired at the service station. The shuttle got a
new ShuttleChecked object, and a corresponding Observa-
tion ”ShuttleChecked” was created in the calculation tree.
At t=181 the Observation ”Repair” was made punctually.
After 30 time units the shuttle started an inspection again,
barely meeting the time constraint. The calculation tree
could be directly extended to the TerminationNode because
the connector leading to it has no Time Bounds or Guards.
At this point, the TSSD therefore holds. However, this is
not permanent as the ShuttleChecked that is created after
the inspection will again trigger the scenario later. Older
Traces are not visible in the calculation tree cause they were
eliminated by the described optimizations, limiting the cal-
culation tree to at most 4 Observations.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduce an approach for monitoring

TSSDs. We present a monitoring algorithm which evaluates
a system specified by TSSDs and a test framework which
executes the generated system and monitoring code. As fu-
ture work, we plan to support all syntatic features of TSSDs
in the code generation. We also need a scheme for strictly
limiting the size of the calculation tree in a restricted envi-
ronment. An advantage of our approach is that we do not

need to insert monitoring code into the system code, which
makes off-line monitoring possible once we develop a concept
for storing the instance path.

REFERENCES
[1] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual Timed

Event Scenarios. In ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, pages 168–177, Washington, DC, USA, 2004. IEEE
Computer Society.

[2] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic
Invariant Verification for Systems with Dynamic Structural Adaptation.
In Proc. of the 28th International Conference on Software Engineering (ICSE),
Shanghai, China. ACM Press, 2006.

[3] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization
of OCL using collaborations. Lecture Notes in Computer Science,
2185:257–271, 2001.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification
Patterns for Finite-state Verification. In 2nd Workshop on Formal Methods in
Software Practice. ACM Press, March 1998.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 411–420, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[6] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new
graph rewrite language based on the unified modeling language. In
G. Engels and G. Rozenberg, editors, Proc. of the 6th International Workshop
on Theory and Application of Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764, pages 296–309. Springer Verlag, November 1998.

[7] F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for
graph-interpreted temporal logic. In Proc. of the Theory and Application of
Graph Transformations, volume 1764 of Lecture Notes in Computer Science, pages
310–322, 2000.

[8] H. Giese and F. Klein. Visual Specification of Structural and Temporal
Properties. In H. Giese and B. Westfechtel, editors, Proc. of the 4th
International Fujaba Days 2006, Bayreuth, Germany, volume tr-ri-06-275 of
Technical Report. University of Paderborn, September 2006.

[9] D. Harel and R. Marelly. Playing with Time: On the Specification and
Execution of Time-Enriched LSCs. In Proc. 10th IEEE/ACM Int. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2002), Fort Worth, Texas, USA, 2002. (invited paper).

[10] S. Kent and J. Howse. Mixing visual and textual constraint languages. In
R. France and B. Rumpe, editors, UML’99, Fort Collins, CO, USA, October
28-30. 1999, Proceedings, volume 1723 of LNCS, pages 384–398. Springer,
1999.

[11] F. Klein and H. Giese. Integrated Visual Specification of Structural and
Temporal Properties. Technical Report tr-ri-06-277, Computer Science
Department, University of Paderborn, October 2006.

[12] F. Klein and H. Giese. Joint Structural and Temporal Property
Specification using Timed Story Sequence Diagrams. In M. Dwyer and
A. Lopes, editors, Proc. of 10th International Conference on Fundamental
Approaches to Software Engineering (FASE) 2007, held as part of ETAPS 2007,
Lisboa, Portugal, March 24-April 1, 2007, volume 4422 of LNCS, pages 185–199.
Springer Verlag, March 2007.

[13] H. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating UML Diagrams

for Production Control Systems. In Proc. of the 22nd International Conference
on Software Engineering (ICSE), Limerick, Irland, pages 241–251. ACM Press,
2000.

[14] Object Management Group. UML 2.0 Object Constraint Language (OCL)
Specification, 2003. http://www.omg.org/docs/ptc/03-10-14.pdf.

[15] Object Management Group. UML 2.0 Superstructure Specification, 2003.
Document ptc/03-08-02.

[16] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent
Systems, 14(3):54–62, May/June 1999.

[17] T. Rtschke and A. Schrr. Temporal Graph Queries to Support Software
Evolution. In Graph Transformation: 5th International Conference, ICGT 2006, Rio
Grande do Norte, Brazil, September 17-23, 2006, pages 1–15, 2006.

[18] B. Sengupta and R. Cleaveland. Triggered Message Sequence Charts. In
W. G. Griswold, editor, Proceedings of the Tenth ACM SIGSOFT Symposium on
the Foundations of Softare Engineering (FSE-10), Charleston, South Carolina,
USA, November 2002. ACM Press.

[19] M. Spijkerman. Monitoring gemischt struktureller und temporaler
Eigenschaften von UML Modellen. Diplomarbeit, Software Engineering
Group, University of Paderborn/Germany, October 2007.

11

Model-Based Testing of Mechatronic Systems∗

Holger Giese†, Stefan Henkler, Martin Hirsch, and Claudia Priesterjahn
Software Engineering Group, University of Paderborn,

33095 Paderborn, Germany

[hg|shenkler|mahirsch|herklotz]@uni-paderborn.de

ABSTRACT
We report about a Fujaba plugin for the automatic test gen-
eration and execution for components modeled with Real-
Time Statecharts. We automatically generate test suites
by using counterexamples obtained from the existing model
checking plugin. By using a model checker we are able to
support different coverage criteria for the behavior with the
generated test suites by invoking the model checker with
specific formulas adapted from criteria-specific observer au-
tomata. The presented approach is efficient as we propose a
compositional testing approach. Furthermore we support to
execute the test suites for the generated code and measuring
the coverage criterion.

1. INTRODUCTION
Embedded systems are successfully employed in many do-

mains. Examples are automotive applications, automation
or aerospace applications. To develop these systems, the
complex distributed real time interaction within these sys-
tems has to be planned and its safe behavior has to be guar-
anteed, as non-compliance with crucial timing constraints
can lead to fatal accidents.

The model-based development of embedded systems em-
ploying automatic code generation reduces the difficulties of
developing complex embedded systems and thus gets more
popular. By using model-based development approaches the
formal verification of these models, e.g. in form of model
checking, are not sufficient. The formal verification recog-
nizes changes with respect to the specification but do not
check if the noticeable behavior of the implemented or mod-
eled system meets the requirements. Besides the problem of
having an adequate specification the state explosion problem
of the formal verification approaches limits these techniques
to small systems or components. Furthermore, often not
all parts of the system are generated automatically, manu-
ally the generated code is optimized or legacy components
are integrated. Hence, dynamic analysis, in form of testing,
becomes important.

In practice, testing is a widely used technique but also a
high effort is needed for deriving tests. To overcome this
problem automated test derivation in form of model-based

†Currently a visiting professor at the Hasso-Plattner-
Institut, University of Potsdam.
∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

testing is getting more popular in the last years (c.f. [3], [8],
and [16]). As exhaustive testing is often impossible or at
least to costly, a finite set of tests are applied which cover a
certain criteria.

In this paper we present an extension of our modeling and
analysis approach Mechatronic UML, which mainly con-
sidered formal verification [10], towards model-based test-
ing. The extensions employ the model checking capabilities
of our tool support by using the counter example provided
by the model checker to derive tests (we use the UPPAAL
model checker to generate test cases (cf. [14] and [11]) via
the model checking plugin integrated in the Fujaba Real-
Time Tool Suite [5]). The presented extension focuses on
test cases to validate the real time behavior of Real-Time
Statecharts with respect to a given coverage criteria.

The rest of the paper is organized as follows: In Section
2 we discuss the related work. Afterwards, we introduce
Mechatronic UML and explain its support for model-
ing complex, distributed embedded systems. Based on the
Mechatronic UML modeling approach, we sketch the ex-
isting formal verification capabilities. Then, the developed
model-based testing approach is introduced and outlined us-
ing a simple example in Section 4. The paper closes with a
conclusion and an outlook on planned future work.

2. RELATED WORK
Beyer et al [1] propose an approach to automatically gen-

erate traces from a given model by using a model checker as
a state exploration tool. They also guarantee state coverage.
We expand this approach by using templates adapted from
Blom et al [2].

In [11] Hessel et al. introduces a new approach of emitting
the fastest diagnostic trace of UPPAAL counter examples for
conformance testing of black-box components. As the focus
is on real-time systems, they also address the problem of the
correct timing of test execution and limiting the number of
test cases. To ensure time optimal testability, the semantics
of UPPAAL is reduced to deterministic, input enabled and
output urgent timed automata. However, the approach does
not provide tool support.

In [15] Mücke and Huhn generate optimized test suites
from a subclass of deterministic Statecharts with real-time
constraints. In addition to the approach of Hessel et al
this approach includes tool support. Further, a new cover-
age criterion is introduced to focus especially on the closest
operands possible to test the limits of guards. The cover-
age criterion is called boundary coverage. Mücke and Huhn
added Boolean coverage variables to the model to be aware

12

of a certain coverage is achieved. The Boolean coverage vari-
ables enlarge the state space which is one of the main prob-
lems of this approach. The presented approach of Mücke and
Huhn lacks in efficiency as they have no additional compo-
sitional consideration in contrast to our work.

3. MODEL-BASED VERIFICATION
The Mechatronic UML approach enables the develop-

ment of complex mechatronic systems [7]. Components and
patterns can be employed to model the architecture and
real-time coordination behavior. An embedding of continu-
ous blocks into hierarchical component structures permits to
integrate controllers into the component model. The com-
ponent and pattern definition are supported by the Fujaba
Real-Time Tool Suite1 while the blocks can be specified with
CAE tool CAMeL.2

Discrete behavior of the components and patterns is spec-
ified by real-time statecharts [6] or their hybrid extension
hybrid reconfiguration charts [4]. The provided concept en-
ables the specification and modular verification of reconfig-
uration across multiple components [9].

The Mechatronic UML approach also supports model
checking techniques for the real-time processing at the level
of connected mechatronic systems. By supporting a compo-
sitional proceeding for modeling and verification of the real-
time software [10], the approach avoids scalability problems
to a great extent.

4. MODEL-BASED TESTING
The idea of model-based testing is to derive test cases from

an explicit model describing the behavior of the unit under
test while considering test cases as traces in the model. Thus
test cases are specified by their input and expected output.
During testing the implementation is invoked with the input.
Afterwards the implementation’s output is compared to the
model’s output to give a verdict about the correctness of
the implementation’s behavior. In case of reactive real time
systems, the input and output are timed sequences capturing
the interaction of the unit under test and the environment.

4.1 Overview
Figure 1 shows a basic overview of our approach in form of

an activity diagram. First, we generate test cases that sat-
isfy a certain coverage criterion. Afterwards the test cases
are executed on the unit under test while monitoring the cov-
erage. The test execution runs until the coverage criterion
is satisfied, no test cases are left, or an error is found. Fi-
nally, we report the result that can be of the following form.
In case the testing environment reported an error, the test
case causing the error is returned. If no error was found, the
output is ”‘OK”’ and a statement about the completeness
of the coverage.

4.2 Automatic Generation of Test Cases from
Counterexamples

As proposed by Beyer et al. [1], we use a model checker to
generate traces for our model. This is achieved by passing
a constraint in the form of a temporal logic formula to the
model checker that is known not to be satisfied by the model.
The model checker returns an error trace leading to the part

1http://www.fujaba.de/
2http://www.ixtronics.de/English/indexE.htm

Approach

Generate
Test Cases

Test Cases
Execute

Tests

Coverage Satisfied/
NOT Satisfied
+ OK / Test Case

Coverage
Criterion

Figure 1: Employed model-based testing approach

of the model that violates the constraint. This trace is used
to compute initial and final values for a test case.

Since there already exists a Fujaba plugin for the model
checking of Mechatronic UML with the UPPAAL model
checker by Hirsch [12], we use it to generate test cases. Fur-
thermore we use a simple heuristic to optimize the test gen-
eration process (cf. Section 4.2.2).

Figure 2: Overview of Test Generation

As shown in Figure 2, we start with a component that is
decomposed into its Real-Time Statecharts. This allows us
to apply component wise testing on complex models as pro-
posed by van der Bijl et al. [17]. Afterwards the Real-Time
Statecharts are used to generate constraints. Constraints
are temporal logic formulae that are passed to the model
checker as a property to be checked on the Real-Time State-
chart. The Constraint Generator generates the constraints
for a given coverage criterion on the passed Real-Time State-
chart as described in Section 4.2.1. After the model checker
generated a trace file, the test suite is extracted into a test
suite file.

4.2.1 Test Coverage
To guarantee a certain test coverage, we pass special con-

straints to the model checker adapted from the principle of
observer automata as proposed by Blom et al. [2]. Our ap-
proach is based on the reachability of elements that are to
be covered. We use the model checker to generate a trace
covering a certain element in the Real-Time Statechart.

A model checker can be used as a trace generation tool.
By passing a negated temporal logic formula, we yield a
trace to a certain state in our Real-Time Statechart.

To achieve that, we invoke the model checker with special
constraints of the form AG ¬s. The constraint is formed
as follows. To check with the model checker whether state

13

Figure 3: Overview of Test Execution

s is reachable, we could use a formula of the form EF s.
As this will of course succeed and will not produce the re-
quired counterexample, we have to check the opposite prop-
erty which the model does not satisfy and for which thus a
path leading to state s is returned. That is why we have
to negate the formula considering the following equivalence:
¬EF s ≡ AG ¬s.

4.2.2 Heuristic
Since model checking is quite an expensive undertaking,

we use a simple heuristic to reduce the requests to the model
checker adapted from a heuristic proposed by Blom et al. [2].

In their approach, every constraint, that is associated to
a target state that already has been covered by a formerly
generated path, is discarded. In our approach we profit from
the situation that in Fujaba each element is associated to a
unique id. This id is based on a counter that increments
with each new created element. That means, the younger
an element the higher the id. That leads to the presumption
that an element, that is situated later in the path usually has
a higher id than all its predecessors, because it was created
later. Thus we sort the constraints by ids of their target
states into descending order. When we generated a path,
then with high probability our target state is the latest in
the path and we can discard as many constraints as possible
because their target states have already been covered now.

4.3 Testing Environment
To execute the test cases we need an interface to the gen-

erated code - a testing environment. As depicted in Figure
3, the testing environment invokes the test cases on the gen-
erated code and compares its output to that specified in
the test case. In order to monitor test coverage, we subse-
quently insert a structure into the generated code which col-
lects the visited states and the corresponding clock values.
This structure is being passed to the testing environment
during communication with the generated code. The given
information is sufficient to reconstruct the path passed dur-
ing test execution. The possible reconstruction is necessary

to monitor coverage criteria that differ from state coverage.
This principle of monitoring the test execution is adapted

from observer automata. But it is much more economical,
since we don’t need to traverse the Cartesian product of
the observer’s and the model’s state spaces of the product
automaton. Instead we simply collect states in their order
of traversing and keep track of those states that still have
to be covered.

Legacy components are tested by the integration into com-
ponents from which the structure is known. Since on legacy
components we can only check the behavior that effects their
environment, we use the known component to communicate
with the legacy component. Thus we can check, if a certain
input produces the expected output. As the structure of
a legacy component is not known, a statement about test
coverage is not possible.

4.4 Example
Figure 4 depicts a system model as modeled in Fujaba

Real-Time3. To achieve state coverage, we have to build the
related constraints. One possible constraint, that causes
the model checker to produce a path to State6 with the
corresponding timing constraint as a counterexample, is A[]
not (State49 and t0 < 30). The model checker produces a
trace in form of a sequence of states and transitions. The
states of this trace are highlighted grey in the figure below
for visualization.

Each state has a variable vector that contains the vari-
able names associated to their current values. The initial
values are just the initial state’s variable values. To get the
final values, we collect the variables that occur through the
path and update a variable at each new occurrence at the
successor state. As the states ”‘State39”’, ”‘State47”’ and
”‘State48”’ are already covered by the produced path, their
associated constraints need not to be passed to the model
checker for test case generation.

3The name of the states has no specific meaning.

14

t0 : = 0/

t0 < 510<=t0

State39

InitialState

pattern.Role1

t0 < 12

40<=t0

State47

State19

70<=t0

State48

t0 < 30
90<=t0

State49
State15

State18

State17

Figure 4: Example Trace

5. CONCLUSION AND FUTURE WORK
We presented a Fujaba plugin for automatic testing of

Real-Time Statecharts. We are able to automatically gener-
ate test suites for state coverage and also execute and mon-
itor tests. Besides we apply component-wise test generation
and execution allowing efficient testing of complex systems.
Since the presented plugin has the ability to work with ar-
bitrary coverage criteria, we are planning to expand the test
generation and test monitoring to more coverage criteria.
As temporal specification languages have it’s limitations in
specifying coverage criteria (cf. [13]), the model needs to
be instrumented to realize further coverage criteria. Future
work is to specify the coverage criteria with observer au-
tomata. As a request to the model checker is expected to be
quite expensive, we propose to further optimize test gener-
ation by sorting the constraints not by their id but by their
actual depth in the path. This is to be achieved by perform-
ing breadth first search on the Real-Time Statechart.

REFERENCES
[1] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,

and R. Majumdar. Generating tests from
counterexamples. icse, 0:326–335, 2004.

[2] J. Blom, A. Hessel, B. Jonsson, and P. Petterson.
Specifying and generating test cases using observer
automata. In U. Assmann, A. Rensink, and M. Aksit,
editors, Proceedings of the 4th International Workshop
on Formal Approaches to Testing of Software, LNCS,
pages 125–139, 2004.

[3] G. V. Bochmann and A. Petrenko. Protocol testing:
review of methods and relevance for software testing.
In ISSTA ’94: Proceedings of the 1994 ACM
SIGSOFT international symposium on Software
testing and analysis, pages 109–124, New York, NY,
USA, 1994. ACM Press.

[4] S. Burmester, H. Giese, and M. Hirsch. Syntax and
semantics of hybrid components. Technical Report
tr-ri-05-264, University of Paderborn, October 2005.

[5] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The fujaba real-time tool suite:
Model-driven development of safety-critical, real-time
systems. In Proc. of the 27th International Conference
on Software Engineering (ICSE), St. Louis, Missouri,
USA, pages 670–671. ACM Press, May 2005.

[6] S. Burmester, H. Giese, and W. Schäfer. Model-driven
architecture for hard real-time systems: From
platform independent models to code. In Proc. of the
European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’05),
Nürnberg, Germany, Lecture Notes in Computer
Science (LNCS), pages 25–40. Springer Verlag,
November 2005.

[7] S. Burmester, H. Giese, and M. Tichy. Model-Driven
Development of Reconfigurable Mechatronic Systems
with Mechatronic UML. In U. Assmann, A. Rensink,
and M. Aksit, editors, Model Driven Architecture:
Foundations and Applications, LNCS, pages 1–15,
2005.

[8] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In ICSE ’99:
Proceedings of the 21st international conference on
Software engineering, pages 285–294, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[9] H. Giese, S. Burmester, W. Schäfer, and
O. Oberschelp. Modular Design and Verification of
Component-Based Mechatronic Systems with
Online-Reconfiguration. In Proc. of 12th ACM
SIGSOFT Foundations of Software Engineering 2004
(FSE 2004), Newport Beach, USA, pages 179–188,
Nov. 2004.

[10] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the Compositional Verification of
Real-Time UML Designs. In Proc. of the 9th European
software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE-11),
pages 38–47, Sept. 2003.

[11] A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and
A. Skou. Time-optimal real-time test case generation
using uppaal. In Formal Approaches to Software
Testing, Third International Workshop on Formal
Approaches to Testing of Software, Lecture Notes in
Computer Science, pages 114–130. Springer, 2004.

[12] M. Hirsch. Effizientes Model Checking von UML-RT
Modellen und Realtime Statecharts mit UPPAAL,
June 2004.

[13] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A
temporal logic based theory of test coverage and
generation. In TACAS ’02: Proceedings of the 8th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages
327–341, London, UK, 2002. Springer-Verlag.

[14] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, Oct. 1997.

[15] T. Mcke and M. Huhn. Generation of optimized
testsuites for uml statecharts with time. In R. Groz
and R. M. Hierons, editors, In 16th International
Conference on Testing of Communicating Systems,
(TestCom 2004), Lecture Notes in Computer Science
(LNCS), pages 128–143. Springer Verlag, 2004.

[16] J. Offutt and A. Abdurazik. Generating tests from
UML specifications. In R. France and B. Rumpe,
editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30.
1999, Proceedings, volume 1723, pages 416–429.
Springer, 1999.

[17] M. van der Bijl, A. Rensink, and J. Tretmans.
Compositional testing with ioco. Proc. 3rd Intl.
Workshop on Formal Approaches to Testing of
Software, 2003.

15

The Alternate Editing Mode for Fujaba

Bernhard Grusie
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

bernhard.grusie@student.uni-

kassel.de

Christian Schneider
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

christian.schneider@uni-kassel.de

Albert Zündorf
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

albert.zuendorf@uni-kassel.de

1. INTRODUCTION
Once upon a time, Thorsten Fischer came into the office of
Albert Zündorf in order to present his user interface concept
for Fujaba, cf. [1, 2, 4]. Albert didn’t like it. “It’s state of
the art”, Thorsten replied. Thus, fate took its turn and the
PE dialogs were created. History continued. There were
many complaints but no escape. Until in 2004 Christian
Schneider decided to change it. We started to develope an
Alternate Editing Mode for Fujaba. The idea was to avoid
dialog windows at all and to enable mouse gestures, inline
editing, and keyboard oriented editing as much as possible.
After a first student failed to finish Christian’s work, in 2006
Bernhard Grusie picked up the challenge and developed the
Alternate Editing Mode into a usable state. This paper
presents the concepts and features of the Alternate Editing
Mode plugin for Fujaba.

2. FEATURES
The Alternate Editing Mode is a plugin for Fujaba that
adds a button to the central tool bar allowing to switch be-
tween the old Fujaba editing mode and the Alternate Edit-
ing Mode, cf. Figure 1. If a diagram is opened with alternate
editing enabled, the new user interface is switched on for this
diagram. Up to now, alternate editing is available for class
diagrams and rule diagrams.

Figure 1: The Alternate Editing Mode Button

2.1 Gestures
After all, UML diagrams consist of lines and boxes. Thus,
it should be easy to create these artifacts. The Alternate
Editing Mode allows to open a rectangle by dragging with
the mouse on the background of a diagram. Depending on
the diagram type this either creates a class, cf. Figure 2,
or an activity or (within a story activity) an object. For
activity diagrams, a left drag creates a story activity while
a right drag creates a popup menu showing the available
activity types.

Lines may be created by dragging one box on another box.
Again, a left drag creates some default connection while a

right drag opens a popup menu with availble choices. For
classes, dragging may thus create associations or inheritance
links or directed associations or aggregations or composi-
tions. For activities dragging creates transitions and for ob-
jects dragging creates links. On the creation of links, the
Alternate Editing Mode checks available associations and
by default chooses one of them or presents them on right
dragging.

As an additional comfort, one may also drag the ends of
existing associations from one class to another. Similarly,
inheritance relations may be changed. The same holds for
transitions1 and links within rule diagrams.

Whithin class diagrams it is also possible to drag attribute
or method declarations from one class to another. Shift
dragging of attributes or methods creates a copy, however,
currently this works only for attributes. Here we rely on the
new Copy&Paste Module for Fujaba, cf. [3].

2.2 Text Input Field
Editing with gestures creates default names and types for
the new elements. In order to enable dialog free changing of
names and types and in order to enable dialog free editing of
other kinds of inscriptions like attributes, methods, transi-
tion guards, attribute conditions, or collaboration messages,
the Alternate Editing Mode provides a context and input
depended text field.

The text input field opens below the currently selected dia-
gram elements as soon as one starts to type some input. As
an example, Figure 3 shows the text input field for a class.

On closing of the input field, the Alternate Editing Mode
parses the text input and decides depending on the selected
diagram element what item of the model is going to change.
In case of a class, a simple word is interpreted as a new class
name. If the text contains round brackets, the Alternate
Editing Mode assumes that a new method declaration has
been entered. In case of a colon, an attribute declaration is
added. If an attribute declaration is selected, a normal word
would change the attribute name. A word after a colon is
interpreted as the type of the selected attribute. Note, the
Alternate Editing Mode provides completion for types on
control blank.

1To be honest, dragging transition ends is not yet working

16

Figure 2: Gesture creating a class

Figure 3: Text Input Field for a class

Similarly, the input field for an association allows to change
the association name. The input field for a role allows to
change the role name or the cardinality may be changed e.g.
to “0..*”.

On any element, “<<x>>” may be used to add steretype
“x” and “>>x<<” may be used to remove it.

The most sophisticated parsing of input lines happens for
activity diagram elements. On objects, with a plain word
one may change the object name or with a colon one may
change the object type. In addition, an attribute constraint
may be entered. For objects and links, ++ and −− add
modifiers while == removes the modifiers. ## toggles the
bound property of objects. And so on. Basically, in activity
diagrams almost all properties that may be changed using
the former dialogs may be altered using special characters
at the input line. Note, the status line at the bottom of
the Fujaba window shows a short help for special characters
available for the selected diagram element.

3. EXPERIMENTAL COMPARISON
As a first little comparision of the old dialog mode with the
alternate editing mode we have run a simple experiment.
Albert and Bernhard have both edited the class diagram and
the activity diagram shown in the appendix one time using
the dialog mode and one time using the Alternate Editing
Mode. Both guys are familar with both editing modes. Well,
as developers of the Alternate Editing Mode they may be a
little biased. Since each of the two candidates have to enter
the diagrams twice, we expect a certain learning curve. I.e.
they should be faster the second time. In order to deal with
this learning curve, Albert did the dialog mode first and the
Alternate Editing Mode second and Bernhard the other way
round. We used mouseometer as a tool for measuring the
time, the key strokes, the overal mouse movement, and the
mouse clicks during editing. Table 4 shows the results of
this experiment.

First of all, both candidates show the expected learning
curve as they both needed about 40 minutes for the first
round and about 30 minutes for the second round. Overall,
the learning curve was more significant to the time con-
sumption than the editing mode used. And due to the small
size of the experiment, we do not consider the 12% time re-
duction as statistically significant. However, concerning key
strokes, mouse meters, and mouse clicks the learning curve
does not show up. Both candidates used more key strokes
in alternate editing and more mouse activity in the dialog
mode. This meets our expectation.

The bottom of the right most column shows the differences
between the sum of the measurements of both candidates
for the different modes. In the sum of both candidates, the
Alternate Editing Mode saved about 8 minutes, 54 meters of
mouse movement, and 700 mouse clicks. This is payed for by
930 additional key strokes, 888 of these extra key strokes al-
ready in the class diagram. The latter number is unexpected
high. A closer examination revealed that in alternate edit-
ing one has to enter additional syntax like parenthesis and
colons which sums up to about 240 key strokes as sum for
both candidates. Note, to enter a parenthesis or a colon on
a german keyboard you need the shift key which is counted

17

as a seperate key stroke by the mouseometer. In addition,
in alternate editing we have typed in the �JavaBeans�
stereotype while in the dialog mode this is just a click. This
accounts for another 432 of the extra key strokes. 80 of
the remaining extra key strokes are probably accounted for
starting the type completion using ctrl blank (2 to 3 key
strokes each time).

Figure 4: Experiment Data

Overall, the new editing mode saves about 12% time within
this small experiment. It seems that the additional key
strokes are outweight by the saved mouse activities. Qual-

itatively, the two candidates have the impression that us-
ing the Alternate Editing Mode for class diagrams is much
more convenient than the dialog mode. The main advan-
tage is that one does less frequently switch between mouse
and keyboard. In activity diagrams, the object dialogs are
somewhat easier to use than the Alternate Editing Mode.
In dialog mode, you start the dialog with alt O, you en-
ter the name, you tab to the type field and you enter some
letters until the desired type shows up. Return closes the
dialog. In alternate editing, you drag a rectangle to create
the object, you type the object name, a colon, some letters
of the type name, ctrl blank for completion and return to
submit. Thus, in alternate editing you have a change from
mouse to keyboard between dragging the object and enter-
ing its name. In addition, starting the completion mode in
alternate editing needs an extra crl blank. Thus, as a result
of this experiment, we plan to improve alternate editing on
objects.

4. CONCLUSIONS
By now, the Alternate Editing Mode is almost stable. There
is still a list of missing features and known bugs. There are a
number of users at Kassel University that use the Alternate
Editing Mode for serveral month now. The reported im-
pressions are very supporting. In addition, the experiment
reported in this papers gives some hints on advantages of
the Alternate Editing Mode. Editing with the Alternate
Editing Mode is more convinient than the old dialogs due
to lesser changes between mouse and keyboard. Concern-
ing functionality, the alternate editing mode is sufficiently
complete such that the old dialogs are only seldom used.
In seldom cases the Alternate Editing Mode behaves un-
expected and performs undesired model changes. However,
the gain in editing comfort outweighs still exisiting problems
by far. Thus, the usage of the Alternate Editing Mode is
now recommended for experienced Fujaba users.

The Alternate Editing Mode plugin for Fujaba is available
via Fujaba’s plugin download mechanism from University of
Kassel.

5. REFERENCES
[1] T. Fischer, J. Niere, and L. Torunski. Konzeption und

Realisierung einer integrierten Entwicklungsumgebung
fr UML, Java und Story-Driven-Modeling (Diploma
Thesis, german), 1998.

[2] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams A new Graph Grammar Language
based in the Unified Modeling Language. In TAGT ’98
- 6th International Workshop on Theory and
Application of Graph Transformation. Technical Report
tr-ri-98-201, University of Paderborn, 1999.

[3] L. Geiger and C. Schneider. The Copy Paste Modul for
Fujaba. submitted to: International FujabaDays 2007,
Kassel, 2003.

[4] The Fujaba Toolsuite. http://www.fujaba.de/, 2006.

18

Figure 5: Example Class Diagram

19

Figure 6: Example Activity Diagram

20

Copy & Paste concept and realization in Fujaba

Leif Geiger
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

leif.geiger@uni-kassel.de

Christian Schneider
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

christian.schneider@uni-kassel.de

ABSTRACT
This paper describes a generic approach to implementing a
copy & paste framework. The framework should be flexible
and easy to maintain. Especially new meta model elements
(e.g. such as added by plugins) should be easy to adapt
to work with copy & paste, as well. Our approach uses
role categories to build the set of objects and links to copy
and to restore external references when pasting. We have
implemented the framework using CoObRA 2 [3, 4] as seri-
alization framework and Java annotations to sort the roles
into a role category. We have integrated the framework into
Fujaba1 and implemented copy & paste for UML class and
activity diagrams as well as SDM diagrams.

1. INTRODUCTION
We faced the task to implement copy & paste for Fujaba
and other research applications. Given a nice persistency
library the actual task seems quite easy. Copy some objects
with all their properties and probably move them into a new
context. But there are several problems that make this task
complicated: It was unclear how one would determine the
set of objects to be copied. It had to be decided which links
to uncopied objects should be restored. And the effect of
moving objects into a new context needs to be defined.

Usually a set of objects is chosen to be copied, e.g. by se-
lection markers set by the user in a graphical application.
Though this initial set of objects does not suffice for the ac-
tual copy mechanism. When the user selects a UML class
to be copied he would expect the methods in that class to
be copied as well. But typically these are separate objects
in the application model. On the other hand the user would
not expect to get a copy of the whole diagram the class
resides in, even though that diagram object is probably ref-
erenced by the class to be copied. Furthermore it is expected
to maintain the result type of the copied method, without
getting a copy of the referenced class. These copied links to
uncopied objects are called external references throughout
this paper.

Obviously the actual set of object that should be copied
depends in the initial set of objects (user selection) and some
specific properties of the meta model. Figure 1 shows the
mentioned scenario of objects.

The second challenge when copying objects is to determine
the context of a copy (or cut) operation and afterwards the

1The Fujaba Toolsuite, http://www.fujaba.de/

Figure 1: Object structure excerpt of a UML class
diagram in Fujaba

context of a paste operation. Additionally one might be
interested in the difference between these contexts to apply
proper relocation of the pasted objects.

In our simple example of copying a UML class the copy
context could be the class diagram the class is selected in.
When pasting the context could be the currently visible class
diagram to have the copied elements shown in the current
view. On the other hand, the user might want to paste
the class into a different package. In this case the diagram
should not get replaced by the package but the copy context
must take the current package of that class into account.

So the contexts to copy from and to paste into depend on
the copy and paste actions the user might perform. The
context also seems to relate to some meta model semantics.

2. ROLE CATEGORIES
Given an initial set of objects a search algorithm to find
the set of object to be copied can be easily sketched: For
each object in the set the neighbor objects, reachable via
a link, are added to the set, if that link’s role is known to
be a containing role, regarding the copy semantics. This is
repeated until no more objects matching this condition are
found. The crucial point is to determine the set of containing
roles. Which is the mentioned property of the meta model.

After computing the set of copied objects the set of copied
links must be determined. This usually contains all links

21

from a copied object to another copied object plus some
external links (links from a copied object to an object that
is not copied). If an external link is copied, again, depends
on a list of roles to be defined in the meta model.

To summarize, we need to specify two boolean flags for the
association roles:

• One flag to specify if object referenced via this role are
copied with the referencing object.

• One flag to specify if references via this role are copied
even if the referenced object is not copied.

Obviously the second flag makes sense only if the first one is
false. So this results in three categories for the association
roles.

In Fujaba 4 we tried to apply heuristics for choosing the
categories for the roles and thus the set of objects and the
external references to be copied, based on the cardinalities
of associations. While defining lots and lots of exceptions to
these rules we realized that cardinalities were not suited as a
decision base but the category must be specified or derived
from other role properties.

The context of a copy operation is defined via a subset of
the set of external references. In our example scenario this
would be the reference to the class diagram if a UML class is
copied. Thus for the context definition we need to introduce
a fourth category of association roles. In conclusion we get
these categories for the roles:

• Containment: Objects referenced from the set of
copied objects via this role are added to the set of
copied objects.

• Copied reference: References from the set of copied
objects via this role are added to the set of copied
references.

• Copied context reference: This category is a super-
set of the copied references and has the same meaning,
but additionally the referenced objects are marked as
context objects.

• None: External references via this role can be ignored
by the copy mechanism.

3. META MODELS
The analysis of the Fujaba UML meta model, the UML 2.0
meta model and some other research meta models we found
a strong match between association role adornments and the
role categories for the copy mechanism:

• Usually one would expect to get neighbors copied with
an object if they are linked via composition associa-
tions, so composition maps to the containment cate-
gory introduced before.

• Links which are instances of an aggregation should be
copied even if they are external references, thus aggre-
gations define a part of the copied references.

• There are additional links that must be copied as ex-
ternal references which are instances of associations
without any adornment, these define the other part of
the copied references.

• The opposite direction of composition and aggregation
usually link to context objects (in UML 2.0 the parent
role may be to-many), hence we have a correlation to
the copied context references.

For our initial example these adornments are annotated in
Figure 2. The elements association from UMLClassDiagram
to UMLClass is an aggregation, thus the links got a clear
diamond. These links are copied if the diagram is copied
and mark the diagram as context if the UML class is copied
- matching the expectations. The methods association, in
turn, is a composition, depicted as filled diamond on the
links in Figure 2. So methods are included in the set of
copied object if the UML class is copied, while the class
is marked as context if a method is copied. Finally one
direction of the returnType association must be annotated
to be stored. This is indicated by the dashed arrow head.

Figure 2: Object diagram with annotated role
adornments

The other major subtask for copy & paste is to come up
with a method to identify objects which are referenced by
copied objects but are not copied themselves. A common
approach to have object references persisted is to create
globally unique identifiers for the objects and persist those.
But this does not take the specific needs for context changes
into account: An object copied from one context and pasted
into another context might get different neighbors depend-
ing on the second context. So instead of generating an ID
the Identifiers have to become ’meaningful’.

Thus an appropriate ID for a UML class could be it’s full
qualified name. If the package of that class is the context,
on the other hand, the ID could be the unqualified name of
the class. While pasting a UML method object into another
Fujaba project the return type of that method would be re-
solved by the name of that type, not relying on some unique
persistence ID. The concept of namespaces for e.g. object
diagrams can be mapped to these context IDs, as well.

22

4. IMPLEMENTATION
The Java Feature Abstraction2 and CoObRA 2 [3, 4] were
extended to provide basic support for copy & paste. The
Feature Abstraction library can read adornments from the
meta model and provides visitors for traversing the model
to find neighbors and references for the set of copied objects
and links. CoObRA on the other hand provides a mecha-
nism for generating persistency data of visited objects with
custom context identifiers. It provides an interface for ob-
taining tool specific identifiers and resolving them again.

4.1 Fujaba
We decided to specify the role categories directly in the
source code to make it easy for e.g. plugin developers to
adapt their code for copy & paste. Thus we employed Java
annotations as a means to denote the adornments. We al-
ready used a Property annotation in some of our classes
which is used to mark fields and their accessors as a prop-
erty. A Property has a name, a partner (the reverse link,
if it exists) and a kind (attribute, to-one, to-many). We
added an adornment attribute to that annotation. The pos-
sible values for this attribute are defined by an enumeration
named ReferenceHandler.Adornment:

Unknown: The adornment of the annotated property is
not known. Our implementation will show a warning
if it finds such an annotation while copying.

None: Properties marked with the NONE adornment are not
copied.

Composition: The annotated property is the containing
property of a composition, this maps to the contain-
ment category from Section 2. The partner property
must be marked as PARENT.

Aggregation: The annotated property is the containing
property of an aggregation. It’s instances are copied
references. The partner property must be marked as
PARENT.

Usage: The property is a external reference which still has
to be copied. Instances are copied references as well.

Parent: The property is the link to the parent of an aggre-
gation or a composition. The links are copied context
references (same as copied references but denote that
the target is part of the context.

We have changed the Fujaba code generation in order to gen-
erate such annotations for models specified in Fujaba. The
Composition, Aggregation and Parent adornments are gen-
erated from the association adornments in the model, None
is the default value for normal association and Usage has
to be specified explicitly using stereotypes. The retention
policy of the Property annotation is set to runtime which
means that this annotation can be accessed at runtime using
reflection.

Our copy mechanism now uses the Feature Abstraction li-
brary to read these annotations. In case of the Fujaba meta

2http://www.se.eecs.uni-kassel.de/se/?features

model this in turn uses Java Reflection to read the anno-
tations. With this information it can then build the set of
objects and links to copy. The set of possible context objects
is calculated as well. The set of objects and links to copy
is then serialized to text using CoObRA and stored in the
clipboard. To get an ID for externally referenced objects the
method getContextIdentifier() is called on those objects.
The set of contexts is passed as parameter. The method is
declared in ASGElement, the abstract superclass of every Fu-
jaba meta model element, and implemented by its concrete
subclasses. The getContextIdentifier() method returns
an Identifier for the object which is unique for the passed
context.

When the paste action is executed the textual representa-
tion in the clipboard is deserialized. To restore the exter-
nal references we have introduced a singleton called Name-

spaceManager. The NamespaceManager has a chain of re-
sponsibility of NamespaceHandlers. If an external ID has to
be resolved the findByContextIdentifier() method of the
NamespaceHandler in the chain are called until one returns
a result. The context to paste is passed as parameter as well
as the ID, the class of the object to find and if the object to
find itself was a context.

We have added the annotations needed for copy & paste and
implemented the methods needed to serialize and deserialize
external references for Fujaba’s class diagrams. This imple-
mentation has already been tested by the community and
can be classified as stable.

4.2 Plugin Meta models
Using the class diagram example from above, we will show
how plugin developer can make their own meta models ca-
pable for copy & paste. First, one needs to add the anno-
tations: If the meta model is specified in Fujaba one can
easily change its associations to compositions or aggrega-
tions or add stereotypes where needed. After generating
code with CodeGen2[1] the needed annotations are gener-
ated into the source code. Alternatively, one may write the
needed annotations into the code manually.

For the class diagram part we imported the Fujaba meta
model in Fujaba. We used the reflection based importer
deployed with the Refactorings plugin since it is able to im-
port existing annotations. The annotated class diagram of
our short example is shown in Figure 3. Afterwards we gen-
erated code from this model. Since the Fujaba code differs a
lot from the generated code, we could not replace the origi-
nal with the generated. So we wrote an eclipse plugin which
only copies the annotation of one source folder to the code in
another source folder. Using this plugin we copied the cor-
rect annotations into the original Fujaba source code. The
code for the field resultType of class FMethod is shown in
Listing 1.

Listing 1: Annotations of field FMethod.resultType
1 public final static String
2 RESULT_TYPE_PROPERTY = "resultType";
3

4 @Property(name=RESULT_TYPE_PROPERTY ,
5 partner=FType.REV_RESULT_TYPE_PROPERTY ,
6 kind=ReferenceHandler.ReferenceKind.TO_ONE ,

23

0..*

0..1

methods

0..*0..* <<usage>>

diagrams

0..*0..1

resultType

FElement

«interface»

FType

«interface»

FClass

«interface»

FMethod

«interface»

FDiagram

«interface»

Figure 3: Class diagram of class diagram example

7 adornment=ReferenceHandler.Adornment.CONTEXT)
8 public void setResultType(FType value);
9

10

11 @Property(name=RESULT_TYPE_PROPERTY)
12 public FType getResultType ();

Next we needed to implement the getContextIdentifier()

method for all classes that were target of an external refer-
ence which should by copied. In our example this is e.g. the
FClass. A class can typically be identified by its full quali-
fied name independent of the context, so our implementation
for UMLClass looks like shown in Listing 2.

Listing 2: getContextIdentifier() of class UMLClass
1 public String getContextIdentifier
2 (Collection <? extends FElement > context)
3 {
4 return getFullClassName ();
5 }

The last thing to do is to implement NamespaceHandlers
which are able to resolve the stored external references. As
example we show the NamespaceHandler for a project con-
text when a class is passed in Listing 3. Here, if the passed
ID is a reference to an FClass (line 9-10), the class in the
context project with the same full qualified name is returned
(line 12-14).

Listing 3: NamespaceHandler() for projects
1 class ProjectNamespaceHandler
2 implements NamespaceHandler
3 { ...
4 public FElement findByContextIdentifier
5 (FElement context , String identifier ,
6 ClassHandler type , boolean isContext)
7 throws ElementNotFoundByContextIdentifier
8 { ...
9 if (module.getClassHandler(FClass.class.

10 getName ()). isAssignableFrom(type))
11 {
12 return project.getFromFactories
13 (FClass.class). getFromProducts
14 (identifier);
15 }
16 }
17 }

Finally the NamespaceHandler has to be registered at the

NamespaceManager singleton to make copy paste work.

5. RELATED WORK
Existing frameworks for copy & paste focus on providing an
interface for the operations, while the actual implementa-
tion is left on behalf of the model developer. In the Eclipse
Modeling Framework3 the documentation suggests to copy
objects regarding to the MOF containment hierarchy, but
the effects of external references (references to objects which
are not copied) remain unclear.

Porres and Alanen do present a more generic aproach in a
technical report [2]. They utilize the containment hierarchy
of MOF meta models to determine the set of instances to
be copied in a deep copy operation. Though decisions about
external references are not handled explicitly. The only rule
proposed in by Porres and Alanen is to omit references with
a backward to-one cardinality. Like in the EMF Framework
Models are expected to be selfcontained. This means no
cross-references between models are respected.

6. CONCLUSIONS
The approach to use association adornment and additional
usage annotations in the meta model to determine the set
of copied objects and set of copied external references en-
abled us to integrate support for copy & paste in Fujaba’s
class and SDM diagrams quickly. The NamespaceManager
handles resolution of the context identifiers, which are indi-
vidually created by all referenced elements. In contrast to
the former copy & paste implementation in Fujaba 4, based
on heuristics on the role cardinalities, the new implementa-
tion appeared reliable and stable in the tests.

Due to the easy extensibility we hope to make use of the new
functionality in package diagrams, state charts and plugin
meta models soon, to get comprehensive copy & paste sup-
port throughout Fujaba 5.

7. REFERENCES
[1] L. Geiger, C. Schneider, and C. Record. Template- and

modelbased code generation for MDA-tools. In 3rd
International Fujaba Days, Paderborn, Germany, 2005.

[2] I. Porres and M. Alanen. A generic deep copy
algorithm for mof-based models. Technical report 486,
ISBN: 952-12-1073-7, Turku Centre for Computer
Science, Software Construction Laboratory, 2002.

[3] C. Schneider. CASE Tool Unterstützung für die
Delta-basierte Replikation und Versionierung komplexer
Objektstrukturen (Diploma Thesis, german), 2003.

[4] C. Schneider, A. Zündorf, and J. Niere. CoObRA - a
small step for development tools to collaborative
environments. In Workshop on Directions in Software
Engineering Environments; 26th international
conference on software engineering. ICSE 2004,
Scotland, 2004.

3EMF, http://www.eclipse.org/modeling/emf/

24

EMF Code Generation with Fujaba

Leif Geiger
Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

leif.geiger@uni-kassel.de

Thomas Buchmann
Universität Bayreuth
Universitätsstr. 30
95447 Bayreuth

thomas.buchmann@uni-
bayreuth.de

Alexander Dotor
Universität Bayreuth
Universitätsstr. 30
95447 Bayreuth

alexander.dotor@uni-
bayreuth.de

ABSTRACT
Fujaba is a powerful tool for model driven development. But
when it comes down to the development of graphical user
interfaces, developers are still in need of massive manual
coding. On the other side, GMF provides a way of generat-
ing graphical user interfaces, but it is tightly coupled to an
underlying EMF model. In this paper we show a way how
to extend Fujaba’s code generation to preserve most of Fu-
jaba’s modeling and code generation benefits and map the
Fujaba model onto a EMF specification.

1. INTRODUCTION
In its current state Fujaba generates standard Java code
which can be easily integrated into most Java applications.
The eclipse project offers a platform for editors and similar
tools. With GEF and GMF [6] eclipse offers frameworks
which simplify the construction of visual editors. To use
these frameworks the underlying meta model has to be com-
patible to the EMF code style. It would be nice to be able
to combine these two powerful tools: Fujaba and eclipse /
GMF. Then the meta model and the transformations made
on it can be done with Fujaba and the construction of the
visual editor, menus, toolbars etc. can be built using eclipse
/ GMF. This work now introduces an EMF code generator
for Fujaba.

2. COMPARING THE FUJABA META MO-
DEL, ECORE AND EMOF

To be able to generate EMF compatible code from models
specified in Fujaba it is necessary to define a mapping from
the concepts used in Fujaba onto those used in EMF. In
other words it is necessary to map the Fujaba metamodel
onto Ecore. By comparing both meta models it is possible to
identify which features of Fujaba can be mapped onto Ecore
at all and which features will be lost during the generation
process.

We compare the Fujaba metamodel as it is implemented

in Fujaba 5 with the Ecore model as it is defined in EMF
2.3.1 [4]. As the EMF introductions says “There are small,
mostly naming differences between Ecore and EMOF” [5],
we compare both meta models with EMOF 2.0, too [11].
Table 1 shows the result of the comparison. The first column
names the compared feature while the following columns
contain either yes or no depending on whether the feature
is available in the model or not accordingly.

Feature Fujaba 5 Ecore 2.3.1 EMOF 2.0
Classes

abstract yes yes yes
interface yes yes no
reference yes yes yes

Attributes
read-only no yes yes
final yes no no
static yes no no
transient yes yes no
default value yes yes yes

Methods
public yes yes yes
protected yes no no
private yes no no
static yes no no
exceptions yes yes yes

Associations
1:1 yes yes yes
1:n yes yes yes
n:n yes yes yes
unidirectional yes yes yes
ordered yes yes yes
int. qualified yes yes no
ext. qualified yes no no

Behavior
Behav. model yes no no

Table 1: Comparison of Fujaba metamodel and
Ecore

Fujaba provides the most features followed by Ecore and
EMOF at last which means that Fujaba is far more expres-
sive than Ecore or EMOF. Table 1 highlights in bold letters
the features of the Fujaba meta model that are lost when
it is mapped onto Ecore. The following constraints must be
made to be compatible to Ecore:

1. no concept of static, i.e. static final constants.

25

2. public methods only.

3. no externally qualified associations.

4. no behavioral modeling.

While the first three constrains are acceptable the 4th one is
not as it renders one of the key features of Fujaba useless. So
the code generation for EMF must preserve the behavioral
model by generating the java code for it separately.

The comparison to EMOF shows that its features are a sub-
set of Ecore. This means a mapping from Fujaba to EMOF
must fulfill all constraints for Ecore and three more: no inter-
faces, no transient attributes and no qualified associations
at all (highlighted in italics in table 1). Additionally we
want to point out that EMOF is a true subset of Ecore and
the statement “There are small, mostly naming differences
between Ecore and EMOF” [5] does not hold anymore.

3. EMF CODE GENERATION
For generating EMF compatible java code from Fujaba mod-
els there exist two different approaches:

1. Generating EMF compatible java code directly from
Fujaba models

2. Generating a Ecore model file and use the EMF code
generator to generate the java code

The first approach has the benefit that the Fujaba code
generation does not depend on other code generators to
generate executable code and that the code executing the
graph transformations can be easily integrated into the gen-
erated classes. As drawback the code generation has to be
changed every time the EMF code generation changes. That
was the reason (and because it meant much less work) why
we decided to implement the second approach. That keeps
the maintainance effort low even if the EMF specification
changes but on the other hand we need to inject the code
for the graph transformations into the code generated by the
EMF code generator. Fortunately, the EMF code generator
offers a way that makes this very easy.

Figure 1 depicts the various artifacts used during the code
generation process as well as their dependencies. The code
generation for EMF can be separated in two distinct parts
concerning the structural (color on diagram: yellow) and
the behavioral part (color in diagram: orange) of the Fu-
jaba model. The first part maps the structural elements
of the model (i.e. classes and associations) onto equivalent
elements of the Ecore model. The second part generates im-
mediately java code for the behavioral part of the model (i.e.
story diagrams). To generate a fully executable java model
the EMF code generation must be used to generate java
code for the structural part of the model. The EMF code
generation is able to merge the already generated code for
behavioral part with the newly generated structural code.

We used Fujaba’s template based code generation CodeGen2
[8] to generate the needed artifacts. CodeGen2 supports so
called CodeStyles. That means that the developer can mark

Figure 1: Different levels of code generation

model elements with CodeStyle tags. It is now possible to
use a different set of templates for e.g. a EMF CodeStyle

tag. We wrote such templates that are able to generate
an XMI file representing the Ecore model from the model
elements marked as EMF. Additionally we changed the java
code generation so that it generates EMF implementation
classes containing only the code for the graph transformation
rules for such model element. So, the generated java code
only contains the methods and still lacks the implementation
of attributes and associations. This is added by the EMF
code generator once it is invoked on the generated XMI file.

The generation of the XMI file is straight forward: Fujaba
classes are mapped to EMF classes, methods to EMF opera-
tions etc. The generation of the java files requires some more
work since the EMF mechanism for creation and deletion of
objects and links have to be used.

Object creation in EMF can not be done using the new op-
erator, one has to use factories. There is one factory re-
sponsible for each package which is able to create objects
for all classes of this package. This factory can be found
using EMF naming conventions (package name followed by
Factory. Such object creation is done by the following (sim-
plified) template snippet:

#set($factory = "$utility.upFirstChar

($package.Name)Factory")

$name = "${factory}.eINSTANCE.create${type}()";

Object removal is still done calling the removeYou method
which removes all links of the object to make it collectable
for the garbage collection. All other object operations like
bound checks or assignments can be done as in the java code
generation.

For link queries and manipulations one has to consider that
some access methods for EMF associations differ from those
normally generated by Fujaba. For to-1 associations noth-
ing changes. So the old templates can be used. But for
to-many associations instead of a iteratorOf<role name>

method which returns a Iterator, EMF has a get<role

name> method which returns the set. All queries and muta-
tions have to be executed on this set. So creating a link re-
sults in an add operation, deleting in a remove operation etc.
This can be easily implemented with the templates. Since
all to-many associations in EMF are ordered what means
they are implemented by lists, one may always specify an
integer as range when querying a link. But if that index is
not valid an IndexOutOfBoundsException is thrown which
the Fujaba generated code can not handle. So we added an
index check before every check or search operation with a

26

specified range. Such an index check is generated by the
template shown below:

fujabaIndex = $range;

JavaSDM.ensure ((fujabaIndex >= 0) &&

(fujabaIndex < ${name}.get$roleName ().size()));

Another operation that might be thrown when manipulating
EMF object structures is the ConcurrentModificationException.
This exception is thrown when a set is changed while iter-
ating through it. This might happen in Fujaba in an forE-
ach activity when a link which is used for searching is then
deleted or a new one of the same type is added. The stan-
dard generated code uses set classes which do not throw this
exception. For EMF code this is not possible. This is why
we decided to use a pre-select semantics (cf. [15, 14]) for
forEach searches here. We copy the set and iterate through
the copy. Changes are performed on the original set. So
changes will not affect which objects are visited during the
search. This is a slight difference to the semantics normally
used in Fujaba but we consider it as a minor drawback.

The last missing element of story diagrams are path expres-
sions. Such expressions are generated as Strings into the
code and interpreted at runtime. So we do not have to
change the code generation here but adapt the path inter-
preter. There is an implementation of the path interpreter
which uses the so called feature abstraction developed at the
university of Kassel for link searches. The feature abstrac-
tion defines an abstract way to access classes, their methods
and their fields. There exists implementations for the java
reflection layer, the java debug interface and JMI. We wrote
an implementation for EMF. This implementation can be
used by the path interpreter and so path expressions do also
work for EMF.

EMF offers methods to serialize object structures to XMI.
Anyhow using CoObRA [12, 13], the framework for object
persistency in Fujaba, has several benefits. In addition to
persistency for object structures CoObRA offers generic sup-
port for undo-redo operations and multiuser environments
including merging of object structures. Fortunately, CoO-
bRA also uses the feature abstraction to access the model.
So the implemented EMF feature abstraction can be used
here, too. To be able to have full CoObRA support for the
generated EMF models, it was neccessary to implement an
adapter from EMF property changes to JavaBeans property
changes which are used in CoObRA.

4. EXAMPLE
In this section we present a small example to show how
the EMF code generation works. The example is derived
from the project management domain and is a simple model
derived from dynamic task nets [9] and is a simplification
of our dynamic task net editor [2]. The model is depicted
as UML class diagram in figure 2 and it consists of three
classes:

1. DynamicTaskNet, which instances represent dynamic
task nets

Figure 2: Class diagram of the example model

2. Task, which instances represents specific tasks within
the net

3. ControlFlow, which represents specific relations be-
tween tasks, e.g. sooner-later-dependencies

The code generation maps the structural part of the model
onto the Ecore metamodel by generating an ecore file. Fig-
ure 3 shows a section of the ecore file for our example model:
the description of class Task. An eClassifier with name
“Task” is defined and within it several eStructuralFeatures
(attributes) and eOperations (methods). Note the two dif-
ferent types of eStructuralFeatures: “EAttribute”and“ERef-
erence”. The first is used for primitive data types, the sec-
ond for associations including cardinalities and containment
relationship.

The behavioral part is mapped directly onto executable java
code. For each class in Fujaba with class name name a cor-
responding class nameImpl is generated which contains all
code generated from story diagrams. In case of the sam-
ple class Task the generated TaskImpl contains code for
two methods: validateUniqueTaskName() and removeYou().
When the EMF code generation is applied onto the ecore
file it merges the existing Impl-files with the generated ones.
TaskImpl contains then additional 17 methods for accessing
and changing its attributes and links.

5. CONCLUSION
We have shown that the Ecore model is a subset of the Fu-
jaba language and thus it is possible to generate EMF com-
patible code from Fujaba models. We have developed such a
code generator as a plugin for Fujaba. That code generation
not only translates the static part of the model to Ecore but
is also able to generate code for story diagrams. Thus the
developer can now specify behavior for EMF models with
Fujaba. Here the full expressiveness of story diagrams can
be used. We have evaluated our tool in a first example case
study at the University of Bayreuth and a student project
at the University of Kassel. In those projects we were able
to specify complex models including behavior with Fujaba
and generate EMF code from those models. We used the
GMF framework [6] to build a graphical user interface on
top of this code. Using these techniques the students in
Kassel built a petri net editor and the team in Bayreuth
a dynamic task net editor [2]. Note, that thanks to the
model based specifications in Fujaba and in GMF, those
two projects could be realized with very few lines of hand
written code.

27

<eClassifiers xsi:type="ecore:EClass" name="Task" abstract="false" interface="false"

eSuperTypes="">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" transient="false">

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="valid"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean" transient="false">

</eStructuralFeatures>

<eOperations name="validateUnqiueTaskName"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean" eExceptions="">

</eOperations>

<eStructuralFeatures xsi:type="ecore:EReference" name="taskNet" ordered="false" lowerBound="0"

upperBound="1"eType="#//DynamicTaskNet" transient="false" containment="false"

eOpposite="#//DynamicTaskNet/tasks">

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="outgoingCF" ordered="false" lowerBound="0"

upperBound="-1"eType="#//ControlFlow" transient="false" containment="false"

eOpposite="#//ControlFlow/sourceTask">

</eStructuralFeatures>

<eStructuralFeatures xsi:type="ecore:EReference" name="incomingCF" ordered="false" lowerBound="0"

upperBound="-1" eType="#//ControlFlow" transient="false" containment="false"

eOpposite="#//ControlFlow/targetTask">

</eStructuralFeatures>

<eOperations name="removeYou"/>

</eClassifiers>

Figure 3: Ecore representation of the class Task

6. RELATED WORK
The TIGER project [7] is based on AGG, an approach to
graph transformations based on category theory. It is ded-
icated to the automatic generation of GEF editors using
graph transformations, in contrast to our work, which uses
GMF for editor generation. Therefore we may benefit from
further developments for GMF, i.e. design tools for graph-
ical elements and sophisticated wizards for the generation
process. Furthermore our editors are extensible like any
other GMF-editor. The Tiger EMF Transformation Project
[1] adds support for graph transformations on EMF models
to TIGER. Here actions on the EMF model can be mod-
eled using graph transformations. But one actions always is
one graph transformation rule. More elaborate features as
control flow are not yet supported.

The DiaMeta tool [10] is an freehand editor generator based
on graph grammars. The grammars are specified against
MOF 2.0 meta models specified in MOFLON [3]. Since
MOFLON is the MOF 2.0 plugin for the Fujaba Tool Suite,
the normal Fujaba graph transformations can also be spec-
ified for MOFLON meta models. But the code generated
by MOFLON is not compatible to EMF, so the generated
applications do not easily integrate into eclipse and can not
benefit from all the tools and libraries already available for
EMF / eclipse.

7. FUTURE WORK
Following issues will be addressed in the future to improve
the Fujaba code generation for EMF: First the mapping of
classes with reference stereotype onto ecore by using EMFs
EDataType. Second we are looking for a way to map con-
stants onto ecore. And third we still have to implement

support for the new qualified associations of EMF 3.3.

8. REFERENCES
[1] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns,

G. Taentzer, and E. Weiss. Graphical Definition of
In-Place Transformations in the Eclipse Modeling
Framework. In MoDELS’06, 2006.

[2] T. Buchmann, A. Dotor, and B. Westfechtel. Model
driven development of graphical tools: Fujaba meets
gmf. In Proceedings of the 2nd International
Conference on Software and Data Technologies
(ICSOFT 2007), pages 425–430. INSTICC, jul 2007.

[3] T. R. A. S. C. Amelunxen, A. Königs. MOFLON: A
Standard-Compliant Metamodeling Framework with
Graph Transformations. In in: A. Rensink, J.
Warmer (eds.), Model Driven Architecture -
Foundations and Applications: Second European
Conference, Heidelberg: Springer Verlag, 2006;
Lecture Notes in Computer Science (LNCS), Vol.
4066, Springer Verlag, 361–375, 2006.

[4] Eclipse Foundation. The Eclipse Modeling Framework
(EMF) Overview, 2005. http://dev.eclipse.org/-
viewcvs/indextools.cgi/org.eclipse.emf/doc/-

org.eclipse.emf.doc/references/overview/-

EMF.html – last visited:
03/08/2007.

[5] Eclipse Foundation. The Eclipse Modeling Framework
(EMF) Overview, 2005. http://dev.eclipse.org/-
viewcvs/indextools.cgi/org.eclipse.emf/doc/-

org.eclipse.emf.doc/references/overview/-

EMF.html – last visited:
03/08/2007.

28

[6] Eclipse Foundation. Graphical Modeling Framework,
2007. http://www.eclipse.org/gmf/ – last visited:
30/08/2007.

[7] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer.
Generation of visual editors as eclipse plug-ins. In ASE
’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
134–143, New York, NY, USA, 2005. ACM Press.

[8] L. Geiger, C. Schneider, and C. Record. Template- and
modelbased code generation for MDA-tools. In 3rd
International Fujaba Days, Paderborn, Germany, 2005.

[9] P. Heimann, C.-A. Krapp, and B. Westfechtel.
Graph-based software process management.
International Journal of Software Engineering and
Knowledge Management, 7(4):431–455, 1997.

[10] M. Minas. Generating meta-model-based freehand
editors. In Electronic Communications of the EASST,
Proc. of 3rd International Workshop on Graph Based
Tools (GraBaTs’06), Natal (Brazil), September 21-22,
2006, Satellite event of the 3rd International
Conference on Graph Transformation, 2006.

[11] Object Management Group. Meta Object Facility
(MOF) Core Specification 2.0, 2006.
http://www.omg.org/.

[12] C. Schneider. CASE Tool Unterstützung für die
Delta-basierte Replikation und Versionierung
komplexer Objektstrukturen (Diploma Thesis,
german), 2003.

[13] C. Schneider, A. Zündorf, and J. Niere. CoObRA - a
small step for development tools to collaborative
environments. In Workshop on Directions in Software
Engineering Environments; 26th international
conference on software engineering. ICSE 2004,
Scotland, 2004.

[14] M. Tichy, M. Meyer, and H. Giese. On Semantic
Issues in Story Diagrams. In Fujaba Days 2006, 2006.

[15] A. Zündorf. Rigorous Object Oriented Software
Development, 2001.

29

WhiteSocks - A simple GUI Framework for Fujaba

Ira Diethelm1, Ruben Jubeh1, Andreas Koch1, Albert Zündorf1

1Universität Kassel, Wilhelmshöher Allee 73, 34121 Kassel
whitesocks@andreaskoch.net | (ira.diethelm | ruben.jubeh |

albert.zuendorf)@uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

ABSTRACT
While Fujaba is appropriate for modeling the application
logic, building a GUI has not yet been specifically supported
by the Fujaba tool set. This paper presents the WhiteSocks
project library for Fujaba. WhiteSocks is a Fujaba project
that provides a small framework and a set of standard means
for the construction of simple graphical user interfaces. A
user project may import and exploit the WhiteSocks project
library in order to come up with a graphical user interface
e.g. for a simple board game. This paper presents some core
features of the WhiteSocks project library.

1. INTRODUCTION
Teaching object oriented modelling with Fujaba has always
the problem that, once the application logic has been build
by a student, she or he would like to “see” it working, i.e.
they want to have some user interface. However, program-
ming user interfaces with frameworks like Swing or Gef is
too challenging for freshmen. Thus, we wanted to have a
simple GUI framework (for simple applications) integrated
into the Fujaba tool suite.

Luckily, Michael Kölling presented the Greenfoot environ-
ment within a talk at the Humboldt University on 20.10.2006.
The general idea of the Greenfoot environment is to have a
singleton root object world that owns a number of so-called
actors. The world opens a window and creates a represen-
tation of the actors within this window. Most easily, this
representation is some icon at some position, cf. Figure 2.
In order to make the actors active, the world iterates through
its actors continuously and invokes act() and display() meth-
ods on each of them. By overriding the act() method, an
actor may perform specific activities and change their state.
Then, the display() method may update the representation
of the actor within the world window. For example, the icon
may be exchanged, moved or rotated. In addition, an actor
may react on mouse clicks or on key strokes in order to allow
user interaction.

With these basic mechanisms, it is easy to create simple user
interfaces offering the possibilities of sprite graphics as they
have been used in many early computer games. Such sim-
ple user interfaces enable programming freshmen to build

their first visual applications. This is very motivating for
students and improves their interest in learning program-
ming and modelling. The Greenfoot environment has al-
ready been used with great success for teaching freshmen in
Java programming.

Thus, we had the idea to come up with a similar environ-
ment, the Whitesocks framework. Whitesocks takes over
most of the concepts of the Greenfoot environment and
adapts them to work with the Fujaba environment.

2. ARCHITECTURE
Similar to Greenfoot, WhiteSocks provides a singleton class
WSWorld that owns a number of WSActor objects, cf. Fig-
ure 1. WSWorld opens a window/JFrame and then it cre-
ates a representation of each of its WSActors within this
window. Basically, each actor is represented by an icon sub-
scribed with a textual label. The default icon for an actor
is a white sock. However, if the icon attribute of the WS-
Actor object points to an icon file, this icon is used instead.
The x and y positions of the WSActor are provided by the
corresponding attributes of class WSPersistent. Similarly,
the label attribute of class WSActor provides a string to be
shown below the icon.

Each WSActor object provides an act() method. Within a
nonterminating loop, WSWorld iterates through all its WS-
Actor objects and calls method act() on each of them. Then
the representation of the objects is updated. After a short
pause (in range of 1...100ms) this is reiterated. By overwrit-
ing method act(), subclass objects may perform continuous
activities and react on changes within their environment.
For example, an actor could change its position a few pixel
towards a certain direction on each call to its act method
thus creating a smooth movement. In addition, method
mouseReleased() may be overridden, in order to react on
mouse clicks on a WSActor subclass object.

3. MULTI-USER-SUPPORT
Multi-user-support is realized by utilizing the Coobra2 li-
brary. The Coobra2 library provides a mechanism to repli-
cate an object structure on multiple (Java virtual) machines
and to keep these copies consistent by forwarding changes
between these copies. On each copy, a local Coobra2 compo-
nent subscribes itself as listener to all objects / actors. If a
change occurs, this change is forwarded to a Coobra2 server
that in turn forwards the change to all other object structure
copies. This mechanism allows to run a Whitesocks applica-

30

Figure 1: Basic WhiteSocks Architecture

tion on multiple machines while the actors on the different
machines are synchronized by the Coobra2 system.

4. EXAMPLES
4.1 Ludo
The simple means described above already suffice to build
simple graphical user interfaces of e.g. many popular (board)
games. Figure 2 shows a screen dump of a ludo game created
with WhiteSocks.

Basically, the ludo game consists of Field objects rendered
with a blue ball icon, home fields rendered as houses, goal
fields rendered as rocks, players rendered as persons, and
stones rendered as man icons. The lower part of the window
shows some special command objects. For the Ludo game,
all objects have been created within EDobs, cf. [2], and
then stored using Coobra2, cf. [1]. All fields, houses and
players have been positioned manually, using EDobs, [2].
(By default, WSActor objects take over the pos information
stored by EDobs.) The position of stones is computed either
by the act method of class Stone (if it is on some field) or
by the player (if stones line up at home.)

Class Die overwrites the mouseReleased method of WSAc-
tor to call method roll on itself. Thus, the user may click on
the dice to roll it. The act method will update the icon, ac-
cordingly. Stones overide mousRelesed to invoke their move
method. Thus, the user may click on one of his stones to
move it. Then the move method will also hand over the die
to the next player.

Using the (standard WhiteSocks) commands at the bottom
of the figure, the user may start or connect to a server for
multi player support over the network. This is again based
on Coobra2 features.

Figure 2: A Ludo game build with Fujaba and
WhiteSocks

31

Figure 3: Asteroids game build with Fujaba and
WhiteSocks

4.2 Asteroids
Asteroids is a simplified version of the well known Arcade
Game Asteroids, originally a Atari game. Asteroids is im-
plemented in Greenfoot as well, and has been choosen as
Example to compare the features and usability of both en-
vironments.

The user can control the Rocket with keyboard commands,
e.g. accelerate, decelerate, change direction and fire. The
asteriods are moving randomly though the space. When a
asteroid is hit by the rocket’s fire a few times, it explodes
and splits into two smaller asteroids.

Asteroids is realized by deriving the game’s objects from the
WSActor class. Figure 4 shows the Design of the Asteroids
game: each object type in space is modeled as subclass of
WSActor. The class Rocket is derived from WSMovingActor,
so mouse and keyboard events are delivered without any de-
lay.

5. LIMITATIONS
Currently, there is very limited support for standard GUI
widgets like Buttons, Textfields, Textarea etc. At the cur-
rent state, WhiteSocks concentrates on easy and intuitive
support for building board-like games. Building other kinds
of graphical applications is supported, but requires knowl-
edge and manual integration of the GUI widgets (Swing)
into the WhiteSocks application.

Furthermore, in our examples we do not properly seper-
ate model, view, and controller. Frequently, logic classes
just inherit from WSActor and overwrite some methods for
GUI adaption. For example, the application model classes

Figure 4: Asteroids Class Diagram

directly provide their icon and position for the display()
method. This becomes a problem, is one object shall be
shown in different views. For example, we might want to
display a ranking of players by showing the player actors
at different hights at some ladder. In addition, a player
icon shall be shown at near to the home field of that player.
This is not supported by the current display mechanism,
since each actor has only one icon attribute and only one
set of x an y position attributes. To avoid this problem,
a logic object should not inherit from WSActor but have
one or more specific actor object for its representation in
different views/positions. While the framework allows this,
our examples give wrong hints to our users. On the other
hand, merging logic and representation facititates things for
beginners.

6. CURRENT AND FUTURE WORK
As stated, WhiteSocks is based on the ideas of the Greenfoot
environment. Actually, we would have loved to use Green-
foot as a GUI library for models build with Fujaba. In order
to be able to exploit all the existing Greenfoot applications
and in order to avoid reinventing the wheel, we have tried
this but ran into multiple problems caused by incompatibili-
ties of code styles of Fujaba and Greenfoot. In addition, the
BlueJ compiler behind Greenfoot and the build mechanism
of Fujaba tent to embrace each other until they end in a
deadlock.

Thus, we finally decided to come up with our own clone.
Using WhiteSocks for building simple user interfaces for ap-
plications build with Fujaba works quite nicely, now. One
basically has to turn certain classes of his application into
subclasses of WSActor in order to add the corresponding ob-
jects to the screen. Then, one overrides the display method
in order to adapt the presentation of each object and the
act method in order to achieve reactive behavior.

Current work tries to add more GUI widgets to WhiteSocks.

32

Thus, we would like to provide multi line text fields for
longer texts and editable text fields for user input (e.g. for a
chat box). And input fields for numbers. And Drag&Drop
support. And various kinds of lists and tables to structure
certain information. For educational purposes, we also try
to add some turtle graphics features (as provided by Green-
foot). This might also be useful for charts, e.g. for plotting
functions.

In addition, we have to improve the integration of White-
Socks into the development process supported by the Fu-
jaba Environment. Currently, one adds the WhiteSocksLib
project to his Fujaba environment and then his application
project may import the WhiteSocks project. Then, the user
might inherit from WSActor to make his objects visible and
she or he has to inherit from WSWorld to provide a standard
main method. Finally, the user either has to code some ini-
tializer for the creation of an initial object structure or the
user integrates EDobs into his application in order to be
able to add objects and do debug his object structure. This
needs to become easier to handle.

As soon as Whitesocks has become mature enough, we want
to use it in programming and modelling courses at our Uni-
versity and at some high schools in order to increase the
student’s motiviation to stick with learning.

7. REFERENCES
[1] CoObRA 2.

http://www.se.eecs.uni-kassel.de/se/?coobra, 2006.

[2] The EDobs Dynamic Object Browser.
http://www.coobra.cs.uni-kassel.de/index.php?edobs,
2006.

[3] The Greenfoot Environment.
http://www.greenfoot.org/, 2006.

33

